Contents for Volume One

1 Introduction
 1.1 Chapter Summary
 1.2 Early History
 1.3 Volume One Summary
 1.4 Notation
 1.5 Background Reading
 1.6 Unsolved Problems

2 The Riemann Zeta Function
 2.1 Introduction
 2.2 Basic Properties
 2.3 Zero-Free Regions
 2.4 Landau’s Zero-Free Region
 2.5 Zero-Free Regions Summary
 2.6 The Product Over Zeta Zeros
 2.7 Unsolved Problems

3 Estimates
 3.1 Introduction
 3.2 Constructing Tables of Bounds for $\psi(x)$
 3.3 Exact Verification Using Computation
 3.4 Estimates for $\theta(x)$
 3.5 More Estimates
 3.6 Unsolved Problems
Contents for Volume One

4 Classical Equivalences
- 4.1 Introduction 68
- 4.2 The Prime Number Theorem and Its RH Equivalences 69
- 4.3 Oscillation Theorems 81
- 4.4 Errors in Arithmetic Sums 88
- 4.5 Unsolved Problems 93

5 Euler’s Totient Function
- 5.1 Introduction 94
- 5.2 Estimates for Euler’s Function $\varphi(n)$ 98
- 5.3 Preliminary Results With RH True 110
- 5.4 Further Results With RH True 123
- 5.5 Preliminary Results With RH False 130
- 5.6 Nicolas’ First Theorem 135
- 5.7 Nicolas’ Second Theorem 137
- 5.8 Unsolved Problems 142

6 A Variety of Abundant Numbers
- 6.1 Introduction 144
- 6.2 Superabundant Numbers 147
- 6.3 Colossally Abundant Numbers 153
- 6.4 Estimates for $x_2(\epsilon)$ 161
- 6.5 Unsolved Problems 163

7 Robin’s Theorem
- 7.1 Introduction 165
- 7.2 Ramanujan’s Theorem Assuming RH 169
- 7.3 Preliminary Lemmas With RH True 174
- 7.4 Bounding $\prod_{p \leq x}(1 - p^{-2})$ From Above With RH True 180
- 7.5 Bounding $\log \log N$ From Below With RH True 184
- 7.6 Proof of Robin’s Theorem With RH True 186
- 7.7 An Unconditional Bound for $\sigma(n)/n$ 188
- 7.8 Bounding $\log \log N$ From Above Without RH 190
- 7.9 A Lower Bound for $\sigma(n)/n$ With RH False 191
- 7.10 Lagarias’ Formulation of Robin’s Criterion 193
- 7.11 Unconditional Results for Lagarias’ Formulation 196
- 7.12 Unitary Divisor Sums 197
- 7.13 Unsolved Problems 198

8 Numbers That Do Not Satisfy Robin’s Inequality
- 8.1 Introduction 200
- 8.2 Hardy–Ramanujan Numbers 202
- 8.3 Integers Not Divisible by the Fifth Power of Any Prime 208
Contents for Volume One

8.4 Integers Not Divisible by the Seventh Power of Any Prime 211
8.5 Integers Not Divisible by the 11th Power of Any Prime 214
8.6 Unsolved Problems 217

9 Left, Right and Extremely Abundant Numbers 218
9.1 Introduction 218
9.2 Grönwall’s Theorem 220
9.3 Further Preliminary Results 223
9.4 Riemann Hypothesis Equivalences 225
9.5 Comparing Colossally and Left Abundant Numbers 232
9.6 Extremely Abundant Numbers 235
9.7 Unsolved Problems 235

10 Other Equivalents to the Riemann Hypothesis 236
10.1 Introduction 236
10.2 Shapiro’s Criterion 239
10.3 Farey Fractions 241
10.4 Redheffer Matrix 247
10.5 Divisibility Graph 250
10.6 Dirichlet Eta Function 252
10.7 The Derivative of \(\zeta(s) \) 253
10.8 A Zeta-Related Inequality 256
10.9 The Real Part of the Logarithmic Derivative of \(\xi(s) \) 259
10.10 The Order of Elements of the Symmetric Group 271
10.11 Hilbert–Pólya Conjecture 282
10.12 Epilogue 285
10.13 Unsolved Problems 286

Appendix A Tables 287
A.1 Extremely Abundant Numbers 287
A.2 Small Numbers Not Satisfying Robin’s Inequality 288
A.3 Superabundant Numbers 289
A.4 Colossally Abundant Numbers 290
A.5 Primes to Make Colossally Abundant Numbers 291
A.6 Small Numbers Satisfying Nicolas’ Reversed Inequality 292
A.7 Heights of Integers 293
A.8 Maximum Order of an Element of the Symmetric Group 293

Appendix B RHpack Mini-Manual 294
B.1 Introduction 294
B.2 RHpack Functions 296

References 313
Index 321
Contents for Volume Two

Contents for Volume One page xi
List of Illustrations xiv
List of Tables xvi
Preface for Volume Two xvii
List of Acknowledgements xxi

1 Introduction 1
 1.1 Why This Study? 1
 1.2 Summary of Volume Two 2
 1.3 How to Read This Book 7

2 Series Equivalents 8
 2.1 Introduction 8
 2.2 The Riesz Function 10
 2.3 Additional Properties of the Riesz Function 14
 2.4 The Series of Hardy and Littlewood 15
 2.5 A General Theorem for a Class of Entire Functions 16
 2.6 Further Work 22

3 Banach and Hilbert Space Methods 23
 3.1 Introduction 23
 3.2 Preliminary Definitions and Results 25
 3.3 Beurling’s Theorem 29
 3.4 Recent Developments 35

4 The Riemann Xi Function 37
 4.1 Introduction 37
 4.2 Preliminary Results 40
 4.3 Monotonicity of |ξ(s)| 49
Contents for Volume Two

4.4 Positive Even Derivatives 51
4.5 Li’s Equivalence 54
4.6 More Recent Results 59

5 The De Bruijn–Newman Constant 62
5.1 Introduction 62
5.2 Preliminary Definitions and Results 66
5.3 A Region for $\Xi(\lambda(z))$ With Only Real Zeros 69
5.4 The Existence of Λ 77
5.5 Improved Lower Bounds for Λ 77
5.5.1 Lehmer’s Phenomenon 78
5.5.2 The Differential Equation Satisfied by $H(t,z)$ 81
5.5.3 Finding a Lower Bound for Λ Using Lehmer Pairs 87
5.6 Further Work 92

6 Orthogonal Polynomials 93
6.1 Introduction 93
6.2 Definitions 94
6.3 Orthogonal Polynomial Properties 96
6.4 Moments 99
6.5 Quasi-Analytic Functions 104
6.6 Carleman’s Inequality 106
6.7 Riemann Zeta Function Application 113
6.8 Recent Work 116

7 Cyclotomic Polynomials 117
7.1 Introduction 117
7.2 Definitions 118
7.3 Preliminary Results 119
7.4 Riemann Hypothesis Equivalences 124
7.5 Further Work 126

8 Integral Equations 127
8.1 Introduction 127
8.2 Preliminary Results 129
8.3 The Method of Sekatskii, Beltramelli and Merlini 133
8.4 Salem’s Equation 139
8.5 Levinson’s Equivalence 142

9 Weil’s Explicit Formula, Inequality and Conjectures 150
9.1 Introduction 150
9.2 Definitions 152
9.3 Preliminary Results 152
9.4 Weil’s Explicit Formula 154
Contents for Volume Two

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Weil’s Inequality</td>
<td>159</td>
</tr>
<tr>
<td>9.6</td>
<td>Bombieri’s Variational Approach to RH</td>
<td>166</td>
</tr>
<tr>
<td>9.7</td>
<td>Introduction to the Weil Conjectures</td>
<td>173</td>
</tr>
<tr>
<td>9.8</td>
<td>History of the Weil Conjectures</td>
<td>174</td>
</tr>
<tr>
<td>9.9</td>
<td>Finite Fields</td>
<td>176</td>
</tr>
<tr>
<td>9.10</td>
<td>The Weil Conjectures for Varieties</td>
<td>178</td>
</tr>
<tr>
<td>9.11</td>
<td>Elliptic Curves</td>
<td>178</td>
</tr>
<tr>
<td>9.12</td>
<td>Weil Conjectures for Elliptic Curves – Preliminary Results</td>
<td>182</td>
</tr>
<tr>
<td>9.13</td>
<td>Proof of the Weil Conjectures for Elliptic Curves</td>
<td>186</td>
</tr>
<tr>
<td>9.14</td>
<td>General Curves Over (\mathbb{F}_q) and Applications</td>
<td>188</td>
</tr>
<tr>
<td>9.15</td>
<td>Return to the Explicit Formula</td>
<td>190</td>
</tr>
<tr>
<td>9.16</td>
<td>Weil’s Commentary on his 1952 and 1972 Papers</td>
<td>192</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>10.2</td>
<td>Definitions</td>
<td>194</td>
</tr>
<tr>
<td>10.3</td>
<td>Preliminary Results</td>
<td>195</td>
</tr>
<tr>
<td>10.4</td>
<td>A Mellin-Style Transform</td>
<td>197</td>
</tr>
<tr>
<td>10.5</td>
<td>Verjovský’s Theorems</td>
<td>200</td>
</tr>
<tr>
<td>10.6</td>
<td>Historical Development of Non-Euclidean Geometry</td>
<td>206</td>
</tr>
<tr>
<td>10.7</td>
<td>The Hyperbolic Upper Half Plane (\mathbb{H})</td>
<td>208</td>
</tr>
<tr>
<td>10.8</td>
<td>The Groups (\text{PSL}(2, \mathbb{R})) and (\text{PSL}(2, \mathbb{Z}))</td>
<td>209</td>
</tr>
<tr>
<td>10.9</td>
<td>Eisenstein Series</td>
<td>211</td>
</tr>
<tr>
<td>10.10</td>
<td>Zagier’s Horocycle Equivalence</td>
<td>216</td>
</tr>
<tr>
<td>10.11</td>
<td>Additional Results</td>
<td>219</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>Definitions</td>
<td>223</td>
</tr>
<tr>
<td>11.3</td>
<td>Distributions</td>
<td>226</td>
</tr>
<tr>
<td>11.4</td>
<td>Positive Definite</td>
<td>228</td>
</tr>
<tr>
<td>11.5</td>
<td>The Restriction to (C(a)) for All (a > 0)</td>
<td>231</td>
</tr>
<tr>
<td>11.6</td>
<td>Properties of (K(a)) and (\hat{K}(a))</td>
<td>236</td>
</tr>
<tr>
<td>11.7</td>
<td>Matrix Elements</td>
<td>242</td>
</tr>
<tr>
<td>11.8</td>
<td>An Explicit Example With (a = \log \sqrt{2})</td>
<td>247</td>
</tr>
<tr>
<td>11.9</td>
<td>Lemmas for Yoshida’s Main Theorem</td>
<td>258</td>
</tr>
<tr>
<td>11.10</td>
<td>Hermitian Forms Lemma</td>
<td>260</td>
</tr>
<tr>
<td>11.11</td>
<td>Yoshida’s Main Theorem</td>
<td>269</td>
</tr>
<tr>
<td>11.12</td>
<td>The Restriction to (K(a)) for All (a > 0)</td>
<td>270</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>274</td>
</tr>
<tr>
<td>12.2</td>
<td>Definitions</td>
<td>277</td>
</tr>
</tbody>
</table>
Contents for Volume Two

12.3 Properties of $L(s,\chi)$ 283
12.4 The Non-Vanishing of $L(1,\chi)$ 284
12.5 Zero-Free Regions and Siegel Zeros 288
12.6 Preliminary Results for Titchmarsh’s Criterion 295
12.7 Titchmarsh’s GRH Equivalence 296
12.8 Preliminary Results for Gallagher’s Theorem 298
12.9 Gallagher’s Theorems 302
12.10 Applications of Gallagher’s Theorems 307
12.11 The Bombieri–Vinogradov Theorem 311
12.12 Applications of Bombieri–Vinogradov’s Theorem 323
12.13 Generalizations and Developments for Bombieri–Vinogradov 326
12.14 Conjectures 327

13 Smooth Numbers 332
13.1 Introduction 332
13.2 The Dickman Function 335
13.3 Preliminary Lemmas for Hildebrand’s Equivalence 346
13.4 Riemann Hypothesis Equivalence 349
13.5 Further Work 357

14 Epilogue 359

Appendix A Convergence of Series 361
Appendix B Complex Function Theory 363
Appendix C The Riemann–Stieltjes Integral 377
Appendix D The Lebesgue Integral on \mathbb{R} 381
Appendix E The Fourier Transform 388
Appendix F The Laplace Transform 405
Appendix G The Mellin Transform 409
Appendix H The Gamma Function 418
Appendix I The Riemann Zeta Function 425
Appendix J Banach and Hilbert Spaces 442
Appendix K Miscellaneous Background Results 451
Appendix L GRHpack Mini-Manual 459
 L.1 Introduction 459
 L.1.1 Installation 459
 L.1.2 About This Mini-Manual 460
 L.2 GRHpack Functions 461

References 473
Index 485