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Probability and measure

1.1 Do probabilists need measure theory?

Measure theory provides the theoretical framework essential for the
development of modern probability theory. Much of elementary prob-
ability theory can be carried through with only passing reference to
underlying sample spaces, but the modern theory relies heavily on mea-
sure theory, following Kolmogorov’s axiomatic framework (1932) for
probability spaces. The applications of stochastic processes, in partic-
ular, are now fundamental in physics, electronics, engineering, biology
and finance, and within mathematics itself. For example, Itô’s stochas-
tic calculus for Brownian Motion (BM) and its extensions rely wholly
on a thorough understanding of basic measure and integration the-
ory. But even in much more elementary settings, effective choices of
sample spaces and σ-fields bring advantages – good examples are the
study of random walks and branching processes. (See [S], [W] for nice
examples.)

1.2 Continuity of additive set functions

What do we mean by saying that we pick the number x ∈ [0, 1] at ran-
dom? ‘Random’ plausibly means that in each trial with uncertain out-
comes, each outcome is ‘equally likely’ to be picked. Thus we seek to
impose the uniform probability distribution on the set (or sample space)
Ω of possible outcomes of an experiment. If Ω has n elements, this is
trivial: for each outcome ω, the probability that ω occurs is 1

n . But when
Ω = [0, 1] the ‘number’ of possible choices of x ∈ [0, 1] is infinite,
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2 Probability and measure

even uncountable. (Recall that the set Q of rational numbers is count-
able, while the set R of real numbers is uncountable.) We cannot define
the ‘uniform probability’ on [0, 1] as a function of points x or singletons
{x}; however, we can first define our probability function or (Lebesgue)
measure m just for intervals: if 0 ≤ a < b ≤ 1, we set m([a, b]) = b−a.

Thus measure, or ‘probability’, is a function of sets, not of points. The
challenge is to extend this idea to more general sets in [0, 1].

With such an extension we can determine m({x}) for fixed
x ∈ [0, 1]: for ε > 0, {x} ⊂

[
x − ε

2 , x + ε
2

]
, so if we assume m to

be monotone (i.e. A ⊂ B implies m(A) ≤ m(B)), then we must con-
clude that m({x}) = 0. On the other hand, since some number between
0 and 1 is chosen, it is not impossible that it could be our x. Thus a
non-empty set A can have m(A) = 0.

The probability that any one of a countable set of reals A =
{x1, x2, . . . , xn, . . .} is selected should also be 0, since for any ε> 0
we can cover each xn by an interval In =

[
xn − ε

2n+2 , xn + ε
2n+2

]
so

that A ⊂ ∪∞
n=1In with total length Σ∞

n=1m(In) < ε. We just need the
‘obvious’ property that m(A) =

∑∞
n=1 m({xn}) for our conclusion.

We generalise this to demand the countable additivity property
of any probability function A �→ P (A), i.e. if (An)n≥1 are dis-
joint, then P (∪∞

n=1An) =
∑∞

n=1 P (An). We shall formalise this in
Definition 1.9.

This demand looks very reasonable, and is an essential feature of
the calculus of probabilities. It implies finite additivity: if A1, . . . , An

(n ∈ N) are disjoint, then P (∪n
i=1Ai) = Σn

i=1P (Ai). Simply
let Ai = ∅ for i > n (see Proposition 1.3).

Remark 1.1 Our example suggests a useful description of the ‘negli-
gible’ (or null) sets in [0, 1] (and by the same token in R) for Lebesgue
measure m: the set A is m-null if for every ε > 0 there is a sequence
(In)n≥1 of intervals of total length

∑∞
n=1 m(In) < ε, so that A ⊂

∪∞
n=1In. (Note that the In need not be disjoint.) This requirement will

characterise sets A ⊂ R with Lebesgue measure m(A) = 0.

Example 1.2 The Cantor set provides an uncountable m-null set in
[0, 1]. Start with the interval [0, 1], remove the interval

(
1
3 , 2

3

)
, obtaining

the set C1, which consists of the two intervals
[
0, 1

3

]
and

[
2
3 , 1

]
. Next

remove the ’middle thirds’
(

1
9 , 2

9

)
,
(

7
9 , 8

9

)
of these two intervals, leaving

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-40086-3 - From Measures to Ito Integrals
Ekkehard Kopp
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9781107400863


1.2 Continuity of additive set functions 3

C2, consisting of four intervals each of length 1
9 , etc. At the nth stage we

have a set Cn, consisting of 2n disjoint closed intervals, each of length
1
3n . Thus the total length of Cn is

(
2
3

)n
, which goes to 0 as n → ∞.

We call C =
⋂∞

n=1 Cn the Cantor set, which is contained in each Cn,

hence is m-null. Using ternary expansions, you may now show that C

is uncountable (just as with decimal expansions for [0, 1]).
We develop some abstract probability theory. Any given set Ω can

serve as sample space, and we consider (‘future’) events A,B from a
given class A of subsets of Ω. We wish to define the probability P (A)
(resp. P (B)) as numbers in [0, 1]. Clearly, we would then also wish to
know P (A ∪ B), P (Ac), P (A ∩ B), etc. Thus the class A of sets on
which P is defined should contain Ω (and P (Ω) = 1) and together with
A,B it should also contain A ∪ B and Ac. This ensures that A also
contains A ∩ B: Ac ∪ Bc = (A ∩ B)c is in A, hence also A ∩ B.

Such a class A is a field. (This, now standard, use of the term ‘field’ in
probability theory is somewhat unfortunate, and invites confusion with
its usual algebraic meaning. Some authors seek to avoid this by using
the term ‘algebra’ instead. We shall not do so.)

We demand that P is additive, i.e. for disjoint A,B ∈ A we have
P (A ∪ B) = P (A) + P (B). This suffices for our first result.

Proposition 1.3 If A,B ∈ A and A ⊂ B, then we have
P (B\A) = P (B)−P (A). Hence P (∅) = 0. Moreover, P is monotone:
A ⊂ B implies P (A) ≤ P (B).

Proof B\A = B ∩ Ac, so B\A is in A. But B = A ∪ (B\A) and
these sets are disjoint. Hence P (B) = P (A)+P (B\A). For the second
claim, use B = A. The final claim follows as P is non-negative.

Exercise 1.4 Show that for any A,B in A (disjoint or not)

P (A ∪ B) + P (A ∩ B) = P (A) + P (B).

Given any probability P (see Definition 1.9 below), we call an event
A P -null if P (A) = 0. An event B is called almost sure (or full) if
P (B) = 1 (so that Bc is P -null, since P (B) + P (Bc) = P (Ω)). A
property (e.g. of some function) holds almost surely if it holds on a full
set (i.e. except possibly on some null set).
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4 Probability and measure

Example 1.5 (i) Let Ω = {1, 2, . . . , n} (or any finite set) A = 2Ω its
power set (the class of all subsets) and P (A) = #A

n , where #A is the
number of points in A.

(ii) Let Ω be any set, A = 2Ω, δx(A) = 1 for x ∈ A, else 0. Then
P = δx is the point mass at x (also called a Dirac δ-measure). Of
course, the power set is always a field.

(iii) For finite or countable sample spaces, probability distributions can
be built from Dirac measures: call a probability P on R discrete if there
is a countable full subset C (i.e. P (C) = 1). This is obviously equiv-
alent to P having the form P =

∑∞
i=1 piδxi

for some real sequences
(xi)i≥1, (pi)i≥1 with pi > 0 and

∑∞
i=1 pi = 1.

The following distributions should be familiar:

(a) Bernoulli: P = pδ1 + (1 − p)δ0, 0 < p < 1.

(b) Binomial Bi(n,p): P =
∑n

i=1 piδi,
where pi =

(
n
i

)
pi(1 − p)n−i, 0 ≤ i ≤ n, 0 < p < 1.

(c) Geometric Geo(p): P =
∑∞

i=1 piδi,
where pi = p(1 − p)i−1, i ≥ 1, 0 < p < 1.

(d) Negative binomial NegB(n,p): P =
∑∞

i=n piδi,
where pi =

(
i−1
n−1

)
pi(1 − p)i−n, i ≥ n, 0 < p < 1.

(e) Poisson Po(λ): P =
∑∞

i=1 piδi,

where λ > 0 and pi = e−λ λk

i! , i ≥ 0.

You may know these better as distributions of well-known classes of
random variables.

Example 1.6 For a different example, we consider a field that enables
us to generate Lebesgue measure on R.

Let Ω = R. Consider left-open, right-closed intervals, i.e.
of the form (a, b] for a, b ∈ [−∞,∞] (the set of extended reals,
which consists of R ∪ {−∞,∞}) and where by convention we set
(a,∞] = (a,∞) for −∞ ≤ a ≤ ∞. We then define

A0 = {∪n
i=1(ai, bi] : a1 ≤ b1 ≤ a2 ≤ . . . ≤ bn, n ≥ 1} ,

so that A0 is the class of all finite disjoint unions of such intervals. We
define the measure of such a union as

m (∪n
i=1(ai, bi]) =

n∑

i=1

(bi − ai).
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1.2 Continuity of additive set functions 5

This fits with our earlier informal definition for closed intervals, since
we showed that m({x}) = 0 for any x and m is finitely additive.

Exercise 1.7 Verify that A0 is a field. Would this remain true if we had
used open (or closed) intervals instead?

In practice, as can already be seen from examples (d) and (e) above,
we are driven to considering unions and intersections of an infinite
sequence of events. As another example, in an infinite sequence of coin
tosses, what is the probability that ‘heads’ will occur infinitely often?
We shall see that this depends crucially on our assumptions about the
probability of success at each stage.

The Borel–Cantelli (BC) Lemmas are the archetype of this sort of
result. To formulate the first lemma, suppose that A1, A2, . . . , An, . . .

is a sequence in A with
∑∞

n=1 P (An) < ∞. How should we find the
probability of the event

Ai.o. = {ω : ω ∈ An for infinitely many n}?

(As with Ai.o., we shall use ‘i.o.’ as an abbreviation for ‘infinitely often’
throughout.) We must ensure that P (Ai.o.) makes sense. If ω belongs to
infinitely many An, then for each m ≥ 1 there is at least one n ≥ m

with ω ∈ An. So ω ∈ ∪n≥mAn for all m. Thus we need to define the
probability of the union of infinitely many An if we are to get further.
This leads first to:

Definition 1.8 A class F of subsets of a given set Ω is a σ-field (use of
the term σ-algebra is also common) of subsets of Ω if:
(i) Ω ∈ F .
(ii) A ∈ F implies Ac ∈ F .
(iii) {An : n ∈ N} ⊂ F implies

⋃∞
n=1 An ∈ F .

Thus F is closed under complements and countable unions.

A field, and indeed any family A of subsets of Ω, generates a minimal
σ-field σ(A): we define

σ(A) = ∩{G : G is a σ-field, A ⊂ G}.

It is easily verified that σ(A) satisfies (i)–(iii) of Definition 1.8 A key
example is given by the Borel σ-field B = σ(A0) with the field A0
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6 Probability and measure

defined as in Example 1.6 above. In what follows, the pair (R,B) plays
a central role.

For ω ∈ Ai.o., we need to have ω ∈ ∪n≥mAn for each m ≥ 1, so
that we write

Ai.o. = ∩m≥1(∪n≥mAn) := lim supn→∞ An.

To see that Ai.o. belongs to the σ-field F , we show that F is also closed
under countable intersections. Since F is closed under complements,
if (Bn)n≥1 ⊂ F then each Bc

n ∈ F , and by de Morgan’s laws we have
(∩n≥1Bn)c = ∪n≥1B

c
n, so that ∩n≥1Bn is the complement of a set in

F , hence is itself in F . Thus we see that Ai.o. is well-defined as soon as
the sets An belong to a σ-field of sets in Ω.

But this still does not tell us how to find its probability.

Definition 1.9 A triple (Ω,F , P ) is a probability space if Ω is any set,
F is a σ-field of subsets of Ω and the function P : F → [0, 1] satisfies:

(i) P (Ω) = 1.

(ii) {An : n ∈ N} ⊂ F and An ∩ Am = ∅ for n �= m imply that

P (∪∞
n=1An) =

∞∑

n=1

P (An).

We say that the probability P is a σ-additive (also called countably
additive) set function.

We may equally define lim infn→∞ An = ∪n≥1(∩Am≥n). This set
contains all points that eventually belong to sets in the sequence (An)n.

We also write Aev for this set.

Exercise 1.10 Check: (lim infn→∞ An)c = lim supn→∞ Ac
n.

Compare this with a similar result for the upper and lower limits
of a sequence of real numbers – recall that for a real sequence (an)
we define lim supn an as infn≥1(supm≥n am) and lim infn an as
supn≥1(infm≥n am). You should prove that (an) converges if and only
if (iff) these quantities coincide! We use this fact in later chapters.

Any countable union
⋃∞

k=1 Ak can be written as a disjoint union: let
Bk = Ak\

⋃k−1
j=1 Aj , then clearly Bk ⊂ Ak for each k and Bj∩Bk = ∅

when j �= k. You should verify that
⋃∞

k=1 Bk =
⋃∞

k=1 Ak.
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1.2 Continuity of additive set functions 7

Exercise 1.11 Prove that a finitely additive set function P : F → [0, 1]
is σ-additive iff the following statement holds: whenever (Bn)n≥1 in F
decreases to the empty set (∩n≥1Bn = ∅), then limn→∞ P (Bn) = 0.
(This is often called ‘continuity’ of P at ∅.)

To find P (lim supn→∞ An), we first need some more simple conse-
quences of the definitions:

Proposition 1.12 Let (Ω,F , P ) be a probability space.

(i) If (Ai)i≥1 in F , then P (∪i≥1Ai) ≤
∑∞

i=1 P (Ai).
(ii) If Ai ⊂ Ai+1, (i ≥ 1), then P (∪i≥1Ai) = limn→∞ P (An).
(iii) If Ai+1 ⊂ Ai, (i ≥ 1), then P (∩i≥1Ai) = limn→∞ P (An).

Exercise 1.13 Prove Proposition 1.12 and show that (ii) and (iii) are
equivalent ways of formulating σ-additivity of additive P . (Here (i) says
that P is countably subadditive.)

We introduce notation for the convergence of sets: write An → A if
lim supn An = lim infn An = A (alternatively, Ai.o. = Aev = A).
Note the analogy with convergent sequences! As a special case, we
write An ↑ A if An ⊂ An+1 for all n and A = ∪∞

n=1An. Similarly,
An ↓ A if An+1 ⊂ An for all n and A = ∩∞

n=1An.

Proposition 1.14 If An → A, then P (An) → P (A).

Proof If An → A, then A = Ai.o. = Aev, so P (A) = P (Ai.o.) =
P (Aev). We need to show that

lim supn P (An) = lim infn P (An) = P (A).

But lim infn P (An) ≤ lim supn P (An) always holds, so we just need
to show that P (lim infn(An)) ≤ lim infn P (An). Now for each k ≥ 1

∩n≥kAn ⊂ Ak, hence P (∩n≥kAn) ≤ P (Ak)

and the result follows by Proposition 1.12 (ii) on letting k → ∞, since
∩n≥kAn ↑ lim infn Ak = A.

Exercise 1.15 Show that lim supn P (An) ≤ P (lim supn An).
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8 Probability and measure

For the first BC Lemma, let Bm = ∪n≥mAn so that (Bm) decreases,
hence by 1.12(ii) and 1.12(i)

P (∩m≥1Bm) = limm P (Bm) = limm P (Am ∪ Am+1 ∪ . . .)

≤ limm(P (Am) + P (Am+1) + . . .) = 0

since the series (of real numbers!)
∑∞

n=1 P (An) converges.
We have proved:

Lemma 1.16 (First Borel–Cantelli (BC) Lemma): If (An)n is a
sequence of events with

∑∞
n=1 P (An)<∞, then P (lim supn An) = 0.

Thus, if we have a sequence of events whose probabilities decrease
quickly enough to keep their sum finite (for example, if P (An+1) =
0.999P (An) for each n), then it is certain (i.e. the probability is 1)
that only finitely many of them will occur. This may not be unduly
surprising, but it did need a proof.

1.3 Independent events

The first BC Lemma is immediate from our definitions. Matters are very
different, however, when the series

∑∞
n=1 P (An) diverges. Then we do

have a second BC Lemma, but this applies only when the sequence of
events (An)n is independent. Recall some basic definitions:

Definition 1.17 Let (Ω,F , P ) be a probability space. For A,B ∈ F
with P (B) > 0, define

P (A|B) =
P (A ∩ B)

P (B)

as the conditional probability of A, given B.

Exercise 1.18 Verify that the function PB : A → P (A|B) is again a
probability. (Hint: if (An)n are pairwise disjoint sets in F , then (An ∩
B)n are also pairwise disjoint.)
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1.3 Independent events 9

Exercise 1.19 Suppose that A,Bn ∈ F with (Bn)n pairwise disjoint,
P (Bn) �= 0 for all n and ∪∞

n=1Bn = Ω. Prove that

P (A) =
∞∑

n=1

P (A|Bn)P (Bn).

This is often called the Theorem of Total Probability.

Definition 1.20 Events A,B in F are independent if

P (A ∩ B) = P (A)P (B).

When P (B) > 0, this is the same as the more natural requirement that
B should ‘have no influence’ on A; i.e. P (A|B) = P (A). However,
our definition still makes sense if P (B) = 0.

Care must be taken when generalising this definition to three or
more sets (e.g. A,B,C): it is not enough simply to require that
P (A ∩ B ∩ C) = P (A)P (B)P (C).

Exercise 1.21 Find examples of sets in R to justify this claim.

As our general definition of independence of events, we therefore
require:

Definition 1.22 Let (Ω,F , P ) be a probability space. Events
A1, A2, . . . , An in F are independent if for each choice of indices
1 ≤ i1 < i2 < . . . < ik ≤ n

P
(
∩k

m=1Aim

)
= P (Ai1)P (Ai2) . . . P (Aik

) =
k∏

m=1

P (Aim
).

A sequence (An)n≥1 of events (or any family (Aα)α) is independent if
every finite subset Ai1 , Ai2 , . . . , Aik

of events is independent.

With this machinery we formulate:

Lemma 1.23 (Second Borel–Cantelli (BC) Lemma): If the
sequence (An)n≥1 is independent and

∑∞
n=1 P (An) = ∞, then

P (lim supn An) = 1.
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10 Probability and measure

Proof To prove that P (∩∞
k=1 (∪∞

n=kAn)) = 1 it will suffice to show
that for each k ≥ 1, P (∪∞

n=kAn) = 1. This follows from Proposition
1.12 (iii): ∪∞

n=kAn decreases as k increases, so that

limk→∞ P (∪∞
n=kAn) = P (∩∞

k=1(∪∞
n=kAn)) .

Now consider ∩m
n=kAc

n for a fixed m > k. By de Morgan’s laws, we
have (∪m

n=kAn)c = ∩m
n=kAc

n. The (Ac
n) are also independent (check

this yourself!), so for k ≥ 1

P (∩m
n=kAc

n) =
m∏

n=k

P (Ac
n) =

m∏

n=k

[1 − P (An)].

For x ≥ 0, we have 1 − x ≤ e−x (use the Taylor series, or simply the
derivative), so

m∏

n=k

[1 − P (An)] ≤
m∏

n=k

e−P (An) = e−
∑ m

n=k P (An).

Now recall that we have assumed that the series
∑

n P (An) diverges.
Hence for fixed k the partial sums

∑m
n=k P (An) grow beyond all

bounds as m → ∞. So, as m → ∞ the right-hand side (RHS) of
the inequality becomes arbitrarily small.

This proves that

1 − P (∪m
n=kAn) = P (∩m

n=kAc
n) → 0 as m → ∞.

Now write Bm = ∪m
n=kAn. The sequence (Bm)m is increasing in m

and its union is ∪∞
n=kAn. Applying Proposition 1.12 (ii), we have

P (∪∞
n=kAn) = limm→∞ P (Bm) = 1

and the proof is complete.

1.4 Simple random walk

The following famous example illustrates the power of the BC Lemmas.
(i) On the line, imagine a drunkard describing a symmetric random walk
from 0, i.e. who at each step is equally likely to go left or right. How
often does such a walk return to the starting point? The position reached
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