CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 81

EDITORIAL BOARD B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK

AN INTRODUCTION TO INVARIANTS AND MODULI

Incorporated in this volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Among other things, this volume includes an improved presentation of the classical foundations of invariant theory that, in addition to geometers, will be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts.

Cambridge Studies in Advanced Mathematics Editorial Board: B. Bollobas, W. Fulton, A. Katok, F. Kirwin, P. Sarnak Recently published 24 H. Kunita Stochastic flows and stochastic differential equations 25 P. Wojtaszczyk Banach spaces for analysts 26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis 27 A. Frohlich & M.J. Taylor Algebraic number theory 28 K. Goebel & W.A. Kirk Topics in metric fixed point theory Reflection groups and Coxeter groups 29 J.F. Humphreys 30 D.J. Benson Representations and cohomology I 31 D.J. Benson Representations and cohomology II Cohomological methods in transformation groups 32 C. Allday & V. Puppe 33 C. Soule et al Lectures on Arakelov geometry 34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis 35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurctions 37 Y. Meyer Wavelets and operators 1 C. Weibel 38 An introduction to homological algebra 39 W. Bruns & J. Herzog Cohen-Macaulay rings 40 V. Snaith Explicit Brauer induction 41 G. Laumon Cohomology of Drinfeld modular varieties I Spectral theory and differential operators 42 E.B. Davies 43 J. Diestel, H. Jarchow, & A. Tonge Absolutely summing operators Geometry of sets and measures in Euclidean spaces 44 P. Mattila 45 R. Pinsky Positive harmonic functions and diffusion Introduction to analytic and probabilistic number theory 46 G. Tenenbaum 47 C. Peskine An algebraic introduction to complex projective geometry 48 Y. Meyer & R. Coifman Wavelets 49 R. Stanley Enumerative combinatorics I 50 I. Porteous Clifford algebras and the classical groups Spinning tops 51 M. Audin 52 V. Jurdjevic Geometric control theory 53 H. Volklein Groups as Galois groups 54 J. Le Potier Lectures on vector bundles 55 D. Bump Automorphic forms and representations 56 G. Laumon Cohomology of Drinfeld modular varieties II 57 D.M. Clark & B.A. Davey Natural dualities for the working algebraist 58 J. McCleary A user's guide to spectral sequences II 59 P. Taylor Practical foundations of mathematics 60 M.P. Brodmann & R.Y. Sharp Local cohomology 61 J.D. Dixon et al. Analytic pro-P groups 62 R. Stanley Enumerative combinatorics II 63 R.M. Dudley Uniform central limit theorems 64 J. Jost & X. Li-Jost Calculus of variations 65 A.J. Berrick & M.E. Keating An introduction to rings and modules 66 S. Morosawa Holomorphic dynamics 67 A.J. Berrick & M.E. Keating Categories and modules with K-theory in view 68 K. Sato Levy processes and infinitely divisible distributions 69 H. Hida Modular forms and Galois cohomology 70 R. Iorio & V. Iorio Fourier analysis and partial differential equations Analysis in integer and fractional dimensions 71 R. Blei 72 F. Borceaux & G. Janelidze Galois theories 73 B. Bollobas Random graphs A full series list is available at www.cambridge.org

Cambridge University Press 978-1-107-40636-0 - An Introduction to Invariants and Moduli Shigeru Mukai Frontmatter More information

AN INTRODUCTION TO INVARIANTS AND MODULI

SHIGERU MUKAI

Translated by W. M. Oxbury

CAMBRIDGE

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107406360

© Shigeru Mukai 1998, 2000

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1998, 2000. First published by Cambridge University Press 2003 Reprinted 2006 First paperback edition 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data Mukai, Shigeru, 1953– [Mojurai riron. English] An introduction to invariants and moduli / S. Mukai; translated by W.M. Oxbury. p. cm. – (Cambridge studies in advanced mathematics) Includes bibliographical references and index. ISBN 0-521-80906-1 I. Invariants. 2. Moduli theory. I. Title. II. Series. QA244 .M8413 2003

512.5-dc21

2002023422

ISBN 978-1-107-40636-0 Hardback ISBN 978-0-521-80906-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	ce	<i>page</i> xi		
	Ackn	Acknowledgements			
	Introc	Introduction			
		(a) What is a moduli space?			
		(b)	Algebraic varieties and quotients of algebraic		
			varieties	xvi	
		(c)	Moduli of bundles on a curve	xix	
1	Invar	riants	s and moduli	1	
	1.1	A p	arameter space for plane conics	1	
	1.2	Inva	ariants of groups	9	
		(a)	Hilbert series	9	
		(b)	Molien's formula	13	
		(c)	Polyhedral groups	15	
	1.3	Clas	ssical binary invariants	19	
		(a)	Resultants and discriminants	19	
		(b)	Binary quartics	26	
	1.4	1.4 Plane curves		32	
		(a)	Affine plane curves	32	
		(b)	Projective plane curves	35	
	1.5	1.5 Period parallelograms and cubic curves		41	
		(a)	Invariants of a lattice	41	
		(b)	The Weierstrass \wp function	44	
		(c)	The \wp function and cubic curves	47	
2	Ring	s and	polynomials	51	
	2.1	Hilt	51		
	2.2	Uni	55		
	2.3	Fini	58		

vi	Contents			
	2.4 Valuation rings			
		(a) Power series rings	61	
		(b) Valuation rings	63	
	2.5 A diversion: rings of invariants which are not finitely			
	generated			
		(a) Graded rings	69	
		(b) Nagata's trick	70	
		(c) An application of Liouville's Theorem	73	
3	Algel	braic varieties	77	
	3.1 Affine varieties			
		(a) Affine space	78	
		(b) The spectrum	81	
		(c) Some important notions	86	
		Morphims	86	
		Products	87	
		General spectra and nilpotents	88	
		Dominant morphisms	89	
		Open immersions	90	
		Local properties	91	
	3.2	Algebraic varieties	91	
		(a) Gluing affine varieties	91	
		(b) Projective varieties	95	
	3.3	Functors and algebraic groups	98	
		(a) A variety as a functor from algebras to sets	98	
		(b) Algebraic groups	100	
	3.4 Completeness and toric varieties		103	
		(a) Complete varieties	103	
		(b) Toric varieties	107	
		(c) Approximation of valuations	111	
4	Algel	braic groups and rings of invariants	116	
	4.1	Representations of algebraic groups	117	
	4.2	Algebraic groups and their Lie spaces	122	
		(a) Local distributions	122	
		(b) The distribution algebra	124	
		(c) The Casimir operator	128	
	4.3	Hilbert's Theorem	130	
		(a) Linear reductivity	130	
	<i>,</i> ,	(b) Finite generation	135	
	4.4	The Cayley-Sylvester Counting Theorem	137	
		(a) $SL(2)$	137	
		(b) The dimension formula for $SL(2)$	140	

			Contents	vii
		(c) A digression: W	eyl measure	142
		(d) The Cayley-Syl	vester Formula	143
		(e) Some computat	ional examples	148
	4.5	Geometric reductivity	y of $SL(2)$	152
5	The c	onstruction of quotie	nt varieties	158
	5.1	Affine quotients		159
		(a) Separation of or	bits	159
		(b) Surjectivity of the	he affine quotient map	163
		(c) Stability		165
	5.2	Classical invariants a	nd the moduli of smooth	
		hypersurfaces in \mathbb{P}^n		167
		(a) Classical invaria	ants and discriminants	167
		(b) Stability of smo	oth hypersurfaces	171
		(c) A moduli space	for hypersurfaces in \mathbb{P}^n	174
		(d) Nullforms and t	he projective quotient map	175
6	The p	ojective quotient		181
	6.1	Extending the idea of	a quotient: from values	
		to ratios		182
		(a) The projective s	pectrum	186
		(b) The Proj quotien	nt	189
		(c) The Proj quotien	t by a $GL(n)$ action of ray type	195
	6.2	Linearisation and Pro	j quotients	197
	6.3	Moving quotients		201
		(a) Flops		201
		(b) Toric varieties a	s quotient varieties	205
_		(c) Moment maps		208
7	The r	imerical criterion ai	nd some applications	211
	7.1	The numerical criteri	on	212
		(a) 1-parameter sub	groups	212
		(b) The proof		213
	7.2	Examples and application	ations	219
		(a) Stability of proj	ective hypersurfaces	219
		(b) Cubic surfaces		224
0	C	(c) Finite point sets	in projective space	230
8	Gras	nannians and vector	r Dundles	234
	8.1	Grassmannians as qu	otient varieties	235
		(a) Hilbert series	visle and the size of the size of	237
		(b) Standard monor	nials and the ring of invariants	239
		(c) Young tableaux	and the Plucker relations	241
		(a) Grassmannians	as projective varieties	245
		(e) A digression: th	e degree of the Grassmannian	247

viii

Contents

	8.2	Modules over a ring		251
		(a)	Localisation	251
		(b)	Local versus global	254
		(c)	Free modules	257
		(d)	Tensor products and flat modules	259
	8.3	Loc	ally free modules and flatness	262
		(a)	Locally free modules	262
		(b)	Exact sequences and flatness	264
	8.4	The	Picard group	268
		(a)	Algebraic number fields	268
		(b)	Two quadratic examples	271
	8.5	Vec	tor bundles	276
		(a)	Elementary sheaves of modules	277
		(b)	Line bundles and vector bundles	279
		(c)	The Grassmann functor	282
		(d)	The tangent space of the functor	284
9	Curv	es an	nd their Jacobians	287
	9.1	Rie	mann's inequality for an algebraic curve	288
		(a)	Prologue: gap values and the genus	290
		(b)	Divisors and the genus	292
		(c)	Divisor classes and vanishing index of	
			speciality	294
	9.2	Coh	nomology spaces and the genus	297
		(a)	Cousin's problem	297
		(b)	Finiteness of the genus	301
		(c)	Line bundles and their cohomology	304
		(d)	Generation by global sections	307
	9.3	Nor	nsingularity of quotient spaces	309
		(a)	Differentials and differential modules	309
		(b)	Nonsingularity	311
		(c)	Free closed orbits	313
	9.4	An algebraic variety with the Picard group as its set		
		of p	points	316
		(a)	Some preliminaries	316
		(b)	The construction	319
		(c)	Tangent spaces and smoothness	323
	9.5	Dua	ality	327
		(a)	Dualising line bundles	327
		(b)	The canonical line bundle	330
		(c)	De Rham cohomology	332

	Contents			
	9.6	6 The Jacobian as a complex manifold		
		(a) Compact Riemann surfaces		
		(b) The comparison theorem and the Jacobian	337	
		(c) Abel's Theorem	342	
10	Stabl	le vector bundles on curves	348	
	10.1	Some general theory	349	
		(a) Subbundles and quotient bundles	350	
		(b) The Riemann-Roch formula	352	
		(c) Indecomposable bundles and stable bundles	355	
		(d) Grothendieck's Theorem	359	
		(e) Extensions of vector bundles	361	
	10.2	Rank 2 vector bundles	365	
		(a) Maximal line subbundles	365	
		(b) Nonstable vector bundles	366	
		(c) Vector bundles on an elliptic curve	369	
	10.3	Stable bundles and Pfaffian semiinvariants	371	
		(a) Skew-symmetric matrices and Pfaffians	371	
		Even skew-symmetric matrices	372	
		Odd skew-symmetric matrices	374	
		Skew-symmetric matrices of rank 2	375	
		(b) Gieseker points	376	
		(c) Semistability of Gieseker points	379	
	10.4	An algebraic variety with $SU_C(2, L)$ as its set		
		of points	386	
		(a) Tangent vectors and smoothness	387	
		(b) Proof of Theorem 10.1	391	
		(c) Remarks on higher rank vector bundles	394	
п	Moduli functors			
	11.1	The Picard functor	400	
		(a) Fine moduli and coarse moduli	400	
		(b) Cohomology modules and direct images	403	
		(c) Families of line bundles and the Picard functor	407	
	11.0	(d) Poincaré line bundles	410	
	11.2	The moduli functor for vector bundles	413	
		(a) Rank 2 vector bundles of odd degree	416	
		(b) Introductionity and rationality	418	
	11.2	(c) Kank 2 vector bundles of even degree	419	
	11.5	Examples	422	
		(a) The affine least in a plane quartic	422	
		(D) The amne Jacobian of a spectral curve	424	

Х	Contents			
		(c)	The Jacobian of a curve of genus 1	425
		(d)	Vector bundles on a spectral curve	431
		(e)	Vector bundles on a curve of genus 2	433
12	Inter	sectio	on numbers and the Verlinde formula	437
	12.1	Sun	is of inverse powers of trigonometric functions	439
		(a)	Sine sums	439
		(b)	Variations	441
		(c)	Tangent numbers and secant numbers	444
	12.2	Riemann-Roch theorems		
		(a)	Some preliminaries	448
		(b)	Hirzebruch-Riemann-Roch	450
		(c)	Grothendieck-Riemann-Roch for curves	453
		(d)	Riemann-Roch with involution	455
	12.3	The	standard line bundle and the Mumford relations	457
		(a)	The standard line bundle	457
		(b)	The Newstead classes	461
		(c)	The Mumford relations	463
	12.4	.4 From the Mumford relations to the Verlinde formula		465
		(a)	Warming up: secant rings	466
		(b)	The proof of formulae (12.2) and (12.4)	470
	12.5	An e	excursion: the Verlinde formula for	
		quasiparabolic bundles		476
		(a)	Quasiparabolic vector bundles	476
		(b)	A proof of (12.6) using Riemann-Roch and the	
			Mumford relations	480
		(c)	Birational geometry	483
	Bibliography			487
	Index			495

Preface

The aim of this book is to provide a concise introduction to algebraic geometry and to algebraic moduli theory. In so doing, I have tried to explain some of the fundamental contributions of Cayley, Hilbert, Nagata, Grothendieck and Mumford, as well as some important recent developments in moduli theory, keeping the proofs as elementary as possible. For this purpose we work throughout in the category of algebraic varieties and elementary sheaves (which are simply order-reversing maps) instead of schemes and sheaves (which are functors). Instead of taking GIT (Geometric Invariant Theory) quotients of projective varieties by PGL(N), we take, by way of a shortcut, Proj quotients of affine algebraic varieties by the general linear group GL(N). In constructing the moduli of vector bundles on an algebraic curve, Grothendieck's Quot scheme is replaced by a certain explicit affine variety consisting of matrices with polynomial entries. In this book we do not treat the very important analytic viewpoint represented by the Kodaira-Spencer and Hodge theories, although it is treated, for example, in Ueno [113], which was in fact a companion volume to this book when published in Japanese.

The plan of the first half of this book (Chapters 1–5 and 7) originated from notes taken by T. Hayakawa in a graduate lecture course given by the author in Nagoya University in 1985, which in turn were based on the works of Hilbert [20] and Mumford et al. [30]. Some additions and modifications have been made to those lectures, as follows.

- (1) I have included chapters on ring theory and algebraic varieties accessible also to undergraduate students. A strong motivation for doing this, in fact, was the desire to collect in one place the early series of fundamental results of Hilbert that includes the Basis Theorem and the Nullstellensatz.
- (2) For the proof of linear reductivity (or complete reductivity), Cayley's Ω -process used by Hilbert is quite concrete and requires little background

xii

Preface

knowledge. However, in view of the importance of algebraic group representations I have used instead a proof using Casimir operators. The key to the proof is an invariant bilinear form on the Lie space. The uniqueness property used in the Japanese edition was replaced by the positive definiteness in this edition.

(3) I have included the Cayley-Sylvester formula in order to compute explicitly the Hilbert series of the classical binary invariant ring since I believe both tradition and computation are important. I should add that this and Section 4.5 are directly influenced by Springer [8].

Both (2) and (3) took shape in a lecture course given by the author at Warwick University in the winter of 1998.

- (4) I have included the result of Nagata [11], [12] that, even for an algebraic group acting on a polynomial ring, the ring of invariants need not be finitely generated.
- (5) Chapter 1 contains various introductory topics adapted from lectures given in the spring of 1998 at Nagoya and Kobe Universities.

The second half of the book was newly written in 1998–2000 with two main purposes: first, an elementary invariant-theoretic construction of moduli spaces including Jacobians and, second, a self-contained proof of the Verlinde formula for SL(2). For the first I make use of Gieseker matrices. Originally this idea was invented by Gieseker [72] to measure the stability of the action of PGL(N) on the Quot scheme. But in this book moduli spaces of bundles are constructed by taking quotients of a variety of Gieseker matrices themselves by the general linear group. This construction turns out to be useful even in the case of Jacobians. For the Verlinde formula, I have chosen Zagier's proof [115] among three known algebraic geometric proofs. However, Thaddeus's proof [112] uses some interesting birational geometry, and I give a very brief explanation of this for the case of rank 2 parabolic bundles on a pointed projective line.

Acknowledgements

This book is a translation of *Moduli Theory I, II* published in 1998 and 2000 in Japanese. My warmest gratitude goes to the editorial board of Iwanami Publishers, who read my Japanese very carefully and made several useful comments, and to Bill Oxbury, who was not only the translator but also a very kind referee. He corrected many misprints and made many useful suggestions, and following these I was able to improve the presentation of the material and to make several proofs more complete.

I am also very grateful to K. Nishiyama, K. Fujiwara, K. Yanagawa and H. Nasu, from whom I also received useful comments on the Japanese edition, and to H. Saito for many discussions.

Finally, I would like to thank on this occasion the Graduate School of Mathematics (including its predecessor, the Department of Mathematics in the Faculty of Sciences) of Nagoya University, where I worked for 23 years from my first position and was able to complete the writing of this book.

Partial financial support was made by Grant-in-Aid for Scientific Research (B)(2)0854004 of the Japanese Ministry of Education and the JSPS's (A)(2)10304001.

Shigeru Mukai Kyoto, June 2002 Cambridge University Press 978-1-107-40636-0 - An Introduction to Invariants and Moduli Shigeru Mukai Frontmatter More information

Introduction

(a) What is a moduli space?

A *moduli space* is a manifold, or variety, which parametrises some class of geometric objects. The *j*-invariant classifying elliptic curves up to isomorphism and the Jacobian variety of an algebraic curve are typical examples. In a broader sense, one could include as another classical example the classifying space of a Lie group. In modern mathematics the idea of moduli is in a state of continual evolution and has an ever-widening sphere of influence. For example:

- By defining a suitable height function on the moduli space of principally polarised abelian varieties it was possible to resolve the Shafarevich conjectures on the finiteness of abelian varieties (Faltings 1983).
- The moduli space of Mazur classes of 2-dimensional representations of an absolute Galois group is the spectrum of a Hecke algebra.

The application of these results to resolve such number-theoretic questions as Mordell's Conjecture and Fermat's Last Theorem are memorable achievements of recent years. Turning to geometry:

• Via Donaldson invariants, defined as the intersection numbers in the moduli space of instanton connections, one can show that there exist homeomorphic smooth 4-manifolds that are not diffeomorphic.

Indeed, Donaldson's work became a prototype for subsequent research in this area.

Here's an anology. When natural light passes through a prism it separates into various colours. In a similar way, one can try to elucidate the hidden properties of an algebraic variety. One can think of the moduli spaces naturally associated to the variety (the Jacobian of a complex curve, the space of instantons on a complex surface) as playing just such a role of 'nature's hidden colours'.

The aim of this book is to explain, with the help of some concrete examples, the basic ideas of moduli theory as they have developed alongside algebraic geometry – in fact, from long before the modern viewpoint sketched above. In particular, I want to give a succinct introduction to the widely applicable methods for constructing moduli spaces known as *geometric invariant theory*.

If a moduli problem can be expressed in terms of algebraic geometry then in many cases it can be reduced to the problem of constructing a quotient of a suitable algebraic variety by an action of a group such as the general linear group GL(m). From the viewpoint of moduli theory this variety will typically be a Hilbert scheme parametrising subschemes of a variety or a Quot scheme parametrising coherent sheaves. From a group-theoretic point of view it may be a finite-dimensional linear representation regarded as an affine variety or a subvariety of such. To decide what a solution to the quotient problem should mean, however, forces one to rethink some rather basic questions: What is an algebraic variety? What does it mean to take a quotient of a variety? In this sense the quotient problem, present from the birth and throughout the development of algebraic geometry, is even today sadly lacking an ideal formulation. And as one sees in the above examples, the 'moduli problem' is not determined in itself but depends on the methods and goals of the mathematical area in which it arises. In some cases elementary considerations are sufficient to address the problem, while in others much more care is required. Maybe one cannot do without a projective variety as quotient; maybe a stack or algebraic space is enough. In this book we will construct moduli spaces as projective algebraic varieties.

(b) Algebraic varieties and quotients of algebraic varieties

An algebraic curve is a rather sophisticated geometric object which, viewed on the one hand as a Riemann surface, or on the other as an algebraic function field in one variable, combines analysis and algebra. The theory of meromorphic

Introduction

functions and abelian differentials on compact Riemann surfaces, developed by Abel, Riemann and others in the nineteenth century, was, through the efforts of many later mathematicians, deepened and sublimated to an 'algebraic function theory'. The higher dimensional development of this theory has exerted a profound influence on the mathematics of the twentieth century. It goes by the general name of 'the study of algebraic varieties'. The data of an algebraic variety incorporate in a natural way that of real differentiable manifolds, of complex manifolds, or again of an algebraic function field in several variables. (A field *K* is called an algebraic function field in *n* variables over a base field *k* if it is a finitely generated extension of *k* of transcendence degree *n*.) Indeed, any algebraic variety may be defined by patching together (the spectra of) some finitely generated subrings R_1, \ldots, R_N of a function field *K*. This will be explained in Chapter 3.

This ring-theoretic approach, from the viewpoint of varieties as given by systems of algebraic equations, is very natural; however, the moduli problem, that is, the problem of constructing quotients of varieties by group actions, becomes rather hard. When an algebraic group G acts on an affine variety, how does one construct a quotient variety? (An *algebraic group* is an algebraic variety with a group structure, just as a Lie group is a smooth manifold which has a compatible group structure.) It turns out that the usual quotient topology, and the differentiable structure on the quotient space of a Lie group by a Lie subgroup, fail to work well in this setting. Clearly they are not sufficient if they fail to capture the function field, together with its appropriate class of subrings, of the desired quotient variety. The correct candidates for *these* are surprisingly simple, namely, the subfield of G-invariants in the original function field K, and the subrings of G-invariants in the integral domains $R \subset K$ (see Chapter 5). However, in proceeding one is hindered by the following questions.

- (1) Is the subring of invariants R^G of a finitely generated ring R again finitely generated?
- (2) Is the subfield of invariants $K^G \subset K$ equal to the field of fractions of R^G ?
- (3) Is $K^G \subset K$ even an algebraic function field? that is, is K^G finitely generated over the base field k?
- (4) Even if the previous questions can be answered positively and an algebraic variety constructed accordingly, does it follow that the points of this variety can be identified with the *G*-orbits of the original space?

In fact one can prove property (3) quite easily; the others, however, are not true in general. We shall see in Section 2.5 that there exist counterexamples to (1)

xvii

xviii

Introduction

even in the case of an algebraic group acting linearly on a polynomial ring. Question (2) will be discussed in Chapter 6.

So how should one approach this subject? Our aim in this book is to give a concrete construction of some basic moduli spaces as quotients of group actions, and in fact we will restrict ourselves exclusively to the general linear group GL(m). For this case property (1) does indeed hold (Chapter 4), and also property (4) if we modify the question slightly. (See the introduction to Chapter 5.) A correspondence between *G*-orbits and points of the quotient is achieved provided we restrict, in the original variety, to the open set of *stable points* for the group action. Both of these facts depend on a representationtheoretic property of GL(m) called linear reductivity.

After paving the way in Chapter 5 with the introduction of affine quotient varieties, we 'globalise' the construction in Chapter 6. Conceptually, this may be less transparent than the affine construction, but essentially it just replaces the affine spectrum of the invariant ring with the projective spectrum (Proj) of the semiinvariant ring. This 'global' quotient, which is a projective variety, we refer to as the *Proj quotient*, rather than 'projective quotient', in order to distinguish it from other constructions of the projective quotient variety that exist in the literature.

An excellent example of a Proj quotient (and indeed of a moduli space) is the Grassmannian. In fact, the Grassmannian is seldom considered in the context of moduli theory, and we discuss it here in Chapter 8. This variety is usually built by gluing together affine spaces, but here we construct it globally as the projective spectrum of a semiinvariant ring and observe that this is equivalent to the usual construction. For the Grassmannian $\mathbb{G}(2, n)$ we compute the Hilbert series of the homogeous coordinate ring. We use this to show that it is generated by the Plücker coordinates, and that the relations among these are generated by the Plücker relations.

In general, for a given moduli problem, one can only give an honest construction of a moduli space if one is able to determine explicitly the stable points of the group action. This requirement of the theory is met in Chapter 7 with the numerical criterion for stability and semistability of Hilbert and Mumford, which we apply to some geometrical examples from Chapter 5. Later in the book we construct moduli spaces for line bundles and vector bundles on an algebraic curve, which requires the notion of stability of a vector bundle. Historically, this was discovered by Mumford as an application of the numerical criterion, but in this book we do not make use of this, as we are able to work directly with the semiinvariants of our group actions. Another important application, which we do not touch on here, is to the construction of a compactification of the moduli space of curves as a projective variety.

Introduction

xix

(c) Moduli of bundles on a curve

In Chapter 9 algebraic curves make their entry. We first explain:

- (1) what is the genus of a curve?
- (2) Riemann's inequality and the vanishing of cohomology (or index of speciality); and
- (3) the duality theorem.

In the second half of Chapter 9 we construct, as the projective spectrum of the semiinvariant ring of a suitable group action on an affine variety, an algebraic variety whose underlying set of points is the Picard group of a given curve, and we show that over the complex numbers this is nothing other than the classical Jacobian.

In Chapter 10 we extend some essential parts of the line bundle theory of the preceding chapter to higher rank vector bundles on a curve, and we then construct the moduli space of rank 2 vector bundles. This resembles the line bundle case, but with the difference that the notion of stability arises in a natural way. The moduli space of vector bundles, in fact, can be viewed as a Grassmannian over the function field of the curve, and one can roughly paraphrase Chapter 10 by saying that a moduli space is constructed as a projective variety by explicitly defining the Plücker coordinates of a semistable vector bundle. (See also Seshadri [77].) One advantage of this construction – although it has not been possible to say much about this in this book – is the consequence that, if the curve is defined over a field k, then the same is true, a priori, of the moduli space.

In Chapter 11 the results of Chapters 9 and 10 are reconsidered, in the following sense. Algebraic varieties have been found whose sets of points can be identified with the sets of equivalence classes of line bundles, or vector bundles, on the curve. However, to conclude that 'these varieties are the moduli spaces for line bundles, or vector bundles' is not a very rigorous statement. More mathematical would be, first, to give some clean definition of 'moduli' and 'moduli space', and then to prove that the varieties we have obtained are moduli spaces in the sense of this definition. One answer to this problem is furnished by the notions of representability of a functor and of coarse moduli. These are explained in Chapter 11, and the quotient varieties previously constructed are shown to be moduli spaces in this sense. Again, this point of view becomes especially important when one is interested in the field over which the moduli space is defined. This is not a topic which it has been possible to treat in this book, although we do give one concrete example at the end of the chapter, namely, the Jacobian of an elliptic curve. XX

Introduction

In the final chapter we give a treatment of the Verlinde formulae for rank 2 vector bundles. Originally, these arose as a general-dimension formula for objects that are somewhat unfamiliar in geometry, the spaces of conformal blocks from 2-dimensional quantum field theory. (See Ueno [113].) In our context, however, they appear as elegant and precise formulae for the Hilbert polynomials for the semiinvariant rings used to construct the moduli of vector bundles. Various proofs are known, but the one presented here (for odd degree bundles) is that of Zagier [115], making use of the formulae for the intersection numbers in the moduli space of Thaddeus [111]. On the way, we observe a curious formal similarity between the cohomology ring of the moduli space and that of the Grassmannian $\mathbb{G}(2, n)$.

Convention: Although it will often be unnecessary, we shall assume throughout the book that the field k is algebraically closed and of characteristic zero.