The theory of Toeplitz matrices and operators is a vital part of modern analysis, with applications to moment problems, orthogonal polynomials, approximation theory, integral equations, bounded- and vanishing-mean oscillations, and asymptotic methods for large structured determinants, among others.

This friendly introduction to Toeplitz theory covers the classical spectral theory of Toeplitz forms and Wiener–Hopf integral operators and their manifestations throughout modern functional analysis. Numerous solved exercises illustrate the results of the main text and introduce subsidiary topics, including recent developments. Each chapter ends with a survey of the present state of the theory, making this a valuable work for the beginning graduate student and established researcher alike. With biographies of the principal creators of the theory and historical context also woven into the text, this book is a complete source on Toeplitz theory.

Nikolai Nikolski is Professor Emeritus at the Université de Bordeaux, working primarily in analysis and operator theory. He has been co-editor of four international journals, editor of more than 15 books, and has published numerous articles and research monographs. He has also supervised 26 Ph.D. students, including three Salem Prize winners. Professor Nikolski was elected Fellow of the American Mathematical Society (AMS) in 2013 and received the Prix Ampère of the French Academy of Sciences in 2010.
Toepplitz Matrices and Operators

NIKOLAÏ NIKOLSKI

Université de Bordeaux

Translated by
DANIELLE GIBBONS
GREG GIBBONS
Destroy your manuscript,
but save whatever you have inscribed in the margin
out of boredom, out of helplessness, and, as it were, in a dream.
These secondary and involuntary creations of your fantasy will not be lost in the world.

The Egyptian Stamp (1928)
Osip Mandelstam
Contents

Preface xiii
Acknowledgments for the English Edition xvii
Acknowledgments for the French Edition xvii
List of Biographies xix
List of Figures xxii

1 Why Toeplitz–Hankel? Motivations and Panorama 1

1.1 Latent Maturation: The RHP and SIOs 1

1.1.1 Nineteenth Century: Riemann and Volterra 1

1.1.2 Twentieth Century: David Hilbert 6

1.1.3 George Birkhoff and Henri Poincaré 12

1.2 The Emergence of the Subject: Otto Toeplitz 16

1.3 The Classical Period 20

1.3.1 Gábor Szegő’s Revolution 20

1.3.2 The Wiener and Hopf Integral Operators 21

1.3.3 A New Challenge Arises: The Lenz–Ising Model 23

1.4 The Golden Age and the Drama of Ideas 23

1.4.1 Solomon Mikhlin and the Symbolic Calculus of the SIO 23

1.4.2 The School of Mark Krein 24

1.4.3 Lars Onsager, and Szegő Again 24

1.4.4 Rosenblum, Devinatz, and the Drama of Coincidence 25

1.5 The Parallel/Complementary World of Hankel, and the Post-modern Epoch of the Ha-plitz Operators 26

1.6 Notes and Remarks 30
Contents

2 **Hankel and Toeplitz: Sibling Operators on the Space H^2**
2.1 Three Definitions of Toeplitz Operators: The Symbol
2.1.1 The Spaces ℓ^2, L^2, and H^2
2.1.2 Shift (or Translation) Operators
2.1.3 Matrix of an Operator
2.1.4 Toeplitz Matrices
2.1.5 Toeplitz Operators
2.1.6 Comment: Three Equivalent Definitions of Toeplitz Operators
2.1.7 Examples
2.2 Hankel Operators and Their Symbols
2.2.1 Hankel Matrices
2.2.2 Hankel Operators
2.3 Exercises
2.3.0 Basic Exercises: Hilbert and Hardy Spaces, and Their Operators
2.3.1 Toeplitz Operators, the Berezin Transform, and the RKT (Reproducing Kernel Thesis)
2.3.2 The Natural Projection on T_{L^p}
2.3.3 Toeplitz Operators on $L^p(Z_+)$ and $H^p(\mathbb{T})$
2.3.4 The Space BMO(\mathbb{T}), the RKT, and the Garsia Norm
2.3.5 Compact Hankel Operators and the Spaces $VMO(\mathbb{T})$ and $QC(\mathbb{T})$
2.3.6 Finite Rank Hankel Operators (Kronecker, 1881)
2.3.7 Hilbert–Schmidt Hankel Operators
2.3.8 The Original Proof of Sarason’s Lemma 2.2.7 (Sarason, 1967)
2.3.9 Compactness of the Commutators $[P_+, M_\phi]$ (Power, 1980)
2.3.10 The Natural Projection on Hank $(\ell^2(Z_+))$
2.3.11 Vector-Valued Toeplitz Operators
2.3.12 Some Algebraic Properties of Toeplitz/Hankel Operators
2.4 Notes and Remarks

3 **H^2 Theory of Toeplitz Operators**
3.1 Fredholm Theory of the Toeplitz Algebra
3.1.1 The Role of Homotopy
Contents

3.2 The Simonenko Local Principle
3.2.1 Proof of Theorem 3.2.1 (Sarason, 1973) 115
3.2.2 Examples 116

3.3 The Principal Criterion of Invertibility
3.3.1 Wiener–Hopf Factorization 124
3.3.2 Upper Bounds for $\|T^{-1}\|$ 125
3.3.3 A Comment on Wiener–Hopf Factorization 126
3.3.4 First Consequences of the Principal Criterion 128

3.4 Exercises
3.4.0 Basic Exercises: Integral and Multiplication Operators 129
3.4.1 Spectral Inclusions 137
3.4.2 Holomorphic Symbols $\varphi \in H^\infty$ 138
3.4.3 Fredholm Theory for the Algebra $\text{alg} T_{H^\infty+C(\mathbb{T})}$ 139
3.4.4 $H^\infty+C(\mathbb{T})$ is the Minimal Algebra Containing H^∞ (Hoffman and Singer, 1960) 141
3.4.5 Fredholm Theory for the Algebra $\text{alg} T_{P(\mathbb{T})}$ 142
3.4.6 A Simplified Local Principle (Simonenko, 1960) 143
3.4.7 Fred(H^2) and Local Sectoriality 143
3.4.8 Multipliers Preserving Fred(H^2) 145
3.4.9 The Toeplitz Algebra $\text{alg} T_{L^\infty(\mathbb{T})}$: A Necessary Condition 145
3.4.10 Hankel Operators from the Toeplitz Algebra $\text{alg} T_{L^p(\mathbb{T})}$ 145
3.4.11 On the Equation $T_{\varphi} f = 1$ (Another Proof of Theorem 3.3.8) 146
3.4.12 Is There a Regularizer of T_{φ} in $T_{L^p(\mathbb{T})}$ and/or in $\text{alg} T_{L^p(\mathbb{T})}$? 146
3.4.13 Fredholm Theory for Almost Periodic Symbols 149
3.4.14 Fredholm Operators T_{φ} with Matrix-Valued Symbols 151
3.4.15 “Truncated” Toeplitz Operators 153

3.5 Notes and Remarks 155

4 Applications: Riemann–Hilbert, Wiener–Hopf, Singular Integral Operators (SIO) 178
4.1 The Riemann–Hilbert Problem and the SIO 178
4.1.1 The RHP and Toeplitz Operators 179
4.1.2 The Hilbert Transform \mathbb{H} and SIOs 180
4.1.3 Comment: Operators and Singular Integral Equations 186
4.2 Toeplitz on $H^2(\mathbb{C}^+)$ and Wiener–Hopf on $L^2(\mathbb{R}^+)$

4.2.1 On the Space $H^2(\mathbb{C}^+)$: The Paley–Wiener Theorem

4.2.2 Pseudo-Measures and Wiener–Hopf Operators

4.2.3 Transfer of Spectral Theory to Wiener–Hopf Operators

4.2.4 Classical Wiener–Hopf Equations and Operators

4.2.5 Finite Difference Operators

4.2.6 Operators W_μ with Causal Measures μ

4.2.7 The Hilbert SIO on $L^2(\mathbb{R}^+)$

4.3 The Matrix of W_k in the Laguerre ONB

4.4 Wiener–Hopf Operators on a Finite Interval

4.4.1 Determination of the Symbol

4.4.2 W_k^a of Rank 1

4.4.3 Bounding the Norm $\|W_k^a\|$ by the Best Extension

4.4.4 Example: An Operator W_k^a Bounded but Without Symbol $k \in \mathcal{PM}(\mathbb{R})$ With Support in $[-a, a]$

4.4.5 Example: The Volterra Operator

4.5 Exercises

4.5.0 Basic Exercises: From the Hilbert Singular Operator to the Riesz Transforms (“Method of Rotation”)

4.5.1 Sokhotsky–Plemelj Formulas

4.5.2 Systems of Equations and Matrix Wiener–Hopf Operators

4.5.3 Hankel Operators on $H^2(\mathbb{C}^+)$ and $L^2(\mathbb{R}^+)$

4.5.4 Laguerre Polynomials

4.5.5 Compact W_k^a Operators

4.6 Notes and Remarks

5 Toeplitz Matrices: Moments, Spectra, Asymptotics

5.1 Positive Definite Toeplitz Matrices, Moment Problems, and Orthogonal Polynomials

5.1.1 Proof of Theorem 5.1.1 (Following Stone, 1932)

5.1.2 The Truncated TMP: Extension to a Positive Definite Sequence

5.1.3 Truncated Toeplitz Operators

5.1.4 The Operator Approach to Orthogonal Polynomials (Akhiezer and Krein, 1938)

5.1.5 The Truncated TMP: The Approach of Carathéodory (1911) and Szegő (1954)
Contents

5.2 Norm of a Toeplitz Matrix
5.2.1 Comments and Special Cases
5.2.2 Proof of Theorem 5.2.1
5.2.3 Proof of Lemma 5.2.2
5.3 Inversion of a Toeplitz Matrix
5.3.1 Two Matrix Inversion Theorems
5.3.2 Comments
5.4 Inversion of Toeplitz Operators by the Finite Section Method
5.4.1 The Finite Section Method
5.4.2 Theorem (IFSM for Toeplitz Operators)
5.4.3 Comment: A Counter-Example of Treil (1987)
5.5 Theory of Circulants
5.5.1 Cyclic Shift
5.5.2 Definition of Circulants
5.5.3 Basic Properties
5.5.4 Spectrum and Diagonalization of Circulants
5.5.5 An Inequality of Wirtinger (1904)
5.6 Toeplitz Determinants and Asymptotics of Spectra
5.6.1 The First Szegő Asymptotic Formula (1915)
5.6.2 Equidistribution of Sequences, after Weyl (1910)
5.6.3 Asymptotic Distribution of Spectra
5.6.4 Asymptotic Distribution Meets the Circulants
5.6.5 The Second Term of the Szegő Asymptotics
5.6.6 A Formula for Determinant and Trace
5.6.7 Some Formulas for Trace \(T_{\phi, T_{\psi}} \) (Following Helton and Howe, and Berger and Shaw, 1973)
5.6.8 Conclusion
5.7 Exercises
5.7.0 Basic Exercises: Volumes, Distances, and Approximations
5.7.1 Positive Definite Sequences and Holomorphic Functions
5.7.2 Semi-Commutators of Finite Toeplitz Matrices
5.7.3 Inversion of Wiener–Hopf Operators by the Finite Section Method
5.7.4 When the Second Szegő Asymptotics Stabilize (Szegő, 1952)
5.7.5 Cauchy Determinants (1841)

© in this web service Cambridge University Press
www.cambridge.org
Contents

5.7.6 The Second Term of the Asymptotic Distribution of Spectra (Libkind (1972), Widom (1976)) 306
5.7.7 The Helton and Howe Formula of Lemma 5.6.9 306
5.7.8 The Formula of Borodin and Okounkov (2000) (and Geronimo and Case (1979)) 307

5.8 Notes and Remarks 308

Appendix A Key Notions of Banach Spaces 329
Appendix B Key Notions of Hilbert Spaces 333
Appendix C An Overview of Banach Algebras 339
Appendix D Linear Operators 348
Appendix E Fredholm Operators and the Noether Index 359
Appendix F A Brief Overview of Hardy Spaces 387

References 395
Notation 416
Index 419
Preface

Par ma fois! . . . je dis de la prose
sans que j'en susse rien, et je vous suis
le plus obligé du monde de m'avoir appris cela.

Good heavens! . . . I have been speaking prose
without knowing anything about it, and I am
much obliged to you for having taught me that.

Monsieur Jourdain (1670)

As in Molière’s *Le Bourgeois gentilhomme* with his prose, we often speak the
language of Toeplitz and Hankel matrices/operators without realising it; but it
would be better if we did it knowingly and in a technically correct manner.

The introduction to Toeplitz operators and matrices proposed in this text
concerns the matrix and integral transforms defined by a “kernel” (a matrix or
a function of two variables) with constant diagonals. In particular, a sequence
of complex numbers \((c_k)_{k \in \mathbb{Z}}\) defines a **Toeplitz matrix**

\[
T = \begin{pmatrix}
c_0 & c_{-1} & c_{-2} & c_{-3} & \ldots & \ldots \\
c_1 & c_0 & c_{-1} & c_{-2} & \ldots & \ldots \\
c_2 & c_1 & c_0 & c_{-1} & \ldots & \ldots \\
c_3 & c_2 & c_1 & c_0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\
\end{pmatrix}
\]

and a **Hankel matrix**

\[
\begin{pmatrix}
c_0 & c_{-1} & c_{-2} & c_{-3} & \ldots & \ldots \\
c_1 & c_0 & c_{-1} & c_{-2} & \ldots & \ldots \\
c_2 & c_1 & c_0 & c_{-1} & \ldots & \ldots \\
c_3 & c_2 & c_1 & c_0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\
\end{pmatrix}
\]
An operator (mapping) that has a Toeplitz (respectively, Hankel) matrix with respect to a basis is called a Toeplitz (respectively, Hankel) operator. For deep reasons (deep in two senses: hidden deep beneath the surface of mathematical facts, and deep in terms of their power), these transforms have played an exceptional role in contemporary mathematics. The set of problems and the basis of the techniques associated with these transforms were formulated by such giants of mathematics as Bernhard Riemann, David Hilbert, Norbert Wiener, George Birkhoff, and Otto Toeplitz.

This book is an introduction to a highly dynamic domain of modern analysis based on the techniques of Hardy spaces. To make it independent we provide a thorough overview of these spaces in Appendix F, and each time we reiterate the principal facts of Hardy theory immediately before their use. A complete presentation of Hardy spaces, the closest in style to the present work, can be found in Espaces de Hardy (Editions Belin, 2012) by the same author, also translated as Hardy Spaces (Cambridge University Press, 2019). The current text, like the first, corresponds to a course at Master’s level, given several times at the Université de Bordeaux during the years 1991–2011. Numerous resolved exercises show how the techniques developed can be put into action and extend the scope of the theory.

The somewhat hidden aspect of this text is the following. It is devoted to the study of integral and matrix operators with kernels (or matrices) depending on the difference of arguments, which seems, at first glance, to be a rather specialized subject. But a second glance leads to the discovery that many classical results of analysis and its applications rely directly on the operators known as “Toeplitz” and their “siblings,” the “Hankel” operators, which are so intimately associated with those of Toeplitz that the pair are often referred to as the “Ha-plitz operators/matrices.” This area of analysis includes Wiener’s filtering problems, the statistical physics of gases, diverse moment problems, ergodic properties of random processes, complex interpolation, etc. The goal of this text is to present the diversity of Toeplitz/Hankel techniques and to draw conclusions from the “inexplicable efficacy” of Toeplitz (and Hankel) operators.

The prerequisites are standard courses on functional analysis (or Hilbert/Banach spaces) along with a few elements of complex analysis and a certain
familiarity with Hardy spaces. A summary/overview of all these basic notions (as well as the notation used) can be found in the Appendices at the end of the book.

More precisely, Appendices A–D provide the definitions and notation of basic analysis (at undergraduate level), whereas Appendix E provides a short but complete presentation (including proofs) of a less well-known theory of functional analysis – that of “Fredholm operators.” Appendix F is a summary of the theory of Hardy spaces; the text by the same author on this subject, Espaces de Hardy (Hardy Spaces), is cited here as [Nikolski, 2019].

Within the text, there are also numerous historical references – on the subjects developed, their creators, and their diverse situations. We only hope that these “asides” will help the reader to better appreciate the mathematical methods presented and their efficacy, as well as the dramaturgy of mathematics (and mathematical life).

Each chapter contains exercises and their solutions (155 in total) at different levels. To use a musical metaphor of Israel Glazman and Yuri Lyubich [Glazman and Lyubich, 1969], they range from exercises on open strings up to virtuoso pieces using double harmonics (“double flageolet tones”). In particular, the series of exercises in each chapter (with the exception of Chapter 1) begin with Basic Exercises accessible at Master’s level or for preparing students for the French agrégations exams (a competitive exam to attain the highest teaching diploma).

Each chapter concludes with a section entitled “Notes and Remarks,” which discusses the history of the subjects treated, certain recent results, and (on occasion) some open questions; this discussion is destined primarily for the more experienced reader. For an appreciation of this type of text in a poetic form, see the maxim on page v, due to Osip Mandelstam, the greatest Russian poet of the twentieth century.

Chapter 1 plays the role of a detailed but informal introduction: a description of sources of inspiration for the (future) theory, the principal components of its current state, as well as a panorama of its applications and the history of its evolution during the twentieth century.

Chapter 2 establishes the basic contours of the theory of Hankel/Toeplitz operators on the circle $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

Chapter 3 is devoted to the spectral theory of Toeplitz operators.

Chapter 4 explains the unitary equivalence of the theory on \mathbb{T} with the classical theory of Wiener–Hopf equations on \mathbb{R}, as well as the Riemann–Hilbert problem.
Chapter 5 treats some properties of finite Toeplitz matrices (inversion, links with trigonometric moments, the approximation of infinite Toeplitz matrices, and the asymptotic distribution of spectra).

The reader will soon become aware that this handbook constitutes a rather elementary introduction to Toeplitz matrices and operators based on the theory of Hardy spaces. It can thus be regarded as a source of basic knowledge (a “First elements of . . .”). Nevertheless, in principle, a student reaching the end of this book will be capable of embarking upon a project of independent research (the author can affirm this by positive experiences with numerous students). For such an endeavor, the aid of experts will be needed: this can be found in the dozens of existing monographs devoted to Toeplitz operators and matrices, to Hardy spaces, and to the “hard analysis” that was developed around them. Some of this torrent of literature is mentioned in the “Notes and Remarks” sections.

Good luck!
Acknowledgments

Acknowledgments for the English Edition

The author warmly thanks the translators Danièle and Greg Gibbons for their high-quality work, for thorough attention to all shades of meaning of the French text, and for friendly collaboration at all stages of the work.

The author is also sincerely grateful to Cambridge University Press for including the book in this prestigious series, and to the entire editorial team for highly professional preparation of the manuscript and for patience during his numerous hold-ups due to varying circumstances.

Élancourt,
February 4, 2019

Acknowledgments for the French Edition

The work on the final draft of this text was in part supported by the research project “Spaces of Analytic Functions and Singular Integrals” of the University of St. Petersburg, RSF Grant 14-41-00010.

I am truly grateful to Éric Charpentier, my friend and colleague at the Université de Bordeaux, who – as with my preceding book (Espaces de Hardy, Belin, 2012) – sacrificed much of his time for a thorough and effective review of the complete text. Without his invaluable and generous aid the text would never have seen the light of day.

I warmly thank Albrecht Böttcher, the great expert in the Toeplitz domain, who took the time to read the manuscript and whose profound and nourishing comments aided me in polishing the text. I am also beholden to several of my
colleagues for *ad hoc* consultations on the subjects of the book, and especially to Anton Baranov of St. Petersburg for his remarks and suggestions concerning the editing.

I also address my cordial thanks to Gilles Godefroy (Institut de Mathématiques de Jussieu, Université Paris VI) who, at a delicate moment of the project, rescued it from a dead end brought on by circumstances beyond my control, by recommending the publisher Calvage et Mounet. I would of course also like to warmly thank the publisher (in particular Alain Debreil and Rachid Mneimné) for the painstaking and highly qualified attention they paid to the present manuscript, as well as for the friendly atmosphere that marked our collaboration on this occasion.

And finally, but foremost, I think of my large family – Pascale, Laure, Ivan, Jeanne, and Alekséï – who stoically supported my prolonged isolation while I struggled with my text, and who encouraged me in my moments of doubt.

Élancourt,
November 2016
Biographies

<table>
<thead>
<tr>
<th>Biographies</th>
<th>Page(s)</th>
<th>Biographies</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernhard Riemann</td>
<td>3</td>
<td>Igor Simonenko</td>
<td>113</td>
</tr>
<tr>
<td>Vito Volterra</td>
<td>5</td>
<td>Carl Runge</td>
<td>123</td>
</tr>
<tr>
<td>David Hilbert</td>
<td>7</td>
<td>George Birkhoff</td>
<td>170</td>
</tr>
<tr>
<td>Henri Poincaré</td>
<td>12</td>
<td>Nikolai Luzin</td>
<td>184</td>
</tr>
<tr>
<td>Otto Toeplitz</td>
<td>17</td>
<td>Norbert Wiener</td>
<td>192</td>
</tr>
<tr>
<td>Hermann Hankel</td>
<td>28</td>
<td>Eberhard Hopf</td>
<td>194</td>
</tr>
<tr>
<td>Marie Hankel(-Dippe)</td>
<td>28</td>
<td>Edmond Laguerre</td>
<td>200</td>
</tr>
<tr>
<td>Zeev Nehari</td>
<td>44</td>
<td>Josip Plemelj</td>
<td>212</td>
</tr>
<tr>
<td>Mark Krein</td>
<td>48</td>
<td>Constantin Carathéodory</td>
<td>232</td>
</tr>
<tr>
<td>Felix Berezin</td>
<td>60</td>
<td>Gábor Szegő</td>
<td>244</td>
</tr>
<tr>
<td>Leopold Kronecker</td>
<td>71</td>
<td>Hermann Weyl</td>
<td>272</td>
</tr>
<tr>
<td>Solomon Mikhlin</td>
<td>78</td>
<td>Israel Gelfand</td>
<td>342</td>
</tr>
<tr>
<td>Paul Halmos</td>
<td>83</td>
<td>Erik Ivar Fredholm</td>
<td>360</td>
</tr>
<tr>
<td>Gaston Julia</td>
<td>89</td>
<td>Frederick Atkinson</td>
<td>366</td>
</tr>
<tr>
<td>Augustin Cauchy</td>
<td>104</td>
<td>Fritz Noether</td>
<td>378</td>
</tr>
<tr>
<td>Israel Gohberg</td>
<td>108</td>
<td>Felix Hausdorff</td>
<td>381</td>
</tr>
</tbody>
</table>
Figures

Bernhard Riemann (Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO): https://opc.mfo.de/) page 2

A self-caricature by Lewis Carroll (Culture Club/Hulton Archive/Getty Images) 3

Vito Volterra 5

David Hilbert (MFO) 7

Henri Poincaré 12

Otto Toeplitz (MFO) 17

Hermann Hankel 28

Figure 2.1 The function $\frac{r(\pi - |r|)}{|r|}$. 40

Zeev Nehari (I Have a Photographic Memory by Paul R. Halmos; ©1987 American Mathematical Society) 44

Mark Grigorievich Krein (Ukraine Mathematical Society: www.imath.kiev.ua) 48

Felix A. Berezin (Courtesy of Elena Karpel, personal archive) 60

Leopold Kronecker (MacTutor History of Mathematics Archive: www-history.mcs.st-and.ac.uk) 71

Figure 2.2 The matrix A of the Hint of §2.3.10(a) 74

Solomon Mikhlin (Vladimir Maz’ya and Tatyana Shaposhnikova, uploaded by Daniele TampieriCC BY-SA 3.0: https://en.wikipedia.org/wiki/Solomon_Mikhlin) 78

Paul Halmos (MFO) 83

Gaston Julia in later years (MacTutor History of Mathematics Archive) 89

Gaston Julia in the French army during WWI (MacTutor History of Mathematics Archive) 90

Augustin Louis Cauchy (MacTutor History of Mathematics Archive) 104

xxi
List of Figures

Israel Gohberg (MacTutor History of Mathematics Archive) 108
Igor Simonenko (Ivleva.n.s/CC BY-SA 4.0: https://en.wikipedia.org/wiki/Igor_Simonenko) 113
Figure 3.1 The disk $D(\lambda, R)$, $\lambda \to \infty$ 118
Figure 3.2 The disk $\overline{D}(1, d)$ of Lemma 3.3.4 120
Figure 3.3 The domain $\Omega(r, s, \alpha)$ of Lemma 3.3.4 120
Figure 3.4 The disk $\overline{D}(\lambda, R)$ and the domain $\Omega(r, s, \alpha)$ of Lemma 3.3.4 121
Carl Runge 123
George David Birkhoff (MFO) 170
Nikolaï N. Luzin (MacTutor History of Mathematics Archive) 184
Norbert Wiener (Bettmann/Bettmann/Getty Images) 192
Eberhard Hopf (MacTutor History of Mathematics Archive) 194
Edmond N. Laggerre 200
Josip Plemelj (MacTutor History of Mathematics Archive) 212
Constantin Carathéodory (MacTutor History of Mathematics Archive) 232
Great Fire of Smyrna, 1922 233
Gábor Szegő (MacTutor History of Mathematics Archive) 244
Figure 5.1 A banded Toeplitz matrix. The gray is a Toeplitz portion $\hat{\phi}(k - j)$, $0 \leq j, k \leq n$; the white is zero. 251
Hermann Weyl (MFO) 272
Israel Gelfand (Photo: Nick Romanenko, Copyright Rutgers, The State University of New Jersey) 342
Eric Ivar Fredholm (MacTutor History of Mathematics Archive) 360
Frederick V. Atkinson (MacTutor History of Mathematics Archive) 366
Fritz Noether (MFO) 378
Fritz Noether with Emmy Noether (MFO) 379
Oryol Prison, Russia 380
Felix Hausdorff 381