
Part I

Statistical mechanics

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-40533-2 - Statistical Mechanics of Disordered Systems: A Mathematical Perspective
Anton Bovier
Excerpt
More information

http://www.cambridge.org/9781107405332
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-40533-2 - Statistical Mechanics of Disordered Systems: A Mathematical Perspective
Anton Bovier
Excerpt
More information

http://www.cambridge.org/9781107405332
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

L’analyse mathématique, n’est elle donc qu’un vain jeu d’esprit? Elle ne peut
donner au physicien qu’un langage commode; n’est-ce pas là un médiocre
service, dont on aurait pu se passer à la rigueur; et même n’est il pas à craindre
que ce langage artificiel ne soit un voile interposé entre la réalité et l’œil du
physicien? Loin de là, sans ce langage, la pluspart des analogies intimes des
choses nous seraient demeurées à jamais inconnues; et nous aurions toujours
ignoré l’harmonie interne du monde, qui est, nous le verrons, la seule véritable
réalité objective.1

Henri Poincaré, La valeur de la science.

Starting with the Newtonian revolution, the eighteenth and nineteenth centuries saw with
the development of analytical mechanics an unprecedented tool for the analysis and pre-
diction of natural phenomena. The power and precision of Hamiltonian perturbation theory
allowed even the details of the motion observed in the solar system to be explained quanti-
tatively. In practical terms, analytical mechanics made the construction of highly effective
machines possible. Unsurprisingly, these successes led to the widespread belief that, ulti-
mately, mechanics could explain the functioning of the entire universe. On the basis of this
confidence, new areas of physics, outside the realm of the immediate applicability of New-
tonian mechanics, became the target of the new science of theoretical (analytical) physics.
One of the most important of these new fields was the theory of heat, or thermodynamics.
One of the main principles of Newtonian mechanics was that of the conservation of energy.
Now, such a principle could not hold entirely, due to the ubiquitous loss of energy through
friction. Thus, all machines on earth require some source of energy. One convenient source
of energy is heat, obtainable, e.g., from the burning of wood, coal, or petrol. A central
objective of the theory of thermodynamics was to understand how the two types of energy,
mechanical and thermal, could be converted into each other. This was originally a completely
pragmatic theory, that introduced new concepts related to the phenomenon of heat, tem-
perature and entropy, and coupled these to mechanical concepts of energy and force. Only
towards the end of the nineteenth century, when the success of mechanics reached a peak,
was Boltzmann, following earlier work by Bernoulli, Herapath, Joule, Krönig, Claudius,

1 Approximately: So is mathematical analysis then not just a vain game of the mind? To the physicist it can only
give a convenient language; but isn’t that a mediocre service, which after all we could have done without; and,
is it not even to be feared that this artificial language be a veil, interposed between reality and the physicist’s
eye? Far from that, without this language most of the intimate analogies of things would forever have remained
unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we
shall see, the only true objective reality.
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4 Introduction

and Maxwell, able to give a mechanical interpretation of the thermodynamic effects on the
basis of the atomistic theory. This kinetic theory of gases turned into what we now know as
statistical mechanics through the work of Gibbs in the early twentieth century. It should be
mentioned that this theory, that is now perfectly accepted, met considerable hostility in its
early days. The first part of this book will give a short introduction to the theory of statistical
mechanics.

It is not a coincidence that at the same time when statistical mechanics was created,
another new discipline of physics emerged, that of quantum mechanics. Quantum mechanics
was concerned with the inadequacies of classical mechanics on the level of microscopic
physics, in particular the theory of atoms, and thus concerned the opposite side of what
statistical mechanics is about. Interestingly, quantum mechanical effects could explain some
deviations of the predictions of statistical mechanics from experimental observation (e.g.
the problem of black body radiation that was resolved by Planck’s quantum hypothesis). The
basic principles of statistical mechanics can be well reconciled with quantum mechanics
and give rise the the theory of quantum statistical mechanics. However, in many cases, a
full quantum mechanical treatment of statistical mechanics turns out to be unnecessary, and
much of classical mechanics applies with just some minor changes. In any case, we will
here consider only the classical theory. Before approaching our main subject, let us have a
very brief look at thermodynamics.

1.1 Thermodynamics

A mechanical system is characterized by essentially geometric quantities, the positions and
velocities of its components (which are points of mass). If solid objects are described, the
assumption of rigidity allows us to reduce their description to essentially the same kind of
coordinates. Such a description does not, however, do complete justice to all the objects we
can observe. Even solids are not really rigid, and may change their shape. Moreover, there
are liquids, and gases, for which such a description breaks down completely. Finally, there
are properties of real objects beyond their positions or velocities that may interfere with their
mechanical properties, in particular their temperature. In fact, in a dissipative system one
may observe that the temperature of a decelerating body often increases. Thermodynamics
introduces a description of such new internal variables of the system and devises a theory
allowing us to control the associated flow of energy.

The standard classical setting of thermodynamics is geared to the behaviour of a
gas. A gas is thought to be enclosed in a container of a given (but possibly variable)
volume, V > 0. This container provides the means of coupling the system to an external
mechanical system. Namely, if one can make the gas change the volume of the container,
the resulting motion can be used to drive a machine. Conversely, we may change the volume
of the container and thus change the properties of the gas inside. Thus, we need a parameter
to describe the state of the gas that reacts to the change of volume. This parameter is called
the pressure, p. The definition of the pressure is given through the amount of mechanical
energy needed to change the volume:2

dEmech = −pdV (1.1)

2 The minus sign may appear strange (as do many of the signs in thermodynamics). The point, however, is that
if the volume increases, work is done by the system (transfered somewhere), so the energy of the system
decreases.
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1.1 Thermodynamics 5

Pressure is the first intensive variable of thermodynamics that we meet. Clearly, the
relation (1.1) is not universal, but depends on further parameters. An obvious one is the
total amount of gas in the container, N . Originally, N was measured in moles, which could
be defined in terms of chemical properties of the gases. Nowadays, we know that a mole
corresponds to a certain number of molecules (∼ 6 × 1023), and we think of N as the number
of molecules in the gas. It is natural to assume that, if V (N ) = Nv, then p = p(v) should
not depend on N . Hence the term intensive. By contrast, V is called extensive. It follows
that E is also an extensive quantity. Like V , N can be a variable, and its change may involve
a change of energy. This may not seem natural, but we should think of chemical reactions
(and the possibility of having several types of molecules). By such reactions, the number
of molecules will change and such a change will create or diminish a reservoir of external
chemical energy (e.g. energy stored in the form of carbon). Again, we need a parameter
to relate this energy change to the change in mass. We call this the chemical potential, μ.
Then

dEchem = μdN (1.2)

Now comes heat. Contrary to the two previous variables, volume and mass, heat is a less
tangible concept. In fact, in this case the intensive variable, the temperature, T , is the more
intuitive one. This is something we can at least feel, and to some extent also measure,
e.g., using a mercury thermometer. However, we could abstract from this sensual notion
and simply observe that, in order to have energy conservation, we must take into account
a further internal variable property of the gas. This quantity is called entropy, S, and the
temperature is the coefficient that relates its change to the change in energy. An important
assumption is that this quantity is always non-negative. Traditionally, this thermal energy
is called heat and denoted by Q, so that we have

dQ = T dS (1.3)

The principle of conservation of energy then states that any change of the parameters of the
system respect the first law of thermodynamics:

dEmech + dEchem + dQ = dE (1.4)

respectively

dE = −pdV + μdN + T dS (1.5)

Moreover, for closed systems, i.e. for any processes that do not involve exchange of energy
with some additional external system, dE = 0.

The main task of thermodynamics is to understand how the total energy of the system can
be transformed from one type to the other in order to transform, e.g., heat into mechanical
energy.

We will postulate that the state of a thermodynamic system (in equilibrium!) is described
by giving the value of the three extensive variables V, N , S. Therefore we can assume
that the thermodynamic state space is a three-dimensional manifold. In particular, the total
energy,

E = Emech + Echem + Q (1.6)
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6 Introduction

will be given as a function, E(V, N , S). Such a function defines the particular thermody-
namic system. It then follows that the intensive variables (in equilibrium!) can be expressed
as functions of the extensive variables via

−p(V, N , S) = ∂ E(V, N , S)

∂V

μ(V, N , S) = ∂ E(V, N , S)

∂ N

T (V, N , S) = ∂ E(V, N , S)

∂S
(1.7)

These equations are called equations of state.

Remark 1.1.1 The statements above can be interpreted as follows: Suppose we fix the
intensive variables p, T, μ by some mechanism to certain values, and set the extensive
variables V , S, N to some initial values V0, S0, N0. Then the time evolution of the system
will drive these parameters to equilibrium, i.e. to the values for which equations (1.7) hold.
Such processes are called irreversible. In contrast, reversible processes vary intensive and
extensive parameters in such a way that the equations of state (1.7) hold both in the initial and
in the final state of the process, i.e. the process passes along equilibrium states of the system.
Note that this statement contains the formulation of the second law of thermodynamics.

One of the main pleasures of thermodynamics is to re-express the equations of state in
terms of different sets of variables, e.g. to express V, N , S as a function of p, N , T , etc. To
ensure that this is possible, one always assumes that E is a convex function. The function
E(V, S, N ) is usually called the internal energy. Then, the desired change of variables can
be achieved with the help of Legendre transformations.

In the example mentioned, we would like to express the energy as a function of p, T, N
and to introduce a new function G with the property that ∂G/∂p = V . That is, we must
have that

dG(p, T, N ) = +V dp − SdT + μdN

= +d(V p) − d(ST ) − pdV + T dS + μdN (1.8)

= d(V p − ST + E)

Thus, we get

G(p, T, N ) = pV (p, T, N ) − TS(p, T, N ) + E(V (p, T, N ), N , S(p, T, N )) (1.9)

where the functions V and S are obtained from inverting (1.7). However, this inversion
often need not be done, since an expression of the energy in the new variables is readily
available. The important observation is that the fundamental function, whose derivatives
provide the equations of state, is not always the energy, but its various Legendre transforms.
All these functions carry interesting names, such as internal energy, free energy, enthalpy,
free enthalpy, etc., which are difficult to remember. The importance of these different
forms of these thermodynamic potentials lies in the fact that one is interested in processes
where some parameters of the system are changed, while others are fixed. Computing the
resulting changes is most easily done with the help of the corresponding natural potential,
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1.1 Thermodynamics 7

which typically corresponds to the conserved energy when its variables are kept fixed while
the others are varied.

The function G is called the Gibbs free energy. Other potentials whose name it is useful
to remember are

(i) the Helmholtz free energy,

F(T, V, N ) = E − TS (1.10)

(ii) the enthalpy,

H (p, S, N ) = E + pV (1.11)

Let us note that thermodynamics, contrary to what its name suggests, is not a theory of
dynamics, but rather one of statics, or equilibrium. For example, the values that the inten-
sive parameters take on when the extensive ones are fixed are equilibrium values. When
performing thermodynamic calculations, one always assumes that the system takes on these
equilibrium values, which is perhaps a reasonable approximation if the motion is performed
very slowly. In reality, things are much more difficult.

At one point we said that the assumption of convexity allows us to invert the equations
of state and to express, e.g., V as a function of p, T, N . But this is not true. It is only
true if E is a strictly convex function. If in some region E depends linearly on V , then
p = ∂ E/∂V = const. on that set, and we cannot compute V as a function of p; all we
know is that, for this value of p, V must lie in the said interval. In other words, V as a
function of p has a jump at this value of p. If something of this type happens, we say that the
system undergoes a first-order phase transition at this value of the parameters. Interestingly,
real systems do exhibit this phenomenon. If the pressure of, say, water vapour is increased,
while the temperature is not too low, at some specific value of p the volume drops down,
i.e. the vapour condenses to water. It is remarkable that the formalism of thermodynamics
easily allows the incorporation of such striking phenomena. If there is a phase transition,
then the equations of state represent discontinuous functions. This is an unexpected fea-
ture that we are not familiar with from mechanics. This seems to indicate that classical
dynamics and thermodynamics are quite different and should not have much to do with
each other, as it seems inconceivable that these discontinuities should result from motions
governed by Newton’s equations. Therefore, phase transitions are the most remarkable
phenomena in statistical mechanics, and they will be at the centre of our attention through-
out this book. Even today, they represent one of the most lively topics of research in the
field.

Jumps in the equations of state are the most severe singularities that are admitted in the
theory, due to the convexity assumption. There are milder forms of singularities that are
very interesting, where only higher derivatives of the equations of state are discontinuous.
According to the order of the discontinuous derivative, such phase transitions are called
second order, third order, etc. They are associated with interesting physical phenomena.

The main problem of thermodynamics is that we do not understand what entropy and
temperature are, which represents the main difficulty in understanding what the thermo-
dynamic potentials should be as functions of their parameters. In practice, they are often
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8 Introduction

obtained empirically from experimental data. A derivation from first principles is of course
desirable.

The preceding discussion of thermodynamics is of course very cursory. There are numer-
ous in-depth presentations in the literature. A recent attempt to give an axiomatic foundation
of thermodynamics was made in a paper by Lieb and Yngvason [169], which also contains
a wealth of references.
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2

Principles of statistical mechanics

Qu’une goutte de vin tombe dans un verre d’eau; quelle que soit la loi du
mouvement interne du liquide, nous le verrons bientôt se colorer d’une teinte
rose uniforme et à partir de ce moment on aura beau agiter le vase, le vin et
l’eau ne paraı̂tront plus pouvoir se séparer. Tout cela, Maxwell et Boltzmann
l’ont expliqué, mais celui qui l’a vu le plus nettement, dans un livre trop peu lu
parce qu’il est difficile à lire, c’est Gibbs, dans ses principes de la Mécanique
Statistique.1

Henri Poincaré. La valeur de la science.

About 1870, Ludwig Boltzmann proposed that the laws of thermodynamics should be

derivable from mechanical first principles on the basis of the atomistic theory of matter. In

this context, N moles of a gas in a container of volume V should be represented by a certain

number of atoms, described as point particles (or possibly as slightly more complicated

entities), moving under Newton’s laws. Their interaction with the walls of the container is

given by elastic reflection (or more complicated, partially idealized constraint-type forces),

and would give rise to the observed pressure of the gas. In this picture, the thermal variables,

temperature and entropy, should emerge as effective parameters describing the macroscopic

essentials of the microscopic dynamics of the gas that would otherwise be disregarded.

2.1 The ideal gas in one dimension

To get an understanding of these ideas, it is best to consider a very simple example which

can be analyzed in full detail, even if it is unrealistic. Consider N particles, all of mass

m, that move on a one-dimensional line R and that absolutely do not interact with each

other; in particular they penetrate each other freely upon impact. We denote the position and

momentum of particle i by qi and pi . Assume further that they are confined to an interval

[0, V ].

When reaching the boundary of this interval, they are perfectly reflected. Now let the top

boundary of the interval (the piston) be movable; assume that a constant force f is acting on

1 Approximately: Let a drop of wine fall into a glass of water; whatever be the law that governs the internal
movement of the liquid, we will soon see it tint itself uniformly pink and from that moment on, however we
may agitate the vessel, it appears that the wine and the water can separate no more. All this, Maxwell and
Boltzmann have explained, but the one who saw it in the cleanest way, in a book that is too little read because
it is difficult to read, is Gibbs, in his Principles of Statistical Mechanics.
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10 Principles of statistical mechanics
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v

Figure 2.1 Weight on the piston exerting a force f on the piston.

this piston, as shown in Fig. 2.1. Then the container has energy Eext = f V , if the piston’s

position is V . At some initial time 0 let the momenta of the particles be pi such that

1

2m

N∑
i=1

p2
i = E (2.1)

The total (conserved) energy of the system is then

H = f V + E (2.2)

We will now assume that the dynamics of the system is such that (after a long

time) it runs uniformly over all configurations that are compatible with the constraint

that the energy of the system is constant (this is probably not the case in our system,

but . . . ). Since the kinetic energy of the particles, E , is non-negative, the position of the

piston can only range over the finite interval [0, Vmax], where Vmax = H/ f . Then, the total

available state space of our system is [0, Vmax] × [0, V ]N × SN√
2m(H− f V )

, where SN
r denotes

the (N − 1)-dimensional sphere of radius r . Our assumptions correspond to saying that we

start the process initially at random on any point of this set with equal probability, and

that we will find ourselves, in the long run, uniformly distributed on this set (this distri-

bution is called the micro-canonical distribution of our system). As we have explained,

thermodynamics is concerned with the macroscopic observables only, and in our case this

is the position of the piston, V . Finding the equilibrium position of this variable amounts

to computing the probability distribution of the parameter V , to wit

P[V ∈ dV ] ≡
dV

∫
S√

2m(H− f V )N
dp1 · · · dpN

∫ V
0

dq1 · · · dqN∫ Vmax
0

dV
∫

SN√
2m(H− f V )

dp1 · · · dpN
∫ V

0
dq1 · · · dqN

(2.3)

Now
∫ V

0
dq1 · · · dqN = V N , and the surface area of the (N − 1)-dimensional sphere being

|SN
r | = 2π N/2

�(N/2)
r N−1, we have that∫

SN√
2m(H− f V )

dp1 · · · dpN

∫ V

0

dq1 · · · dqN (2.4)

= V N 2π N/2

�(N/2)
(2m(H − f V ))(N−1)/2
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