Index

aberrant right subclavian artery, 135–136
accountability, 27–28
family outcomes, 28–29
functional child outcomes, 28
US Child Outcome and Accountability System, 28
acetylcholine (ACh), 100
acetylcholinesterase (AChE), 100
activity-based approach, 5
adaptive behavior, 42–43
ageing, 123
Alzheimer’s disease (AD), 52–53, 123
pharmacological interventions, 98–99
AMPA receptors, 103
ampiphysin, 76
amyloid-beta (A-beta), 57–58, 225
animal models, 6, 10, 72–74
environmental enrichment effects, 74
neurogenesis, 76–78
proteins encoded by triplicated genes, 78–80
synaptic plasticity, 74–76
genetic basis of cognitive deficits, 53–54
metabolism effects on brain development, 87
production of new mouse models, 91
translation from rodents to humans, 44–45
antibody therapy, 225
antioxidants, 123
aortic arch malformations, 135–136
applied behavior analysis, 18
Arizona Cognitive Test Battery (ACTB), 36, 37–39, 47
cerebellar function, 42
episodic memory, 39–40
frontal function, 40–41
arteria lusoria, 135–136
articulatory loop, 165
assessment
adaptive behavior, 42–43
cerebellar functions, 41–42
early childhood, 26
critical questions about, 27
definition, 26
functional skills, 27
efficacy assessment issues, 44–47
age at intervention, 45
change, 45–47
translation from rodents to humans, 44–45
episodic memory, 39–40
frontal functions, 40–41
IQ, 44
language, 42
maladaptive behavior, 43–44
verbal short-term memory, 40
atlanto-axial instability (AAI), 121
atrial septal defect (ASD), 135
ostium primum, 135
ostium secundum, 135
sinus venosus, 135
atrioventricular septal defect (AVSD), 128, 131–132
complete, 131–132
intermediate, 132
partial, 132
pathology, 129–131
surgical repair, 129
auditory deprivation, 185–187
higher-level speech processing abilities and, 186–187
intervention issues, 187
phonological difficulties and, 186
autism spectrum disorders, 106, 107
autoimmune diseases, 119–120
Behavior Rating Inventory of Executive Function (BRIEF), 40
biological therapy
future directions, 108–109
merging biological and educational strategies, 109
brain
development, 168–171
metabolism effects on development, 85–87
inositol metabolism, 90–91
mouse models, 87
structural abnormalities, 52, 168, 169–171
voxel based morphometry (VBM), 169
BRAMP2, 76
Bronfenbrenner’s developmental model, 147–148
Cambridge Neuropsychological Testing Automated Battery (CANTAB), 38
Paired Associates Learning (PAL), 39
cancer, 120–121
candidate genes, 54–56
chromosomal localization, 55
criteria, 54
functions, 55
level of expression, 56
231
candidate genes (cont.)
phenotypic changes in
murine models, 56
territories of expression,
55–56
cardiovascular disease. See congenital heart disease (CHD)
causality, 196–197
implications for
goal-directed behavior
in DS, 198–199
celiac disease (CD), 119–120
cerebellar functions, 41–42
c-g arena task, 39–40
challenging activities, 201
change evaluation, 45–47
choline metabolism, 88, 124
choline-acetyltransferase
(ChAT), 100
cholinergic medications, 101
donepezil, 101–102
trials in adults, 101–102
trials in children, 102
rivastigmine, 102–103
trials in adults, 102
trials in children, 102–103
cholinergic system, 100
chromosome 21 genes, 37
Cicchetti’s developmental
approach, 146–147
clinical endpoints, 36, 37–39,
See also outcomes
adaptive behavior, 42–43
cerebellar functions, 41–42
frontal functions, 40–41
hippocampal memory,
39–40
IQ, 44
language, 42
maladaptive behavior, 43–44
verbal short-term memory,
40
Clinical Evaluation of
Language
Fundamentals-Third
Edition (CELF-3), 42
clinical trials, 98–99
cholinergic medications, 101
donepezil in adults,
101–102
donepezil in children, 102
rivastigmine in adults,
102
rivastigmine in children,
102–103
cognitive medication trials,
100
measuring outcomes,
99–100
overlooked physiological
variables, 100
present design, 99
previous strategies, 98
Cliniques universitaires
Saint-Luc, Brussels,
136–139
cochlear implants, 185–187
higher-level speech
processing abilities and,
186–187
intervention implications,
187
phonological difficulties and,
186
cognitive deficits, 39, 164
adaptive behavior, 42–43
cerebellar functions, 41–42
frontal functions, 40–41
genetic basis, 52–53
hippocampal memory,
39–40
IQ, 44
language, 42
verbal short-term memory,
40
cognitive enhancement, 96
future directions, 108–109,
See also pharmacological
interventions
Cognitive Structural
Modifiability Theory,
4–5
communication skills
promotion, 23–24
complex developmental
trajectories, 148–150
congenital heart disease
(CHD), 117–118,
128–129, 136, See also
specific conditions
Differential Ability Scales –
Second Edition
(DAS-II), 44, 46
DNMT3L gene, 88
donepezil, 101–102, 123
adverse events, 102
trials in adults, 101–102
trials in children, 102
dopamine, 105–106
dopey2 gene, 55
doublecortin, 78–79
Down syndrome (DS), 1–2, 71,
85
changing expectations,
16–17, 29
eyearly intervention. See early
intervention (EI)
follow-up studies of adults,
29–30
information sources, 29
language and
communication skills
promotion, 23–24
learning style impact on
inclusion, 22–23
mouse models, 72–74
Down Syndrome Research and
Treatment Foundation
(DSRTF), 29
pathology, 129–131
surgical experience,
136–139
outcomes, 137
dementia, 52–53
developmental models,
142–143, See also motor
development
complex developmental
trajectories, 148–150
developmental sequences,
144–145
ecological theory, 147–148
expanded developmental
approach, 146–147
implications of, 150
universality of development,
143–144
uniqueness and, 145–146

© Cambridge University Press & Assessment
www.cambridge.org
Dp(10)1Y ey/+; Dp(16)1Y ey/+; Dp(17)1Y ey/+, 74
DSCR (DS critical region), 73
DSCR1 (Down syndrome chromosomal region 1), 55
DSCR1 gene, 56–57
DYRK1A gene, 37
DYRK1A pathway, 62–64
environmental enrichment effects, 79–80
expression patterns, 55–56
inhibition of overexpression, 57, 225
early development and risk factors model, 5
early intervention (EI) basis for, 2, 7
challenges, 6–10
definition, 2–3
history, 15
investment in EI services, 9
models, 3–6
activity-based approach, 5
Cognitive Structural Modifiability Theory, 4–5
development and risk factors model, 5
ecological model, 4
Transaction Model, 4
motor development, 157–159
generalization of skills, 158–159
program planning, 157–158
objectives, 3, 16
parent participation in, 9, 205–207, See also parents
changing perspectives, 24
prelanguage intervention, 177
quality issues, 9–10
research, 17–19
early efficacy studies, 17–18
more recent efficacy studies, 18–19
translation into practice, 7
US national data, 25–26
early medical caretaking, 117
ecological model, 4
ecological theory, 147–148
education policy, 19–20
accountability, 27–28
eye abnormalities, 118
eyeblink conditioning, 41
folate metabolism, 88, 124
fragile-X syndrome (FXS), 224
frontal functions, 40–41
frustration coping strategies, 202
functional skills assessment, 27
GABA (gamma-aminobutyric acid), 105
inverse agonists, 36
GABAergic pathways, 71–72
epilepsy, 122
episodic memory, 39–40
episonality versus equifinality versus multiformity, 143–144
Expressions Vocabulary Test—Second Edition (EVT-2), 42
eye abnormalities, 118
eyeblink conditioning, 41
family, 2, See also parents
family outcomes, 28–29
family-centered practice, 24
family-centered service philosophy, 206
information sources, 29
support for, 25
Family Service Outcomes Study, 211
early medical caretaking, 117
ecological model, 4
ecological theory, 147–148
education policy, 19–20
accountability, 27–28
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>grasp development, 154–155, 192–193</td>
</tr>
<tr>
<td>growth hormone (GH), 122</td>
</tr>
<tr>
<td>hearing defects, 118</td>
</tr>
<tr>
<td>heart disease. See congenital heart disease (CHD)</td>
</tr>
<tr>
<td>HemK2, 89</td>
</tr>
<tr>
<td>hippocampal memory, 39–40</td>
</tr>
<tr>
<td>HSA21 genes, 55, 226–227</td>
</tr>
<tr>
<td>gene functions, 91</td>
</tr>
<tr>
<td>level of expression, 56</td>
</tr>
<tr>
<td>metabolism and, 86–87</td>
</tr>
<tr>
<td>mouse models, 72–74</td>
</tr>
<tr>
<td>human recombinant growth hormone (hrGH), 122</td>
</tr>
<tr>
<td>hybrid therapeutic strategies, 11, 228</td>
</tr>
<tr>
<td>hypothyroidism, 119</td>
</tr>
<tr>
<td>hypotonia, 121</td>
</tr>
<tr>
<td>immunological disorders, 119–120</td>
</tr>
<tr>
<td>implicit memory, 167, 168</td>
</tr>
<tr>
<td>inclusion</td>
</tr>
<tr>
<td>child characteristics impacting on, 22–23</td>
</tr>
<tr>
<td>education policy, 20–22</td>
</tr>
<tr>
<td>language and communication skills promotion, 23</td>
</tr>
<tr>
<td>preschool education issues, 21</td>
</tr>
<tr>
<td>Individualized Family Service Plan (IFSP), 205</td>
</tr>
<tr>
<td>Individuals with Disabilities Education Act (IDEA), 19–20</td>
</tr>
<tr>
<td>framework, 20</td>
</tr>
<tr>
<td>Infant Health and Development Program (IHDP), 210, 211, 213</td>
</tr>
<tr>
<td>long-term effects, 214–215</td>
</tr>
<tr>
<td>information sources, 29</td>
</tr>
<tr>
<td>inositol metabolism, 86, 90–91</td>
</tr>
<tr>
<td>intellectual disability, 1, 9, 97</td>
</tr>
<tr>
<td>causes, 1</td>
</tr>
<tr>
<td>syndrome specificity, 8</td>
</tr>
<tr>
<td>intelligence, 96–97</td>
</tr>
<tr>
<td>interdisciplinary approach, 6, 9</td>
</tr>
<tr>
<td>interneurons, 105</td>
</tr>
<tr>
<td>investment in EI services, 9</td>
</tr>
<tr>
<td>IQ, 44</td>
</tr>
<tr>
<td>changes with age, 45, 52</td>
</tr>
<tr>
<td>KBIT-II (Kaufmann Brief Intelligence Test-Second Edition), 44</td>
</tr>
<tr>
<td>language assessment, 42</td>
</tr>
<tr>
<td>development before birth, 175–176</td>
</tr>
<tr>
<td>first-year prelanguage, 176–177</td>
</tr>
<tr>
<td>grammatical development, 179–180</td>
</tr>
<tr>
<td>lexical development and intervention, 178–179</td>
</tr>
<tr>
<td>maternal communication and, 209</td>
</tr>
<tr>
<td>prelanguage intervention, 177</td>
</tr>
<tr>
<td>skills promotion, 23–24</td>
</tr>
<tr>
<td>Learn at Play Program (LAPP), 159</td>
</tr>
<tr>
<td>learning, 60, 164</td>
</tr>
<tr>
<td>learning styles, 22–23</td>
</tr>
<tr>
<td>leukemia, 120–121</td>
</tr>
<tr>
<td>lexical development, 178–179</td>
</tr>
<tr>
<td>lithium, 90</td>
</tr>
<tr>
<td>locomotion. See motor development</td>
</tr>
<tr>
<td>Longitudinal Studies of Alternative Types of Early Intervention, 210–211</td>
</tr>
<tr>
<td>long-term memory, 167–168, 171, See also memory</td>
</tr>
<tr>
<td>maladaptive behavior, 43–44</td>
</tr>
<tr>
<td>Maternal Behavior Rating Scale, 208</td>
</tr>
<tr>
<td>memantine, 61–62</td>
</tr>
<tr>
<td>memory, 60, 164, 168–171, See also long-term memory; short-term memory episodic, 39–40</td>
</tr>
<tr>
<td>memory pathways, 60–64</td>
</tr>
<tr>
<td>DYRK1A pathway, 62–64</td>
</tr>
<tr>
<td>GABAergic pathways, 60–61</td>
</tr>
<tr>
<td>NMDA receptors, 61–62</td>
</tr>
<tr>
<td>mental retardation. See cognitive deficits</td>
</tr>
<tr>
<td>metabolism</td>
</tr>
<tr>
<td>brain development and, 85–86</td>
</tr>
<tr>
<td>inositol metabolism, 90–91</td>
</tr>
<tr>
<td>mouse models, 87</td>
</tr>
<tr>
<td>genes relevant to, 86–87</td>
</tr>
<tr>
<td>methyl group metabolism, 87–89</td>
</tr>
<tr>
<td>metabolomics, 92</td>
</tr>
<tr>
<td>methotrexate, 87</td>
</tr>
<tr>
<td>methyl group metabolism, 87–89</td>
</tr>
<tr>
<td>microcircuits, 105</td>
</tr>
<tr>
<td>mirror neuron system, 159–160</td>
</tr>
<tr>
<td>Model Preschool Program, Seattle, 17–18</td>
</tr>
<tr>
<td>molecular pharmacology, 97–98</td>
</tr>
<tr>
<td>motor development, 153–154, 160</td>
</tr>
<tr>
<td>early intervention, 157–159</td>
</tr>
<tr>
<td>generalization of skills, 158–159</td>
</tr>
<tr>
<td>naturalistic strategies, 157</td>
</tr>
<tr>
<td>peer-mediated strategies, 157</td>
</tr>
<tr>
<td>positive reinforcement, 157</td>
</tr>
<tr>
<td>program planning, 157</td>
</tr>
<tr>
<td>prompting strategies, 158</td>
</tr>
<tr>
<td>perceptual-motor processes, 154–156</td>
</tr>
<tr>
<td>reach-to-grasp, 154–155</td>
</tr>
<tr>
<td>walking, 155–156</td>
</tr>
<tr>
<td>physical supports, 201</td>
</tr>
<tr>
<td>recent neuroscience research, 159–160</td>
</tr>
</tbody>
</table>

© Cambridge University Press & Assessment www.cambridge.org
motor exploration, 192–193

cognitive consequences of, 193–194

causality, 196–197

object affordances, 194–196

relevance of in DS, 195–196, 197

facilitation of, 200

motor delays in DS, 197–198

implications for goal-directed behavior, 198–199

mouse models. See animal models

Ms1Rhr mouse model, 73

multidisciplinary approach, 6, 9

musculoskeletal disorders, 121

N6AMT1 gene, 89

National Early Intervention Longitudinal Study (NEILS), US, 25

National Longitudinal Transition Study 2 (NLTS2), 30

neural crest (NC), 58–59

neurobiology, 98

neurogenesis, 60, 76–78

neuronal plasticity, 71–72

neurotransmitters, 97, See also specific neurotransmitters

Nisonger Child Behavior Report Form (NCBRF), 44

NMDA receptors (NMDARs), 61–62, 103

therapeutic strategies, 103–104

nootropic medications, 104

piracetam, 104–105

nutritional problems, 123–125

nutritional status

brain development and, 85–86

genes relevant to, 86–87

obesity, 123–124

object affordances, 194–196

implications for goal-directed behavior in DS, 198–199

obstructive sleep apnea (OSA), 122

ocular abnormalities, 118

Office of Special Education Programs (OSEP), US, 25, 27–28

OMERACT initiative, 38

orofacial physical therapy, 177

outcomes. See also clinical endpoints

cardiac surgery, 137

family outcomes, 28–29

functional child outcomes, 28

measurement, 99–100

US Child Outcome and Accountability System, 28

oxidative stress, 89

aging and, 123

p21-activated kinase (PAK), 224

Parenting Model of Child Development, 207–210, 219

intervention and, 210–215

long-term effects of responsive parenting, 214–215

parenting and intervention effectiveness, 210–213

parenting as intervention, 213–214

parents. See also family

Parenting Model of Child Development parent–child interactions, 9, 19, 208–210

responsiveness importance, 217–220

participation in early intervention, 9, 205–207

changing perspective, 24

role in intervention, 207, 215

reasons for importance of, 215–217

responsiveness importance, 217–220

pharmacological interventions
donepezil, 102

partial specificity, 8

pcp4 gene, 55

Peabody Picture Vocabulary Test third edition, 42

fourth edition, 42

pentyletetrazole (PTZ), 36, 61

persistence of the ductus arteriosus (PDA), 135–136

pharmacological interventions. 36–38, See also clinical trials

cholinergic medications, 101

clinical endpoints, 36, 37–39

donepezil, 101–102

trials in adults, 101–102

trials in children, 102

efficacy assessment issues, 44–47

change, 45–47

translation from rodents to humans, 44–45

glutamate-based strategies, 103–104

measuring outcomes, 99–100

molecular pharmacology, 97–98

nootropic medications, 104

piracetam, 104–105

psychotropic medication, 106

psychotropic medications concerns, 106–108

reduction of physiologically impairing symptoms, 107

urgency of, 107–108

rivastigmine, 102–103

trials in adults, 102

trials in children, 102–103

phonological difficulties. See speech
physiologically impairing symptoms, 106–107
reduction of, 107
urgency of reduction, 107–108
Piaget's developmental sequences, 144–145
picrotoxin (PTX), 61
piracetam, 104–105
Pivotal Behavior Model of Developmental Learning, 218
pivotal behaviors, 218
pivotal response training, 18
Play and Learning Strategies Program (PALS), 211
polyphenols, 62–64
positive reinforcement, 157
Pre-elementary Education Longitudinal Study (PEELS), US, 25
prefrontal cortex, 105–106
prelanguage. See also language first year, 176–177
intervention, 177
premature baby care, 10–11
preschool education, 20–22
inclusion issues, 21
special education, 211–212
US national data, 25–26
PRMT2 gene, 88–89
professional qualification, 9
Project EDGE, Minnesota, 17
proteomic studies, 90–91, 92
Prozac, neurogenesis and, 60
psychotropic medications, 106
concerns, 106–108
purine levels, 86–87
pyramidal neurons, 103
quality issues, 9–10
reach-and-grasp development, 154–155, 192–193
referential development, 178
relationship-focused intervention, 24, 213–214
research
El efficacy studies, 17–19
genetic research, 6, 10
translation into practice, 7
responsive interactions, 9, See also Parenting Model of Child Development
importance of, 217–220
responsive teaching, 213–214
risperidone, 107
rivastigmine, 101, 102–103, 123
trials in children, 102–103
RNA interference, 56–57, 224–225
Scales of Independent Behavior-Revised (SIB-R), 43
school readiness, 20–21
child characteristics impacting on, 22–23
seizure disorders, 122
selenium supplementation, 119
sensory defects, 118
short stature, 121–122
short-term memory, 164–166, 168, 170–171, See also memory development, 52
training, 178
verbal, 40
sim2 (single minded) gene, 55
SLC5A3 gene, 90
sleep problems, 122
small interfering RNAs (siRNAs), 56–57, 224–225
social support, 4
sonic hedgehog pathway, 58–59
specificity, 8
speech, 182, See also language impact of early auditory deprivation, 185–187
higher-level speech processing abilities, 186–187
intervention implications, 187
phonological difficulties, 186
importance of early speech perception, 184–185
phonological difficulties, 182–183
auditory deprivation and, 186
inconsistency and non-developmental errors, 182–183
speech perception, 184
speech production, 183
uneven profile, 182
synaptic plasticity, 74–76
environmental enrichment effect, 75–76
synaptic vesicle (SV) trafficking, 73
environmental enrichment effects, 75–76
synaptophysin, 75, 76
syndrome specificity, 8
syntax, 179
Tc1 mouse model, 74
teamwork, 9
temperament, 191–192
Test for the Reception of Grammar (TROG), 42
tetralogy of Fallot (TOF), 134
training, 9
Transactional Model, 4
transient leukemia, 120–121
Ts16 mouse model, 73
Ts1Cje mouse model, 73
Ts1Rhr mouse model, 73
Ts65Dn mouse model, 73, 90,109–110
enriched environment effects, 74
neurogenesis, 76–78
Index

proteins encoded by triplicated genes, 78–80
synaptic plasticity, 74–76
TsYah mouse model, 73–74
ventricular septal defect (VSD), 133–134
doubly-committed subarterial, 133
muscular, 133
perimembranous, 133
pathology, 129–131

verbal short-term memory, 40
very low birth weight babies, 10–11
viral vectors, 226
visual–spatial sketchpad, 165, 166
vitamin deficiencies, 124
vitamin E, 89
vocabulary development, 178–179
voxel-based morphometry (VBM), 169

walking, 155–156
Werner’s model of development, 143–144
Williams syndrome (WS), 164
work–break routine, 201–202
working memory (WM), 165
xamoterol, 37
Zigler’s developmental model, 145–146
zinc supplementation, 119