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Neural Networks: A Control Approach 

Introduction 

A neural network is a network of subunits, called "formal neurons," 
processing input signals to output signals, which are coupled through 
"synapses." The synapses are the nodes of this particular kind of net­
work, the "strength" of which, called the synaptic weight, codes the 
"knowledge" of the network and controls the processing of the signals. 

Let us be clear at the outset that the resemblance of a formal neuron to 
an animal-brain neuron is not well established, but that is not essential 
at this stage of abstraction. However, this terminology can be justified 
to some extent, and it is by now widely accepted, as discussed later. 
Chapter 8 develops this issue. 

Also, there is always a combination of two basic motivations for deal­
ing with neural networks - one attempting to model actual biological ner­
vous systems, the other being content with implementation of neural-like 
systems on computers. Every model lies between these two requirements 
- the first constraining the modeling, the second allowing more freedom 
in the choice of a particular representation. 

There are so many different versions of neural networks that it is 
difficult to find a common framework to unify all of them at a rather 
concrete level. But one can regard neural networks as dynamical systems 
(discrete or continuous), the states of which are the signals, and the 
controls of which are the synaptic weights, which regulate the flux of 
transmitters from one neuron to another. They yield what are also 
known as adaptive systems, controlled by synaptic matrices. 

We investigate in this chapter the supervised learning of a finite set 
of patterns, called the training set, each pattern being a pair of input-
output signals. A learning process amounts to matching the given input 
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2 Neural Networks: A Control Approach 

signals of the patterns of this training set with the associated output 
signals. It thus involves a comparison with desired answers, done by a 
"supervisor." Hence, the learning problem amounts to finding a synaptic 
matrix that can "learn" the patterns of a given training set. Any algo­
rithm yielding such a synaptic matrix will then be regarded as a learning 
rule. This seems to exclude neural networks from reasonable models of 
basic neural functions. However, the problems under investigation here 
are as follows: 

1. Establish the existence of exact (or approximate) synaptic matrices 
that have learned a given set of patterns, 

2. Find algorithms, regarded as learning rules, that will provide a se­
quence of synaptic matrices converging to a solution of the learning 
problem. 

I propose in this first chapter a short presentation of the learning 
processes of neural networks in the framework of dynamical systems 
controlled by synaptic matrices. Section 1.2 explains how neural net­
works operate to solve pattern-classification problems and, in particular, 
to extrapolate time series in forecasting problems. These problems are 
called supervised learning problems, because the patterns to be taught 
are provided by a supervisor, so to speak. 

Biological Comments. Although the results to be derived here will 
be "formal" and will not necessarily be associated with any biological 
implementation, it may be useful to provide a crude description of the 
nature of the processing carried out by some biological neurons (Figure 
i . i ) . 

It should be first pointed out that many kinds of neuronal cells evolved 
during phylogenesis, each of them selected to provide adequate technical 
solutions to biological or environmental problems. Most neurons in the 
central nervous system in higher animals can be regarded as impulse 
oscillators. They produce trains or volleys of neural impulses whose 
average frequency will depend on the input excitation. The processing 
carried out by neuron ensues from biophysical and biochemical phenom­
ena in the membrane of the neuron, wherein functions the machinery 
that controls the interaction of the cell and its environment. 

Models of neural dynamics that attempt to describe the triggering 
phenomena, the transmission of the impulses, and their biochemical con­
trol have been extensively studied since the Hodgkin-Huxley model was 
first proposed. The central features are the following: There is a static 
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Neural Networks: A Control Approach 3 

Fig. 1.1. Neurons. Pyramidal and Purkinje neurons 

electrical-potential difference of about 70 mV between the inside of the 
neuron (negatively charged) and its environment; it is maintained by 
diffusion of ions through the membrane. The synaptic receptors are 
able to control the ionic conductance of the membrane through a highly 
sophisticated biochemical and ionical mechanism (Figure 1.2). 

When neurotransmitters (excitation signals) arrive at a receptor, the 
excitatory synapses tend to produce a depolarization of the membrane, 
and the inhibitory synapses tend to produce a hyper polarization. When 
the sum (i.e., algebraic sum) of the depolarizations exceeds a given 
threshhold, then the membrane's permeability to ions is increased, and 
the membrane becomes electrically active, sending an output impulse 
of about 100 mV amplitude during a period of 0.5-2 ms. After each 
impulse, there is a short refractory period during which the membrane 
recovers so as to be ready for the next impulse (Figure 1.3). 

Because in our framework we are interested in the collective processing 
by neurons, we shall be content with only a crude analytical description 
of the processing role of the neuron. We retain only the following fea­
tures: The impulse frequency oscillates between bounds determined by 
physical and chemical factors (oscillating between 0 and 500 Hz). Be­
tween those bounds, the postsynaptic average oscillatory frequency is 
assumed to be a monotonic function of the net algebraic sum of the 
presynaptic average frequencies of the inputs afferent to the neurons 
(inhibitory excitations being regarded as negative excitations). Even 
though, for simplicity, the integration of the presynaptic inputs is often 
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4 Neural Networks: A Control Approach 

Fig. 1.2 Synapses. A larger view of a synaptic terminal, showing the vesical 
grid, the vesicles incorporated in the cell membrane, a single mitochondrion 
and the cleft, but not the postsynaptic detail. 

chosen to be linear, biological neurons are somewhat "leaky integrators" 
of presynaptic inputs, certainly nonlinear. 

1.1 Neural Networks: A General Presentation 

A way to encompass most of the neural networks - also called parallel 
distributed processes (PDP) - studied in the literature is to regard them 
as dynamical systems controlled by synaptic matrices. 

1.1.1 Formal Neurons 

We begin with a set of n "formal neurons" (or abstract neurons, pro­
cessing units, etc.) labeled by j = 1 , . . . ,n. The processing of a neural 
network is carried out by these formal neurons. The formal neuron's 
job is simply to receive afferent signals from the other formal (presy­
naptic) neurons (or the input signals) and to provide (process, compute, 
etc.) an output that is sent to the other (postsynaptic) neurons (or to 
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1.1 Neural Networks: A General Presentation 
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Fig. 1.3 Propagation of the Nervous Influx. A stimulus is applied to a sensory 
nerve terminal with increasing intensityfrom A to B. 

the output of the network). A neural network is parallel in that many 
(if not all) neurons carry out their processing at the same time. This 
processing is said to be synchronous if the duration of the processing 
of a unit of input is the same for all formal neurons. If not, it is called 
asynchronous. Synchronous models can be regarded as discrete models. 
Biological neurons are asynchronous and thus require a continuous-time 
treatment, through differential equations or inclusions. 

1.1.2 Signals: The States of the Network 

Formal neurons link (directly for one-layer networks, and indirectly for 
multiple-layer networks) an input space X of signals to an output space 
Y. Hence, the state space of the system is the space I x 7 o f input-
output pairs (x, y), which are called patterns in pattern recognition, data 
analysis, and classification problems. The set of input signals is often 
called the retina in the framework of image recognition, for obvious 
reasons. When the inputs are different from the outputs, the system 
is called heteroassociative. When X = Y and when the inputs of the 
patterns (x,x) coincide with the outputs, we speak of autoassociative 
networks. 
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6 Neural Networks: A Control Approach 

We have to distinguish among all possible input-output patterns a 
subset /C C X x Y of patterns, called the training set. For instance, the 
input signals may obey state constraints. The most common ones require 
that each state of excitation Xi lie in the interval [—1, -f 1] (Anderson's 
model of "brain state in a box" ) or in any other interval, depending 
upon the nature of the signals. For neural networks dealing with Boolean 
functions, the inputs range over {0, l } n , or [0, l ] n in the case of fuzzy 
statements. In the case of autoassociative networks, where Y = X, the 
training set /C is contained in the diagonal {(x,x)}xGX. Most often, the 
input and output spaces are finite-dimensional vector spaces X := R n 

and Y := R m . 
In biological neurons, the signal is represented by the average oscil­

latory frequency of the nervous impulses, or by the short-term average 
firing rate (or triggering frequency), or by the concentration of neuro­
transmitters in the synapse at a given time. 

1.1.3 Synaptic Matrices: The Controls of the Network 

Formal neurons are connected to one another in a neural network. The 
conventional wisdom among neural-network scientists is that knowledge 
is encoded in the pattern of connectivity of the network. Let N denote 
the set of neurons, and 2^ or V(N) the family of subsets of neurons, 
called conjuncts or coalitions (of neurons) (Figure 1.4). 

The connection links a postsynaptic neuron j to conjuncts or coalitions 
S C N of presynaptic neurons. Each conjunct S of neurons preprocesses 
(or gates1) the afferent signals Xi produced by the presynaptic neurons 
through a function 

ips : x := (xj)j=i,...,n ^ <PsO&) 

In most models, the conjuncts S = {i} are reduced to individual neurons 
i. Then the role of the control is played by the synaptic matrix 

W = (wf) S€2„ 
j = l , . . . , n 

the entries w^ of which are the synaptic weights. The modulus of the 
synaptic weight represents the strength, and its sign the direction, of 
the connection from the conjunct S to the formal neuron j , counted 
positively if the synapse is excitatory, and counted negatively if it is 

This gating process is useful to compute (or extrapolate) Boolean functions. 
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1.1 Neural Networks: A General Presentation 

Fig. 1.4 Conjucts of Neurons. Two conjucts of neurons {2,3} and {4,5} 
provide inputs to the post-synaptic neuron 1. 

inhibitory. Therefore, it is often assumed in this kind of neuromimetic 
model that the j t h neuron is excited by J2se2N wj <Ps{x)-

Some models impose constraints bearing on the structure of the synap­
tic matrix, which may represent a division of the set of neurons in several 
layers, with the synaptic matrix as a "product" of elementary synaptic 
matrices mapping one layer to another (top-down or bottom-up pro­
cessing systems). There is no need to assume that a synaptic matrix is 
symmetric. Actually, experimental evidence suggests asymmetric matri­
ces, and perhaps antisymmetric matrices. 

1.1.4 Propagation Rules: The Dynamics of the Network 

The output of the jth neuron is a function of the neuron potential caused 
by the preprocessed signals sent by the presynaptic neurons, (possibly) 
gated by conjuncts of neurons and weighted by the synaptic weights that 
tune these presynaptic neuron potentials. 

The evolution of the average is governed by a discrete dynamical sys­
tem (for synchronous neurons), 

yj:=fj({(wf)^s(x)}se2N) 
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8 Neural Networks: A Control Approach 

or by a differential equation of the form 

^(t) = /i({K)(*),V5(x(t))}Se2W) 

for asynchronous neurons. 
Most often, the function fj is described in the following form: 

fj ({(wf)><Ps{x)}s&N) :=9j i J2 ™fvs(x)) 
\se2N / 

where Qj represents the integrator of the afferent signals, and where 
wfas describes the signal sent to the formal neuron j when it is excited 
by the inputs Xi, preprocessed by the conjunct S and delivered to neuron 
j through the weight Wj. [Usually, one assumes that Wj — 0 when j G S. 
The case when Wj ^ 0 when S 3 j allows feedback (or autoexcitation) 
in the neural network.] 

When S = {j} and when the synaptic weights wf (S ^ {i}) are zero, 
we obtain the loss term <^(0,..., w3-(pj{x)^..., 0), which may represent 
"forgetting," or at least the decaying of the signal frequency when the 
neuron is not excited by the other neurons. 

To be realistic, delays and, more generally, the history of x(-) should 
appear in these functions ips-

1.2 Examples of Neural Networks 

Let us cite several examples of propagation rules: 

1. Associative Memories 
The richest class of neural networks is obtained when there is no pre­
processing by conjuncts of neurons, that is, when (fs(x) = 0 if | 5 | > 1 
and when (f^(x) = Xi for any afferent signal i (where \S\ denotes the 
number of elements of S) and when the functions gi are afflne: They are 
governed by the simple law 

Vj = J2 wiJXi + ci 
z= l , . . . , n 

Such networks are called associative memories by Kohonen. We shall 
answer most questions in this familiar setting. When the dimension of 
the output space Y := R is 1, we find the Widrow adaline network (for 
"adaptive linear element") introduced in 1962. 

2. Associative Memories with Gates 
When the functions gi are still afflne and there is preprocessing of the 
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1.2 Examples of Neural Networks 9 

inputs of an associative memory through conjuncts of neurons, we obtain 
the associative memories with gates: 

Vj '•= J2 ^j(Ps(x)+cj 
se2N 

Example: Boolean Associative Memories 
Denoting by | 5 | the number of elements of a conjunct S (a subset 

of neurons), an afferent signal x G R n can be gated by the positively 
homogeneous2 function 

/ y 
\ies J 

1/|5| 

<Ps( x " " 

This is quite useful for computing n-variable Boolean functions. In 
this case, X := R n , Y = R, and the subset /C of input-output patterns 
is {0, l } n x {0,1} (and, in the fuzzy case, [0, l ] n x [0,-1]). We shall prove 
that the neural network 

/ \VIS | 

se2N \ies J 

can compute any Boolean function b defined on {0, l } n , in the sense that 
there exist weights ws such that 

/ \ 1/|5| 

Vxe{0,ir, Y,ws (jjxi) =b(x) 
S€2N \ieS J 

This allows us to extrapolate them to fuzzy statements x G [0, l ] n . An­
other (obvious) choice of preprocessing functions having the same prop­
erty is given by the multilinear function ips defined by 

because we can always write 

v*e{o,i}n, b(x)= Y, bM n x* n o--**) 
y€{0,l}r i {»IVi = l} {J\Vj=0} 

This is the analytical version of the standard result from Boolean algebra 
stating that any Boolean function may be expressed in the disjunctive 

2 The choice of positively homogeneous functions allows independence of the nor­
malization rule attributing the value 1 to "true." 
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10 Neural Networks: A Control Approach 

normal form. The drawback is that such functions ips involve the affer­
ent signals from presynaptic neurons that do not belong to 5, contrary to 
the first example. However, there is nothing to "compute," because we 
have an explicit formula ws = b(ys), where ys denotes the characteristic 
function of the subset S. • 

3. Nonlinear Automata 
The next class of rules of propagation is made of maps / of the form 

fj(x,W) := gA Y, ™jW*)j 
\S€2" / 

where Qj are automata of various forms. 

McCulloch-Pitts Neurons These are also called threshold logic units. 
They are associated with functions gj that are built from the Heavi-
side function 1 defined by 1(A) = 0 if A < 0, and 1(A) = 1 if A > 0. The 
rules of propagation require also thresholds /3j. Therefore, such a neural 
network evolves according to the law 

f 1 ^ E s e 2 " *>j<Ps(x) > Pj 
3 I 0 if £SG2" Wftpsfr) < Pj 

Naturally, we can replace the Heaviside function 1 by functions g such 
that g(x) := A when x > 0, and g(x) = a when x < 0. 

"Continuous" Automata Because the Heaviside function 1 and the for­
going two-valued functions g are not continuous, it may be useful to 
replace them by continuous and even differentiable approximations in 
some problems (Figure 1.5). This can be done by using the function 

9k ,7 : 

... A~fekX + a 

where A, a > 0,7 and k > 0 are given parameters representing the 
automaton. We set gu '= gk,i- [the constant P := — log7/A: represents a 
threshold because ^ ) 7(A) = #fc(A — /?)]. The function gkn maps R onto 
[a, A] and has a "sigmoid" shape. The parameter T := \jk is called the 
"temperature," by analogy with spin glasses. Its derivative is equal to 
/c7efcA(A-a)/(7efcA + l ) 2 . 

We observe that when k goes to 00, the function g^ converges to the 
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