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Two central problems in computer science are P versus NP and the complexity of matrix
multiplication. The orst is also a leading candidate for the greatest unsolved problem in
mathematics. The second is of enormous practical and theoretical importance. Algebraic
geometry and representation theory provide fertile ground for advancing work on these
problems and others in complexity.

This introduction to algebraic complexity theory for graduate students and
researchers in computer science and mathematics features concrete examples that
demonstrate the application of geometric techniques to real-world problems. Written by
a noted expert in the oeld, it offers numerous open questions to motivate future research.
Complexity theory has rejuvenated classical geometric questions and brought different
areas of mathematics together in new ways. This book shows the beautiful, interesting,
and important questions that have arisen as a result.

J.M. Landsberg is Professor of Mathematics at Texas A&MUniversity. He is a leading
geometer working in complexity theory, with research interests in differential geome-
try, algebraic geometry, representation theory, the geometry and application of tensors,
and, most recently, algebraic complexity theory. The author of more than 60 research
articles and 4 books, he has given numerous intensive research courses and lectures
at international conferences. He co-organized the Fall 2014 semester <Algorithms and
Complexity in Algebraic Geometry= at the Simons Institute for the Theory of Comput-
ing and served as the UC Berkeley Chancellor9s professor during the program.
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Preface

This book describes recent applications of algebraic geometry and representa-
tion theory to complexity theory. I focus on two central problems: the complex-
ity of matrix multiplication and Valiant9s algebraic variants of P versus NP.
I have attempted to make this book accessible to both computer scientists and

geometers and the exposition as self-contained as possible. Two goals are to
convince computer scientists of the utility of techniques from algebraic geom-
etry and representation theory and to show geometers beautiful, interesting, and
important geometry questions arising in complexity theory.
Computer scientists have made extensive use combinatorics, graph theory,

probability, and linear algebra. I hope to show that even elementary techniques
from algebraic geometry and representation theory can substantially advance
the search for lower bounds, and even upper bounds, in complexity theory. I
believe such additional mathematics will be necessary for further advances on
questions discussed in this book as well as related complexity problems. Tech-
niques are introduced as needed to deal with concrete problems.

For geometers, I expect that complexity theory will be as good a source
for questions in algebraic geometry as has been modern physics. Recent work
has indicated that subjects such as Fulton-McPherson intersection theory, the
Hilbert scheme of points, and the Kempf-Weyman method for computing syzy-
gies all have something to add to complexity theory. In addition, complex-
ity theory has a way of rejuvenating old questions that had been nearly for-
gotten but remain beautiful and intriguing: questions of Hadamard, Darboux,
Lüroth, and the classical Italian school. At the same time, complexity theory
has brought different areas of mathematics together in new ways: for instance,
combinatorics, representation theory, and algebraic geometry all play a role in
understanding the coordinate ring of the orbit closure of the determinant.

ix

www.cambridge.org/9781107199231
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-19923-1 — Geometry and Complexity Theory
J. M. Landsberg
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Preface

This book evolved from several classes I have given on the subject: a spring
2013 semester course at Texas A&M; summer courses at Scuola Matematica
Inter-universitaria, Cortona (July 2012), CIRM, Trento (June 2014), theUniver-
sity of Chicago (IMA sponsored) (July 2014), KAIST, Deajeon (August 2015),
andObergurgul, Austria (September 2016); a fall 2016 semester course at Texas
A&M; and, most importantly, a fall 2014 semester course at the University
of California, Berkeley, as part of the semester-long program Algorithms and
Complexity in Algebraic Geometry at the Simons Institute for the Theory of
Computing.
Since I began writing this book, even since the orst draft was completed in

fall 2014, the research landscape has shifted considerably: the two paths toward
Valiant9s conjecture that had been considered the most viable have been shown
to be unworkable, at least as originally proposed. On the other hand, there have
been signiocant advances in our understanding of the matrix multiplication ten-
sor. The contents of this book are the state of the art as of January 2017.

Prerequisites

Chapters 138 only require a solid background in linear algebra and a willing-
ness to accept several basic results from algebraic geometry that are stated as
needed. Nothing beyond [Sha07] is used in these chapters. Because of the text
[Lan12], I am sometimes terse regarding basic properties of tensors and mul-
tilinear algebra. Chapters 9 and 10 contain several sections requiring further
background.

Layout

All theorems, propositions, remarks, examples, etc., are numbered together
within each section; for example, Theorem 1.3.2 is the second numbered item in
Section 1.3. Equations are numbered sequentially within each chapter. I have
included hints for selected exercises, those marked with the symbol � at the
end, which is meant to be suggestive of a life preserver. Exercises are marked
with (1), (2), or (3), indicating the level of difoculty. Important exercises are
also marked with an exclamation mark, sometimes even two, e.g., (1!!) is an
exercise that is easy and very important.
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