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Introduction

1.1 Chapter Summary

This chapter is discursive. It begins with an overview of the early history

of the Riemann hypothesis (RH) and the evolution of ideas relating to the

Ramanujan–Robin inequality. Then in Section 1.3 there is a summary of

the contents of the entire volume, first in brief and then in more detail. The

section also describes the tables in Appendix A and the software RHpack in

Appendix B.

There is a section on notational conventions and special notations, most of

which are quite standard. A guide to the reader and two problems complete

the chapter.

1.2 Early History

Here the main players in the evolution of the Riemann hypothesis are noted:

Euclid, Euler, Gauss, Dirichlet and, last but not least, Riemann himself. The

first is Euclid of Alexandria (Figure 1.1) who lived around 300 BCE. His

Elements includes a proof that there are an infinite number of primes, and

that they are the fundamental building blocks of numbers, through the unique

factorization of integers. How are the primes distributed? On the face of it,

the only pattern appears to be that all are odd, except 2. Do they appear

completely at random, or are they uniformly distributed in some sense?

Don Zagier gives a good description of this random/uniform dichotomy:

“The first fact is the prime numbers belong to the most arbitrary and ornery

objects studied by mathematicians: they grow like weeds among the natural

numbers, seeming to obey no other law than that of chance, and nobody can

predict where the next one will sprout.”

“The second fact is even more astonishing, for it states just the opposite:

that the prime numbers exhibit stunning regularity, that there are laws

governing their behaviour, and that they obey these laws with almost military

precision.”
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2 Introduction

Figure 1.1 Euclid (about 325–265 BCE).

Euler (1707–1783; Figure 1.2) was an amazing mathematician, who

wrote a text on calculus, including the first treatment of trigonometric

functions, and invented many parts of mathematics that are important today,

including the calculus of variations, graph theory and divergent series. In

number theory, quadratic reciprocity and Euler products are two of his many

contributions, as well as his extensive work on the zeta function. In fact, Euler

gave birth to the Riemann zeta function, writing down its definition for the

first time. He studied the following sums and product:

ζ(2) = 1+
1

22
+

1

32
+

1

42
+ · · · =

π2

6
,

ζ(4) = 1+
1

24
+

1

34
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1

44
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,

ζ(s) = 1+
1
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1
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1

4s
+ · · · ,

ζ(s) =
∏

p

(

1−
1

ps

)−1

.

For Euler, the variable s was an integer, and the product over all primes. He

tried in vain to find a closed expression for ζ(3) having the same style as that

for ζ(2) and ζ(4).
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1.2 Early History 3

Figure 1.2 L. Euler, 1707–1783.

The next main player was Gauss (1777–1855; Figure 1.3), although

he does not appear to have used the zeta function. He was the giant of

nineteenth-century mathematics and physics. For example, he used calculus

to compute correctly the position of Ceres after it had passed behind the

Sun. Although he spent most of his life in his observatory in Göttingen in

Germany, he contributed to statistics, non-Euclidean geometry, curvature,

geodesy, electromagnetism and complex numbers, as well as to number

theory, for which he had an abiding passion.

Gauss was given a book of log tables, at around the age of 14, that included

a table of primes. He extended the table, counting the number of primes up to

a real positive variable x, now called π(x). He considered the average number

of primes in each interval of numbers [1,2,3, . . . ,N], and in this way arrived

at his prime number conjecture, an inspired guess that was proved about 100

years later:

π(x) ∼
x

log x
which means

π(x)

x/log x
→ 1, x→∞.

It was this conjecture that inspired many mathematicians during the

nineteenth century.

Dirichlet (1805–1859; Figure 1.4) was a fine teacher and had a great

influence on Bernhard Riemann, who attended his number theory lectures

in Berlin during 1847–1849. According to Jacobi, Dirichlet was not only

creative, but knew how to make a robust proof: “Only Dirichlet, not I, nor
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4 Introduction

Figure 1.3 J. C. F. Gauss, 1777–1855.

Figure 1.4 J. L. Dirichlet, 1805–1859.
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1.2 Early History 5

Cauchy, not Gauss, knows what a perfectly rigorous proof is, but we learn it

only from him. When Gauss says he has proved something it is very likely.

When Cauchy says it, it’s a fifty-fifty bet. When Dirichlet says it, it is certain.”

Dirichlet showed that there were an infinite number of primes in arithmetic

progressions whenever the step and initial value are coprime. He used groups,

characters and zeta functions. He was a wonderfully inspiring lecturer, and

joined Riemann in Göttingen in 1855.

According to Felix Klein: “Riemann was bound to Dirichlet by the

strong inner sympathy of a like mode of thought. Dirichlet loved to

make things clear to himself with an intuitive underpinning. Along with

this he would give acute, logical analyses of foundational questions

and avoid long computations as much as possible.” His manner suited

Riemann, who adopted it and worked in many ways according to Dirichlet’s

methods.

So we come to the central character in this account, Bernhard Riemann

(1826–1866; Figure 1.5). Riemann was impoverished for most of his life. He

was shy and withdrawn, sickly and a hypochondriac. Other than the two years

in Berlin, he spent most of his working life in the still very beautiful walled

German town of Göttingen, but he changed mathematics forever. As well as

numbers, formulae and concepts, the idea of mathematical spaces and of the

Figure 1.5 B. Riemann, 1826–1866.
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6 Introduction

relationships between them can be traced back to Riemann. He went beyond

Dirichlet by supporting his profound ideas with extensive calculations and

manipulations.

Riemann contributed to real analysis (the Riemann integral), complex

analysis, (Cauchy–Riemann equations), potential theory and geometry

(Riemannian manifolds). He richly deserves to be called a genius and a great

mathematician.

An eight-page paper Riemann published in the Notices of the Berlin

Academy in 1859, titled On the number of primes less than a given magnitude

[140], contained an outline of a possible proof of Gauss’s prime number

conjecture. It started from ideas of Cauchy and Dirichlet. For example, he

extended the domain of ζ(s) to the whole of the complex plane other than the

point s = 1. The paper did not contain proofs, but radically changed analytic

number theory. It took 30 years for mathematicians to begin to appreciate

what Riemann’s ideas really meant, and that his assertions were provable.

Over 70 years later the analytic and computational underpinnings for the

paper, through Siegel and his exploration of Riemann’s hand-written notes,

became clear. Riemann states in the paper what is now known as the Riemann

hypothesis, or RH. Here is a translation of what he wrote:

One finds in fact about this many zeros of the zeta function within these

bounds on the critical line, and it is very likely that all of the zeros are on

the critical line. One would of course like to have a rigorous proof of this, but

I have put aside the search for such a proof after some fleeting vain attempts,

because it is not necessary for the immediate objective of my investigation.

(For information about the term “critical line” see Section 2.2 (7).)

Indeed it was shown later that to complete the proof of the prime number

theorem, the main objective of the paper, one did not need to prove the RH,

only to show that the zero-free region for the zeta function includes all of the

lineℜs = 1.

At the 1900 International Congress of Mathematicians, ICM1900, held in

Paris, the great mathematician David Hilbert (Figure 1.6) gave an address in

which he listed the 23 most outstanding problems of the day he considered

worthy of the efforts of mathematicians, and fundamental for the further

advancement of the subject. Problem number eight was the “Riemann

hypothesis”, which conjectured that the complex zeros of ζ(s) all had real

part 1

2
.

The final event in this brief history, and significant for the work reported

in this volume, is one of the consequences of assuming the hypothesis is

true. In 1914, soon after the commencement of World War I when resources

where scarce, the great Indian mathematician Srinivasa Ramanujan published

an article in the Proceedings of the London Mathematical Society titled

Highly composite numbers. At over 50 pages long it must have represented a

considerable publishing challenge. As it turned out, there was a large amount
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1.2 Early History 7

Figure 1.6 David Hilbert, 1862–1943.

of additional material on related topics written by Ramanujan which was not

included in the published work. This was discovered in more recent times,

and a typeset version with notes was eventually published in 1997. It includes

an inequality, derived by Ramanujan, who assumed the Riemann hypothesis

in this case, relating to the sum-of-divisors of an integer arithmetic function

σ(n). This can be stated as follows: for all n ∈N sufficiently large we have

σ(n)

n
< eγ loglogn.

Here γ is Euler’s constant,

γ = lim
n→∞

⎛
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The nice surprise is that this inequality, with an explicit lower bound for n

replacing “sufficiently large”, and other related arithmetic inequalities and

equalities, is equivalent to the Riemann hypothesis. The original inequality

involving σ(n) is the most famous, and the equivalence is known as “Robin’s

theorem”. A detailed history of its evolution is given in [128] with quotes

from Erdős, Hardy, Rankin, Berndt and Nicolas.
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8 Introduction

1.3 Volume One Summary

Except for Chapter 10, the text contains a mostly linear progression of ideas.

In Chapter 2, key properties of the Riemann zeta function, which will be

needed, are outlined and two key parameters developed. This is then followed

in Chapter 3 by explicit estimates for functions of primes, given in such a way

that their derivations can potentially be improved. Then in Chapter 4 some

classical equivalences of the Riemann hypothesis are proved in full. These

are used in the work that follows. In Chapter 5 a set of equivalences, for

the most part in the form of inequalities, involving the Euler totient function

ϕ(n), are derived. Chapter 6 provides preparatory material for Chapter 7 by

developing the properties of two types of so-called “abundant” numbers,

wherein it is the number of divisors that are abundant. These are the numbers

that appear as possible counterexamples to inequalities. In Chapter 7 an

inequality based on values of σ(n), the sum-of-divisors function, is shown

to be equivalent to the hypothesis. In Chapter 8 the focus shifts to numbers

not satisfying the inequality, with several results showing the numbers are

very constrained, so sit in a narrow class. It is expected that this class will

be further constrained. Chapter 7 already contained an alternative inequality,

equivalent to the Riemann hypothesis, and Chapter 9 continues in this mode,

expressing equivalent formulations for the hypothesis in terms of so-called

“extraordinary” numbers and “extremely abundant” numbers.

The final chapter (Chapter 10) breaks the sequence of ideas, by giving ten

other equivalent statements for the Riemann hypothesis, mostly proved in

full. In one form or another, inequalities play a role in these formulations.

The idea of this chapter is to reveal the ubiquitous nature of the hypothesis,

and be the source of new ideas.

Further summary details are given in this section in the paragraphs below.

This first chapter, in Section 1.2, gives a sketch of the genesis of the

Riemann hypothesis. Interestingly, it was not posed as a problem, conjecture

or even hypothesis by its principal author, Bernhard Riemann, but we know

that the issues therein were first publicly discussed in 1859. This date also

marks the origin of what we now call the Riemann zeta function as a function

of a complex variable, ζ(s).

Chapter 2 summarizes some basic properties of the Riemann zeta function,

and gives an intuitive idea of its behaviour. Appendix H “The gamma

function” and Appendix I “Riemann zeta function” in Volume Two [32]

give more background and proofs. The fundamental parameters H and R

are introduced and used throughout the text. The symbol H represents a

y-value up to which all zeros of ζ(s) with positive imaginary part have been

demonstrated to have their real part equal to 1/2. Comments are made, when

needed, on which value of H has been chosen in a particular circumstance.

The value of H that could be used is expected to increase in time, and

theorems and algorithms are presented so new values can be adopted easily.
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1.3 Volume One Summary 9

The value of R describes a simple form for a zero-free region of ζ(s),

namely for ζ(β+ iγ) = 0 we have

β < 1−
1

R logγ
.

It is expected that the value of R will decrease in time. We give the derivation

of Landau, and quote more recent improvements.

Chapter 3 is devoted to numerical estimates, especially of the arithmetical

functions θ(x) and ψ(x). Note that there are additional estimates of products

of functions of primes in Section 5.2. Estimates in this chapter are primarily

derived without using RH. The material depends not only on the work of

Rosser and Schoenfeld in their separate and joint papers of 1941, 1962, 1963

and 1975, but also on von Mangold’s theorems of 1905.

Chapter 4 gives derivations of some well-known explicit classical equiv-

alences to RH. It may be skipped by anyone familiar with introductory

material. The proof of an important theorem of Landau, used in many cases in

the text where RH is assumed to be false, is included. The chapter concludes

with overview material on zero-free regions and a summary of heights up

to which the hypothesis has been shown to hold, with the corresponding

numbers of critical zeros.

The work of Rosser and Schoenfeld is remarkable in that it contains sharp

explicit results produced before computer-based methods became ubiquitous.

In this chapter we take some advantage of the much greater processing

speed now available to extend the ranges for which computer verification

of inequalities is practicable, and the greatly improved height below which

all the zeros of ζ(s), with positive imaginary part, have real part σ = 1

2
.

Improving these estimates is the subject of current research, since they have

a strong influence on the equivalences to RH.

Moving on to Chapter 5, Nicolas proved in 1983 that RH is true if and only

if for every non-prime primorial q we have

q

ϕ(q) loglog(q)
> eγ.

Here a primorial is the product of all primes up to a given prime, so the kth

primorial, say q, is q = Nk := p1 · · · pk, where pi is the ith prime starting with

p1 = 2.

Nicolas improved this result in 2012, and found four statements equivalent

to the Riemann hypothesis. Let Nk = 2 · 3 · · · pk be the kth primorial and let

c(n) :=

(

n

ϕ(n)
− eγ loglog(n)

)

√

logn
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10 Introduction

and define

β :=
∑

ρ

1

ρ(1− ρ)
= 2+γ− logπ− 2log2 = 0.046191 . . . ,

where ρ ranges through the non-trivial zeros of ζ(s) with increasing absolute

value of the imaginary part. Then RH is equivalent to each of the following:

(1) limsupn→∞ c(n) = eγ(2+ β) = 3.644415 . . . .

(2) For all n ≥ N120569 = 2 · 3 · · ·1591883 we have c(n) < eγ(2+ β).

(3) For all n ≥ 2, c(n) ≤ c(N66) = c(2 · 3 · · ·317) = 4.0628356921.

(4) For all k ≥ 1 we have c(Nk) ≥ c(N1) = c(2) = 2.208589 . . . .

From this one shows that the Riemann hypothesis is equivalent to the

following inequality holding for all n ≥ N120569:

n

ϕ(n)
< eγ loglogn+

eγ(2+ β)
√

logn
.

The chapter includes the derivation of useful estimates for treating the Euler

phi function, namely some products and sums of functions of primes. These

depend on the relationship between primes and zeta zeros, and form an

essential basis, along with other estimates, for developing the equivalences.

In Chapter 6, fundamental results to do with two types of number with

many divisors are developed. These are called superabundant and colossally

abundant. The work includes that of Alaoglu, Erdős and Nicolas. These

numbers appear as counterexamples to RH, so are used in the chapters that

follow. We include a corrected proof of a fundamental theorem of Alaoglu

and Erdős.

Chapter 7 is also a fundamental chapter. Grönwall proved in 1913 that

G(n) :=
σ(n)

n loglog(n)
=⇒ limsup

n→∞

σ(n)

n loglogn
= eγ = 1.78107 . . . .

Ramanujan showed, probably in 1915, that if RH is true then for n sufficiently

large we must have G(n) < eγ. Then Robin showed in 1983 that RH is true if

and only if n > 5040 implies G(n) < eγ. Also included is the equivalence of

Lagarias, which is dependent on the result of Robin, namely if Hn = 1+1/2+

· · ·+ 1/n is the n harmonic number, then RH is equivalent to the inequality

σ(n) ≤ Hn + exp(Hn) log(Hn), n ≥ 1.

In Chapter 8, properties of numbers that do not satisfy Robin’s inequality

are explored. The work of Choie, Lichiardopol, Moree and Solé is developed

and extended. In particular it is shown that any integer greater than 5040

not satisfying Robin’s inequality must be even, fail to be squarefree and

not squarefull. The smallest such number must be a so-called Hardy–

Ramanujan number and superabundant. Then it is shown, successively, that
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