
Cambridge University Press & Assessment
978-1-107-19788-6 — Stars and Stellar Processes
Mike Guidry
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

PART I

STELLAR STRUCTURE

www.cambridge.org/9781107197886
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-19788-6 — Stars and Stellar Processes
Mike Guidry
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Some Properties of Stars

The fundamental building blocks of visible matter in the Universe are stars.1 This chapter

will discuss some of the basic properties of stars such as luminosity, radius, mass, color,

and temperature as a prelude to a more detailed exploration of their structure and evolution.

Let’s begin with a discussion of their most obvious characteristic: that they are visible in

our sky, and that even casual observation indicates that there is a substantial variation in

brightness between different stars.

1.1 Luminosities andMagnitudes

The apparent brightness of a star is a combination of an intrinsic brightness, which is

related to the internal structure of the star, and the effect of distance, since the intensity

falls off as the square of the distance. To make much headway in understanding stars

these two factors must be separated. This requires a direct or indirect measurement of

the distance to the star, or comparison of stars that are known to be at equivalent distances

(even if the distance itself is not known). Measuring the distance to stars is difficult and

can be accomplished directly only for more nearby stars. The effect of the distance scale

can be factored out if stars are compared that are members of physical (gravitationally

bound) groupings called clusters, which come in two types: open or galactic clusters

containing tens to hundreds of stars that are found preferentially in the plane of the

galaxy, and globular clusters containing as many as hundreds of thousands of stars that

are found preferentially in the galactic halo. Comparison of stars in a cluster makes it

certain that they lie at almost the same distance. From the variation in brightness for stars

in clusters, it is found that stellar luminosities L vary over some 10 orders of magnitude,

10−4L� < L < 106L�, where L� represents the luminosity of the Sun.

1.1.1 Stellar Luminosities

A flux is defined to be the amount of energy crossing a unit surface area per unit time.

The luminosity L of a star is the power required to sustain the total energy flux across a

1 Chapters 1 and 2 review material normally covered in introductory astronomy courses. For readers without

an introductory astronomy background they serve as an overview of concepts that will be important for later

discussion. These chapters may be skipped if you are familiar with the basic properties of stars and with the

relationship of luminosity to surface temperature for stars captured in the Hertzsprung–Russell diagram.
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4 Some Properties of Stars

Box 1.1 Ejection of Mass by Stars

The presence of the solar wind in our own Solar System suggests that all stars lose at least some mass
continuously. However, many stars appear to have periods of very large mass loss early in their lives (T Tauri
winds from stars just settling to the main sequence and strong mass �ows from young, massive main
sequence stars) and late in their lives (red giantwinds, planetary nebula, and related phenomena). In addition,
explosions such as novae and supernovae associated with dead and dying stars eject mass into interstellar
space, sometimes in large amounts.

Systematics of white dwarf populations give generic observational evidence that prior to the white dwarf
stage many stars must undergo substantial mass loss [176]. In the solar neighborhood white dwarfs with
accurately determined masses∼ 0.4M� are found. Since the study of stellar evolution in clusters indicates
that there has been insu�cient time for stars formed with that little mass to have evolved to the white dwarf
stage, these white dwarfs must have come frommain sequence stars that have shed considerable mass since
their formation. In addition, direct observation indicates the presence of white dwarfs in some clusters with
masses less than the main sequence stars in the cluster, again indicating that they must have evolved from
stars that underwent considerable mass loss in their evolution.

closed surface surrounding the star. It has units of energy per unit time and is a sum of

three primary components, L = Lγ + lν + L	m, which are associated with emission of

photons, emission of neutrinos, and surface mass loss, respectively.

Photon emission: The total luminosity associated with the photon flux is Lγ . This flux

is emitted primarily from the thin photosphere at the surface of the star; it is the principal

luminosity source for most young stars, and is most often what is meant when speaking

loosely of stellar luminosity.

Neutrino emission: The quantity Lν is the total luminosity associated with neutrino

emission from the star. Cooling by neutrino emission becomes important in massive stars

late in their life and the energy of a core collapse supernova, which represents the death of

a massive star, is radiated primarily in the form of neutrinos.

Surface mass loss: Most stars have mechanisms by which they lose mass from their

surfaces (see Box 1.1). Since ejected matter must be lifted in a gravitational field, mass

loss subtracts from the energy budget of the star and is a source of luminosity according to

our general definition. The term L	m accounts for this source.

1.1.2 Photon Luminosities

Henceforth, unless otherwise specified, by “luminosity” we will mean the photon luminos-

ity. For a spherical star the luminosity is given by

Lγ = 4πR2

∫

∞

0

Fλ dλ, (1.1)

where Fλ is the net outgoing energy flux at wavelength λ and R is the radius. The

corresponding flux fλ detected at the surface of the Earth is reduced according to the

inverse square law,
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5 1.1 Luminosities and Magnitudes

fλ = (R/r)2Fλ, (1.2)

where r is the distance of the star from Earth. (Generally, the observed flux at the surface

of the Earth must be corrected for absorption in the interstellar medium and in the Earth’s

atmosphere; those corrections will be discussed below.) Therefore, FλR
2

= fλr
2, and a

measurement of fλr
2 at all λ determines FλR

2 at all wavelengths and hence the photon

luminosity Lγ through Eq. (1.1). The most difficult part is likely to be the determination

of the distance r , unless the star is nearby so that trigonometric methods may be used to

measure the distance with confidence.

1.1.3 Apparent Magnitudes

It is useful to express actual and apparent brightness in terms of logarithmic magnitude

scales. Two general classes of magnitudes may be distinguished: apparent magnitudes,

which are associated with the apparent brightness of objects in our sky, and absolute

magnitudes, which define brightness with the dependence on distance scales factored out.

Apparent magnitudes will be discussed in this section and absolute magnitudes will be

discussed in Section 1.1.5 below.

The apparent magnitude m is defined such that for two stars labeled 1 and 2 with

observed fluxes f1 and f2, respectively,

m2 − m1 = 2.5(log f1 − log f2) = 2.5 log

(

f1

f2

)

, (1.3)

where log means the base-10 logarithm2 and the normalization of the magnitude scale is

discussed in Box 1.2. This definition implies that a difference of five orders of magnitude

corresponds exactly to a factor of 100 in brightness, and that algebraically smaller

magnitudes are associated with brighter objects. It is often useful to define a set of apparent

magnitudes that are restricted to a limited range of frequencies (for example, by the use of

telescopic filters; see Fig. 1.3 below). Some common ones are

1. The visual magnitude mv, determined from the flux in the range of frequencies to which

the human eye is sensitive (peaking in the yellow–green part of the spectrum).

2. The blue-sensitive magnitude mB, which is the magnitude determined if the light is

collected using a blue filter.

3. The photovisual magnitude mV, which is the magnitude determined if the light is

collected using a yellow filter to make the resulting magnitude correspond more closely

to the visual magnitude defined above.

4. The ultraviolet magnitude mU, which is determined using filters to emphasize the UV

part of the spectrum.

Various other apparent magnitudes can be introduced by using other filters that emphasize

different parts of the spectrum but the ones described above are common and represen-

tative. More will be said about such magnitudes when color indices are discussed in

Section 1.3.

2 In this book we use log ≡ log10 to denote the base-10 logarithm and ln ≡ loge to denote the base-e or natural

logarithm.
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6 Some Properties of Stars

Box 1.2 Normalization of Magnitude Scales

The de
nition of individual apparent magnitudes in Eq. (1.3) requires setting the scale by an arbitrary choice.
The scales for the magnitudes mv and mV are set conventionally so that modern visual magnitude scales
coincide well with the subjective scales of ancient astronomy. The convention in use employs themagnitudes
of a set of stars to 
x a scale but practically it is such that a spectral class A0 star such as Vega has visual
magnitude zero (spectral classes are discussed in Chapter 2). In the resulting scale, thebrightest stars in the sky
have apparent visual or photovisualmagnitudes near zero. A representative set of apparent visualmagnitudes
for common objects is displayed in Table 1.1. Themagnitude zeros for other apparentmagnitude scales are set
by similar conventions. For example, the blue-sensitive magnitude scale is de
ned so that mB = mv for a
spectral class A0 star.

Table 1.1 Some apparent visual magnitudes

Object mV

Sirius (brightest star) −1.5

Venus at brightest −4.4

Full Moon −12.6

The Sun −26.8

Faintest naked-eye stars +6−7

Faintest object visible from Earth ∼ +25

with largest conventional telescopes

Faintest object visible from the ∼ +30

Hubble Space Telescope

The apparent magnitudes discussed above conflate intrinsic properties (energy output)

with geometric effects. It is desirable to factor out the distance dependence to address

issues of stellar structure. This is done formally by introducing absolute magnitude scales,

which will be defined in the next section. Before doing that, it is convenient to introduce a

unit called the parsec that is a preferred unit of distance for astronomers.

1.1.4 The Parsec Distance Unit

The apparent relative positions of stars on the celestial sphere shift by small amounts over a

six-month period because of the parallax effect as the Earth goes around its orbit. The angle

p defined in Fig. 1.1, which is equal to half the angular size of the Earth’s orbit as viewed

from the star, is called the parallax angle; it is related trigonometrically to the distance d

to the star through

tan p =
1 AU

d
, (1.4)

where the astronomical unit AU is the average separation of the Earth and Sun (the length

of the Earth’s semimajor orbital axis; 1 AU ∼ 1.5 × 108 km). A small-angle approximation
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7 1.1 Luminosities and Magnitudes

Sun

Earth

d p

Star

1 AU

Fig. 1.1 The parallax angle p for a star as observed from Earth.

is justified and p (radians) = 1AU/d. Converting the angular measure to seconds of arc

(1 degree = 3600 arcsec ≡ 3600 ′′ and 1 radian = 2.06 × 105 arcsec), permits writing

d

1 AU
=

2.06 × 105

p ′′
, (1.5)

where the notation indicates that p is to be given in seconds of arc.

The relationship between parallax angle and distance given by Eq. (1.5) suggests

defining a natural distance unit equal to the distance at which a star would have a parallax

angle of 1′′. This unit is termed the parsec (from concatenating “parallax” and “seconds”),

and is abbreviated by the symbol pc. With these units the distance in parsecs is just the

inverse of the parallax angle in seconds of arc:

d (pc) =
1

p ′′
. (1.6)

From this equation the relationship of the parsec to other common distance units is easily

found. For example,

1 pc = 2.06 × 10
5

AU = 3.09 × 10
18 cm = 3.26 ly,

where a lightyear (ly) is the distance light travels in a year. Parallax angles for even the

nearest stars are tiny, as illustrated in Example 1.1.

Example 1.1 The nearby star α Centauri has a measured parallax of 0.742 ′′ [2], correspond-

ing to a distance of d = 1/0.742 = 1.348 pc, or 4.4 ly. To set this parallax angle in

perspective, 1′′ is the angle subtended by a 2-cm diameter coin at a distance of 4 km.

Parallax angles can be measured reliably down to about 0.01 ′′ for ground-based telescopes

without adaptive optics, so the traditional parallax method is useful for distance measure-

ments out to about 100 pc (though the uncertainty becomes substantial for larger distances).

Observations with the Hipparcos satellite could measure a parallax of 0.001 ′′ and extended

the parallax range to about 1000 pc, allowing determination of high-precision parallaxes

for more than 100,000 new stars (and 2.5 million additional stars at low precision).

More recently the European Space Agency Gaia mission was launched in 2013 with a

goal of mapping precisely the position, brightness, and variations in brightness, color,

velocities, and evidence for a companion for more than 109 stars by 2018, including
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8 Some Properties of Stars

parallax measurements for more than 200 million new stars. To enable this it has the

capability to measure parallax angles as small as 5×10−6 arcseconds (the angle subtended

by a thumbnail on the Moon as viewed from Earth). Beyond these distances, other less-

direct methods must be employed.

1.1.5 Absolute Magnitudes

By convention, the absolute magnitude, denoted by M to distinguish it from the apparent

magnitude m, is the apparent magnitude that a star would have if it were placed at a

standard distance of 10 pc = 32.6 ly. Using previous expressions for the apparent

magnitude, it is then easy to show (Problem 1.3) that the absolute and apparent magnitudes

are related by

m − M = 5 log

(

d

10 pc

)

, (1.7)

where the quantity m − M is termed the distance modulus. Thus, the absolute magnitude

is the apparent magnitude minus the distance modulus, and is easily calculated from (1.7)

if the distance d to the star is known.

1.1.6 Bolometric Magnitudes

The bolometric magnitude is the magnitude that a star would have if the detector could

collect the entire spectrum of emitted radiant energy. Realistic detectors cannot do this

because of inherent detector limitations and losses in the atmosphere and interstellar

medium, so it is necessary to apply a bolometric correction to raw magnitudes; this

correction is designed to add back flux that is absorbed in the atmosphere or otherwise

not detected. Then the absolute bolometric magnitude is

Mbol = Mv + BC, (1.8)

where BC is the bolometric correction. (Note: Some authors define instead Mbol =

Mv −BC, so be mindful of the sign for BC.) The bolometric correction is large for very hot

and very cool stars because they output a substantial portion of their radiation at UV and IR

wavelengths, respectively, and these wavelengths are absorbed strongly in the atmosphere.

Even above the atmosphere there may be significant corrections for absorption in the

interstellar medium.

Example 1.2 Because the Sun emits small amounts of UV and IR radiation relative

to visible light, its bolometric correction is small. The Sun has an absolute bolometric

magnitude of M�

bol = 4.74, corresponding to a luminosity of L� = 3.828 × 1033 erg s−1

(this luminosity will be estimated from observations below).

For calculations we often find it convenient to write for an arbitrary star

Mbol − M�

bol = −2.5 log
L

L�

, (1.9)
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9 1.2 Stars as Blackbody Radiators

which corresponds to expressing the absolute bolometric magnitude Mbol and luminosity

L for an arbitrary star in units of the corresponding quantities for the Sun.

1.2 Stars as Blackbody Radiators

A temperature can be defined for an object that is in thermodynamical equilibrium. In

particular, we may introduce a temperature self-consistently for a star if it is a blackbody

radiator. Stars are often assumed to be blackbody radiators. They generally are not

perfectly so, but this is a sufficiently good approximation to be a very useful starting point.

1.2.1 Radiation Laws

A blackbody radiator has a radiation field that is isotropic, homogeneous, randomly

polarized, and independent of the walls of the container. If a body satisfies these conditions,

several important radiation laws apply.

Planck law: The Planck radiation law defines the intensity of emitted radiation for a

blackbody. The Planck function Bλ(T ) giving the power emitted per unit surface area of a

blackbody per unit wavelength into unit solid angle is given by

Bλ(T ) =
2hc 2

λ5

1

ehc/λkT − 1
, (1.10)

where λ is the wavelength, T is the temperature, h is Planck’s constant, c is the speed

of light, and k is Boltzmann’s constant. Blackbody spectra for several temperatures are

illustrated in Fig. 1.2, where the total area under the curve is seen to grow rapidly with

temperature and the distribution exhibits a single peak that shifts to shorter wavelengths

as the temperature increases. Two other important laws governing this behavior may be

derived from the Planck law, the Stefan–Boltzmann law and the Wien displacement law

(see Example 1.3 and Problem 1.4). The first governs the total energy radiated at all

wavelengths and the second governs the wavelength at which the peak intensity is emitted.

Stefan–Boltzmann law: The law of Stefan and Boltzmann says that the total energy E

radiated per unit time per unit surface area at all wavelengths varies as the fourth power of

the temperature,

E =
1
4
acT 4

= σT 4
, (1.11)

where a is the radiation density constant and σ is the Stefan–Boltzmann constant.

Multiplication by the surface area then gives the luminosity. Thus for a spherical blackbody

L = 4πR2σT 4, where R is the radius.

Wien law: The Wien displacement law states that for a blackbody radiator the maximum

in the radiation distribution as a function of wavelength occurs at

λmax = 2.90 × 10
7

(

K

T

)

Å, (1.12)
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10 Some Properties of Stars

0 5000 10000 15000

Wavelength (Angstroms)

6000 K

5000 K

4000 K0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
te

n
s
it
y
 (

re
la

ti
v
e
 u

n
it
s
)

0

Fig. 1.2 Planck distribution for several temperatures.

where 1 angstrom (Å) = 10−8 cm. The Stefan–Boltzmann law explains the increase in

total luminosity with temperature seen in Fig. 1.2, while the Wien law accounts for the

shift of these distributions to shorter wavelengths as the temperature increases.

Example 1.3 The Stefan–Boltzmann and Wien laws follow from the more general Planck

law. We may illustrate by outlining the derivation of the Stefan–Boltzmann law (you are

asked to provide the details in Problem 1.4). The total energy flux emitted by a blackbody

at temperature T can be expressed as an integral over Eq. (1.10), and using the substitutions

u = hc/λkT λ = hc/ukT dλ =
−hc

u2kT
du,

the integral can be evaluated to give the Stefan–Boltzmann law, E = σ T 4, where σ is the

Stefan–Boltzmann constant.

The Wien law results from differentiating Eq. (1.10) to find the maximum, as you are asked

to show in Problem 1.13.

1.2.2 E�ective Temperatures

If a star is assumed to be a blackbody radiator, we may use the Stefan–Boltzmann law to

define an effective surface temperature Te through the relation

L = 4πσR2T 4
e . (1.13)

That is, the effective temperature Te is the temperature that a perfect blackbody of radius

R would need in order to radiate the observed luminosity of the star. This is an integral

condition that requires the total luminosity of the star and the fictitious blackbody that
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11 1.2 Stars as Blackbody Radiators

Box 1.3 Luminosity and E�ective Temperature of the Sun

The preceding discussion may be illustrated by determining the surface �ux, total luminosity, and e�ective
surface temperature of the Sun – a star for which the required quantities are known rather well. The total
radiant �ux of the Sun on our upper atmosphere (the solar constant) has a value of 1.36× 106 erg cm−2s−1,
and the Sun subtends an average angle of 32 minutes of arc in our sky at an average distance of 1 AU∼ 1.496
× 108 km. Then from geometry the radius of the Sun is given by

R� = tan(16′) AU = 0.00465 AU = 6.96 × 1010 cm,

and if the distance to the Sun is r, the �ux at the solar surface is related to the �ux on our upper atmosphere
by the inverse square intensity law,

Flux (solar surface) =

(

r

R�

)2

× Flux (Earth) = 6.28 × 1010 erg cm−2s−1.

The total solar luminosity follows from integrating this �ux over the surface area of the Sun,

L� = 4πR2
�

× Flux (solar surface) � 3.82 × 1033 erg s−1,

and this allows an e�ective surface temperature for the Sun to be calculated as

T�e =

(

L�

4πσ R2�

)1/4

= 5770 K.

A more careful analysis yields the standard value of T�e ∼ 5777 K. Using this temperature in the Wien law
(1.12) indicates that theSun’s spectrumpeaks at about 5020 Å,which is the yellow–greenpart of the spectrum.
More generally, R is known for only a few nearby bright stars; for others, R must be estimated in some
model-dependent way, and an estimate of the distance to the star is required in order to determine the
luminosity.

approximates it to be equivalent, but does not constrain whether the detailed wavelength

distribution of emitted radiation for the star and the fictitious blackbody are equivalent.

Box 1.3 illustrates the use of Eq. (1.13) to determine an effective temperature for the Sun.

1.2.3 Stellar Radii from E�ective Temperatures

The (limited) direct ways available to determine the physical sizes of stars will be

discussed later in this chapter. However, if a star of known luminosity is assumed to be

a spherical blackbody and the effective temperature Te is estimated from the spectrum (see

Chapter 2), Eq. (1.13) can be used to solve for a radius. For calculations, it is often useful

to relate the radius R and effective temperature Te of a star to corresponding quantities for

the Sun through

R

R�

=

(

T �
e

Te

)2 (

L

L�

)1/2

, (1.14)
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