

TIME: FROM EARTH ROTATION TO ATOMIC PHYSICS

In the 21st century, we take the means to measure time for granted, without contemplating the sophisticated concepts on which our timescales are based. This volume presents the evolution of concepts of time and methods of timekeeping up to the present day. It outlines the progression of time based on sundials, water clocks, and the Earth's rotation, to time measurement using pendulum clocks, quartz crystal clocks, and atomic frequency standards. Timescales created as a result of these improvements in technology and the development of general and special relativity are explained. This second edition has been updated throughout to describe 20th-and 21st-century advances and discusses the redefinition of SI units and the future of Coordinated Universal Time (UTC). A new chapter on time and cosmology has been added. This broad-ranging reference benefits a diverse readership, including historians, scientists, engineers, and educators, and it is accessible to general readers.

DENNIS D. McCARTHY is former Director of Time at the US Naval Observatory and the leading authority in the United States for astronomical and timing data. He has led and been a member of various commissions and working groups within the International Astronomical Union and has authored and edited numerous publications dealing with fundamental astronomy, time, and Earth orientation.

P. KENNETH SEIDELMANN is a research professor of astronomy at the University of Virginia and was Director of Astrometry at the US Naval Observatory. He has led and been a member of a division, various commissions, and working groups of the International Astronomical Union. He has coauthored two other books – Fundamentals of Astrometry and Celestial Mechanics and Astrodynamics – and is a coeditor of the Explanatory Supplement to the Astronomical Almanac.

TIME: FROM EARTH ROTATION TO ATOMIC PHYSICS

SECOND EDITION

DENNIS D. McCARTHY

US Naval Observatory (Retired)

P. KENNETH SEIDELMANN

University of Virginia

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107197282 DOI: 10.1017/9781108178365

First Edition © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Second Edition © Dennis D. McCarthy and P. Kenneth Seidelmann 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009 Second Edition 2018

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: McCarthy, Dennis D., author. | Seidelmann, P. Kenneth, author.

Title: Time: from Earth rotation to atomic physics / Dennis D. McCarthy (United States Naval Observatory (retired), P. Kenneth Seidelmann (University of Virginia).

Description: Second edition. | Cambridge; New York, NY: Cambridge University Press, [2018] | Includes bibliographical references and index.

Identifiers: LCCN 2018030821 | ISBN 9781107197282 Subjects: LCSH: Time measurements. | Time. | Earth (Planet) – Rotation. Classification: LCC QB213 .M385 2018 | DDC 529/.7–dc23 LC record available at https://lccn.loc.gov/2018030821

ISBN 978-1-107-19728-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In honor of our wives, Diane McCarthy and Bobbie Seidelmann, and our families.

Dedicated to the scientists who preceded us and taught, mentored,
and inspired us.

Contents

Preface po			page xv
1	Time	Before the 20th Century	1
	1.1	In the Beginning	1
	1.2	Characterizing Time	1
	1.3 Calendars		2
	1.4	Astronomical Observations	3
	1.5	Timekeeping	4
	1.6	Time Epochs	5
	1.7	Time Transfer	6
	1.8	Rotation of the Earth	7
	1.9	Beginning the 20th Century	8
2	Time	from the Earth's Rotation	10
	2.1	Apparent Solar Time	10
	2.2	Mean Solar Time	10
	2.3	Sidereal Time	13
	2.4	Washington Conference of 1884	15
	2.5	Universal Time	15
	2.6	UT1 as Mean Solar Time	18
	2.7	Coordinated Universal Time	20
	2.8	Greenwich Mean Time (GMT)	21
	2.9	Time Zones	22
	2.10	Daylight Savings Time	22
3	Ephemerides		
	3.1	Ephemerides and Time	25
	3.2	Before Kepler and Newton	26
	3.3	Kepler and Newton	28
	3.4	Tables, General Theories, and Ephemerides	29
			vii

> viii **Contents** 3.5 Lunar Theories 32 3.6 The Advent of Computers 35 3.7 Numerical Integrations 35 3.8 Observational Data 36 3.8.1 Radar Observations 36 3.8.2 Lunar Laser Ranging 37 3.8.3 Spacecraft Observations 37 3.9 Modern Ephemerides 37 3.10 Reference System 38 3.11 Besselian Year 39 3.12 Time Arguments 40 3.13 Astronomical Constants 40 3.14 Redefinition of the Astronomical Unit (au) 41 3.15 Artificial Satellite Theories 42 3.16 Theory of Relativity 42 Variable Earth Rotation 47 4.1 Pre 19th Century 47 4.2 Secular Variation 48 4.3 Irregular Variations in the Earth's Rotation 50 4.4 Early Explanations for the Variable Rotation 58 4.5 Current Understanding of the Earth's Variable Rotation 59 4.6 Consequences 62 Earth Orientation 68 5.1 Reference Systems 68 5.1.1 Celestial Reference Frame 69 5.1.2 Terrestrial Reference Frame 70 5.1.3 Intermediate Reference System 72 5.2 Variations in Earth Orientation 73 5.2.1 Precession/Nutation 74 5.2.2 Polar Motion 76 5.2.3 UT1 79 5.3 Variations in Earth Orientation 80 5.4 Transforming between Reference Frames 81 5.5 Determination of Earth Orientation 84 5.6 Earth Orientation Data 85 6 Ephemeris Time 88 6.1 Need for a Uniform Timescale 88

6.2 Danjon Proposal

89

More Information

		Contents	ix
	6.3	Clemence Proposal	90
	6.4	Adoption and Definition	91
	6.5	Observational Determination	92
	6.6	The Ephemeris Second and Atomic Time	95
	6.7	Historical ΔT	97
	6.8	Problems with Ephemeris Time	97
	6.9	Relativity	100
	6.10	Dynamical Timescales	101
7	Relat	ivity and Time	104
	7.1	Newtonian Reference Systems	104
	7.2	Special Relativity	104
	7.3	Lorentz Transformations	106
	7.4	Coordinate and Proper Time	107
	7.5	Minkowski Diagrams	109
	7.6	Time in Special Relativity	111
	7.7	General Relativity	112
		7.7.1 Metrics in General Relativity	112
		7.7.2 The Equivalence Principle	113
	7.8	IAU Resolutions	114
	7.9	Timescales	121
		7.9.1 International Atomic Time	121
		7.9.2 Dynamical Timescales	121
	7.10	Relativistic Effects in Time Transfer	122
8	Time	and Cosmology	123
	8.1	Introduction	123
	8.2	Space-Time Metric	123
	8.3	The Expanding Universe	124
	8.4	Age of the Universe	125
	8.5	Evolution of the Universe	126
	8.6	Cosmic Time	126
	8.7	Time's Arrow	128
	8.8	Future of the Universe	128
9	Dyna	mical and Coordinate Timescales	131
	9.1	Replacing Ephemeris Time	131
	9.2	Terrestrial Dynamical Time (TDT) and Barycentric	
		Dynamical Time (TDB)	132
	9.3	Problems with TDT and TDB	135
	9.4	New Reference System	136

X

9.5	New Timescales	137
	9.5.1 Terrestrial Time (TT)	138
	9.5.2 Geocentric Coordinate Time (TCG)	139
	9.5.3 Barycentric Coordinate Time (TCB)	139
	9.5.4 TDB Redefined	141
	9.5.5 Barycentric Ephemeris Time (T _{eph})	142
9.6		142
9.7	•	143
10 Cloc	k Developments	148
10.1	Introduction	148
10.2	Keeping Time in Antiquity	148
	10.2.1 Clepsydrae and Water "Clocks"	149
	10.2.2 Other Timekeeping Devices	150
10.3	The First Mechanical Clocks	150
10.4	Pendulum Clocks	151
	10.4.1 Galileo	152
	10.4.2 Huygens	152
	10.4.3 Pendulum Clock Developments	155
	10.4.4 Chronometers	156
10.5	Quartz Crystal Clocks	157
10.6	Clock Performance	160
	10.6.1 Quality (Q) Factor	161
	10.6.2 Precision	162
	10.6.3 Accuracy	163
	10.6.4 Stability	163
11 Micr	owave Atomic Clocks	171
11.1	Beyond Quartz-Crystal Oscillators	171
	Physics of Atomic Clocks	172
	General Structure of Atomic Clocks	174
11.4	Development of Atomic Clocks	177
	11.4.1 Caesium	177
	11.4.2 Hydrogen	189
	11.4.3 Rubidium	191
11.5	Trapped Ion Clocks	194
	11.5.1 Mercury	196
	11.5.2 Other Ions	197
11.6	PHARAO Laser-Cooled Microgravity Atomic Clock	197
11.7	Characterizing Atomic Clocks	198

Contents

	Contents	xi
12 Opti	cal Atomic Standards	203
12.1	Optical Transition Frequencies	203
12.2	Optical Ion Clocks	207
12.3	Optical Neutral Atom Clocks	208
12.4	Quantum Logic Clock	210
12.5	Stabilized Lasers	210
12.6	Characterizing Optical Standards	211
13 Defi	nition and Role of a Second	215
13.1	The Historical Second	215
13.2	The "Ephemeris Second"	217
13.3	The SI Second	218
13.4	Adopting the SI Second	221
13.5	Toward the Redefinition of the Second	223
14 Inter	national Atomic Time (TAI)	225
14.1	Constructing an Atomic Timescale	225
14.2	History of TAI	227
14.3	Formation of TAI	232
	14.3.1 EAL	233
	14.3.2 Steering EAL with Primary and Secondary	
	Frequency Standards	240
14.4	Stability of TAI	242
14.5	Distribution of TAI	242
14.6	Relationship of TAI to Terrestrial Time	243
15 Cooi	dinated Universal Time (UTC)	249
15.1	Universal Time before 1972	249
15.2	Coordinated Universal Time after 1972	254
15.3	Leap Seconds	255
15.4	DUT1	256
15.5	UTC Worldwide	257
15.6	Time Distribution	257
15.7	The Future of UTC: Leap Seconds or Not?	257
16 Time	e in the Solar System	262
16.1	The Solar System	262
16.2	Pursuit of Uniformity	263
16.3	•	263
16.4	Time and Phenomena	264
	16.4.1 Eclipses, Occultations, Transits	264
	16.4.2 Sunrises and Sunsets	266

xii Contents

	16.4.3	Moonrises and Moonsets	266
16.5	Tropic	al Year	267
16.6	Time a	and Distance	268
	16.6.1	Meter Definition	268
	16.6.2	Radar Ranging	269
	16.6.3	Laser Ranging	269
	16.6.4	Navigation Systems	269
16.7	Space	Mission Times	274
	16.7.1	Doppler Effect	274
16.8	Proper	Times at Planets	274
16.9	Pulsars	s: An Independent Source of Time	275
16.10	White	Dwarfs: An Independent Source of Time	276
17 Time	and Fre	quency Transfer	278
17.1	Histori	cal Transfer Techniques	278
17.2	Time a	nd Frequency Dissemination Modeling	279
	17.2.1	Propagation Effects	279
	17.2.2	Calibration	280
	17.2.3	Relativistic Effects	280
17.3	Time a	and Frequency Dissemination Systems	283
	17.3.1	Coaxial Cable	283
	17.3.2	Telephone	283
	17.3.3	Optical Fiber	283
	17.3.4	Microwave Links	284
	17.3.5	Television Broadcast	285
	17.3.6	Internet	285
	17.3.7	High-Frequency Radio Signals	285
	17.3.8	Low-Frequency Broadcast Radio Signals	286
	17.3.9	Low-Frequency Navigation Signals	287
	17.3.10	Navigation Satellite Broadcast Signals	288
	17.3.11	Two-Way Satellite Time and Frequency Transfer	
		(TWSTFT)	290
	17.3.12	Optical Two-Way Time and Frequency Transfer	
		(TWTFT)	291
17.4	Atomio	c Clock Ensemble in Space (ACES)	292
		n Orientation	294
18.1		rial to Celestial Reference Systems	294
18.2		nination of Earth Orientation Parameters	295
	18.2.1	Very Long Baseline Interferometry (VLBI)	296
	18.2.2	Global Positioning System (GPS)	302

More Information

			Contents	XIII
		18.2.3	Satellite Laser Ranging (SLR)	304
		18.2.4		
			Integrated on Satellite (DORIS)	308
		18.2.5	Geophysical Modeling	308
		18.2.6	Geomagnetic Field	312
	18.3	Earth C	Orientation Data	312
19	Intern	national	Activities	316
	19.1	Time a	nd International Activities	316
	19.2	Treaty	of the Meter	316
		19.2.1	General Conference on Weights and Measures	
			(CGPM)	317
		19.2.2	International Committee on Weights and Measures (CIPM)	317
		19.2.3		318
	19.3		fic Unions	318
	17.5		International Astronomical Union (IAU)	319
			International Union of Geodesy and Geophysics	317
		17.5.2	(IUGG)	321
		1933	International Telecommunications Union (ITU)	322
	19.4		e Organizations	325
	17.7	19.4.1	International Earth rotation and Reference systems	323
		17.1.1	Service (IERS)	326
		19.4.2		320
		172	Astrometry (IVS)	329
		1943	International Laser Ranging Service (ILRS)	329
		19.4.4		32)
		17.1.1	Service) Service (IGS)	330
		19.4.5		331
20	Time	Applica	tions	334
	20.1	Time E	nables the Infrastructure	334
	20.2	Position	ning and Navigation Services	334
	20.3		Oomain Astronomy (TDA)	335
	20.4	Intellig	ent Transportation Systems	335
	20.5	Commi	unications	336
	20.6	Power Grid		
	20.7	Bankin	g and Finance	339
	20.8		ency Services	339
	20.9	Water I	•	339

xiv	Contents	
20.1	0 Scientific	340
20.1	1 Religions	340
20.1	2 General Public	340
20.1	3 Summary	340
21 Futi	ure of Timekeeping	344
21.1	1 Future Needs for Time	344
21.2	2 Modeling the Earth's Rotation	345
21.3	3 Clocks of the Future	346
21.4	Future Timescales	346
21.5	5 Future Time Distribution	348
Acronyms		351
Glossary		358
Index		379

Preface

This second edition is an updated version of the first edition with various additions that reflect recent developments in timekeeping as specified in what follows.

Everyday use of time in one form or another is a common experience for everyone throughout their lives. The availability of a means to measure the passage of time with the required accuracy is taken for granted. However, the concepts on which timescales are based and the requirements for accuracy in many applications can be both sophisticated and complex. Time is not a simple subject.

During the 20th century the variability of the Earth's rotational speed was established. The basis for time that had served for so many centuries was no longer adequate to meet the more demanding needs for time. A search for the definition and introduction of a uniform second and timescale led to Ephemeris Time, based on the orbital motions of solar system bodies. At that time atomic clocks were being developed that offered a more convenient and accurate basis for time. Time measurement progressed from timescales based on astronomical phenomena to atomic physics. In addition, improvements in the accuracy of planetary positions required the introduction of dynamical timescales that recognized the role of general relativity in timekeeping. Over the same period of time the accuracies of timekeeping and time transfer improved significantly, and requirements for time have become even more demanding. The atomic Système International (SI) second quickly achieved recognition as the most accurate and fundamental unit of measure.

Although the Earth was no longer the basis for the most precise timekeeping, the demands of new technologies made it even more critical to observe, analyze, and predict the actual variations of its rotation. The motions of its rotational axis, both in space and in the Earth itself, also required a parallel effort of observations, analysis, and prediction. These activities pushed the improvement of celestial and terrestrial reference frames by orders of magnitude and encouraged new developments in the study of the dynamics of the Earth, including the core, mantle, atmosphere, oceans, etc., and the forces acting on it due to the Sun, Moon, and

xvi Preface

planets. These studies have gone on to spur the further development of even more accurate methods of observations.

This book is intended to tell the story of the progress in timekeeping over the past century. It begins with time solely based on the rotation of the Earth, and proceeds through the discovery of the variations in Earth rotation and motions of the Earth's pole. During that time clocks progressed through improvements in mechanical clocks to the development and improvements of atomic clocks. The availability of atomic time, the routine observations of the variable Earth rotation, and the development of the theory of relativity led to the introduction of Universal Time, International Atomic Time, Coordinated Universal Time, and a family of dynamical timescales. In the process there have been a number of scientific discoveries, significant improvements in accuracy, the development of new applications of accurate time, and the growth of the scientific field of Earth dynamics.

Additions in this edition include a chapter on Time and Cosmology, developments in optical frequency standards, possible redefinition of the second, and the future of UTC and leap seconds, as well as discussions of the difference between UT1 and mean solar time, the "move" of the Greenwich prime meridian, geomagnetic jerks and their effects on Earth orientation, possible timescales constructed from pulsar and white dwarf observations, and applications of time and frequency for intelligent highways and self-driving cars.

A list of acronyms and a glossary are included to ease the use of a number of specialized terms that have developed over the years in this field.

It is our pleasure to acknowledge and thank our colleagues: Professor Chris Impey, whose presentation at the Science of Time Symposium in June 2016 provided the inspiration and outline of the chapter on Time and Cosmology; Professor Mark Whittle corrected and improved our draft of that chapter; and Paul Hughes assisted in literature searches to update this book.