How to Divide When There Isn’t Enough

How to Divide When There Isn’t Enough develops a rigorous yet accessible presentation of the state of the art for the adjudication of conflicting claims and the theory of taxation. It covers all aspects one may wish to know about claims problems: the most important rules, the most important axioms, and how these two sets are related. More generally, it also serves as an introduction to the modern theory of economic design, which in the last twenty years has revolutionized many areas of economics, generating a wide range of applicable allocation rules that have improved people’s lives in many ways. In developing the theory, the book employs a variety of techniques that will appeal to both experts and nonexperts. Compiling decades of research into a single framework, William Thomson provides numerous applications that will open a large number of avenues for future research.

William Thomson is the Elmer Milliman Professor of Economics at the University of Rochester. He is the author of several books including *A Guide for the Young Economist*, which has appeared in four translations, and over one hundred articles. In 2001, he won the University Award for Excellence in Graduate Teaching at the University of Rochester. He is a Fellow of the Econometric Society, the Society for Economic Theory, and the Game Theory Society.
Econometric Society Monographs Series

Editors:
Andrea Prat, Columbia University
Stéphane Bonhomme, University of Chicago

The Econometric Society is an international society for the advancement of economic theory in relation to statistics and mathematics. The Econometric Society Monograph series is designed to promote the publication of original research contributions of high quality in mathematical economics and theoretical and applied econometrics.

Books in the Series
O. Compte & A. Postlewaite, Ignorance and Uncertainty, 2019
I. Molchanov & F. Molinari, Random Sets in Econometrics, 2018
S. Maurez, On the Shoulders of Giants: Colleagues Remember Suzanne Scotchmer’s Contributions to Economics, 2017
C. P. Chambers & F. Echenique, Revealed Preference Theory, 2016
J.-F. Mertens, S. Sorins, & S. Samir, Repeated Games, 2015
C. Hsiao, Analysis of Panel Data: 3rd ed., 2014
C. Cameron & P. Trivedi, Regression Analysis of Count Data, 2nd ed., 2013
A. Harvey, Dynamic Models for Volatility and Heavy Tails, with Applications to Financial and Economic Time Series, 2013
R. Vohra, Mechanism Design: A Linear Programming Approach, 2011
I. Gilboa, Theory of Decision under Uncertainty, 2009
F. Vega-Redondo, Complex Networks, 2007
J. Roemer, Democracy, Education, and Equality, 2006
R. Koenker, Quantile Regression, 2005
C. Hsiao, Analysis of Panel Data, 2nd ed., 2003
A. C. Cameron & P. K. Trivedi, Regression Analysis of Count-Data, 1998
R. Guesnerie, A Contribution to the Pure Theory of Taxation, 1995

Continued on page following the index
How to Divide
When There Isn’t Enough

From Aristotle, the Talmud, and Maimonides to the Axiomatics of Resource Allocation

William Thomson

University of Rochester
To Lisa and Rachèle
Contents

List of Figures

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xii</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xix</td>
</tr>
</tbody>
</table>

Acknowledgments

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
</tr>
</tbody>
</table>

General Notation

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxi</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Claims Problems 1

1.2 The Model 3

1.3 Two Puzzles in the Talmud 9

1.4 Three Approaches 11

1.4.1 Direct Approach 12

1.4.2 Axiomatic Approach 12

1.4.3 Game-Theoretic Approach 15

1.5 Historical Note 16

1.6 Road Map 16

1.7 How to Use This Book 17

1.8 Concluding Comment 18

2 Inventory of Division Rules

2.1 An Inventory of Rules 21

2.1.1 Proportional Rule 22

2.1.2 Constrained Equal Awards Rule 23

2.1.3 Constrained Equal Losses Rule 26

2.1.4 Concede-and-Divide 28

2.1.5 Piniles’ Rule 31

2.1.6 Talmud Rule 32

2.1.7 Constrained Egalitarian Rule 34

2.1.8 Random Arrival Rule 37

2.1.9 Minimal Overlap Rule 38

2.1.10 Rule Based on Random Stakes 43

vii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Families of Rules</td>
<td>45</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Sequential Priority Family</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Young’s Family</td>
<td>46</td>
</tr>
<tr>
<td>2.2.3</td>
<td>ICI and CIC Families</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Basic Properties of Division Rules</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>Balance</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Continuity</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Homogeneity</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Lower and Upper Bounds on Awards and Losses</td>
<td>65</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Defining Bounds</td>
<td>65</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Recursive Assignment of Lower Bounds</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Conditional Full Compensation, Conditional Null Compensation, and Related Properties</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Symmetry Properties</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Order Preservation Properties</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>Monotonicity Properties</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>Endowment Monotonicity and Related Properties</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Claim Monotonicity and Related Properties</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Inverse Sets Axioms</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>Claims Truncation Invariance and Minimal Rights First</td>
<td>118</td>
</tr>
<tr>
<td>5.1</td>
<td>Claims Truncation Invariance</td>
<td>119</td>
</tr>
<tr>
<td>5.2</td>
<td>Minimal Rights First</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>Composition Down and Composition Up</td>
<td>131</td>
</tr>
<tr>
<td>6.1</td>
<td>Composition Down</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Composition Up</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>Duality</td>
<td>157</td>
</tr>
<tr>
<td>7.1</td>
<td>Duality for Rules</td>
<td>157</td>
</tr>
<tr>
<td>7.2</td>
<td>Duality for Properties</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>Duality for Theorems</td>
<td>171</td>
</tr>
<tr>
<td>7.4</td>
<td>Characterizations</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>Other Invariance Properties</td>
<td>182</td>
</tr>
<tr>
<td>8.1</td>
<td>No Advantageous Transfer</td>
<td>182</td>
</tr>
<tr>
<td>8.2</td>
<td>Claims Separability and Variants</td>
<td>184</td>
</tr>
<tr>
<td>8.3</td>
<td>Convexity and Additivity Properties</td>
<td>187</td>
</tr>
<tr>
<td>8.4</td>
<td>Rationalizing Rules as Maximizers of Binary Relations</td>
<td>195</td>
</tr>
<tr>
<td>9</td>
<td>Operators</td>
<td>200</td>
</tr>
<tr>
<td>9.1</td>
<td>Claims Truncation Operator</td>
<td>200</td>
</tr>
</tbody>
</table>
Contents

9.2 Attribution of Minimal Rights Operator 202
9.3 Convexity Operator 205
9.4 Relating and Composing the Operators 206
9.5 Preservation of Properties under Operators 214
 9.5.1 Properties Preserved under Claims Truncation 215
 9.5.2 Properties Preserved under Attribution of Minimal Rights Operator 218
 9.5.3 Properties Preserved under the Composition of the Claims Truncation and Attribution of Minimal Rights Operators 219
 9.5.4 Properties Preserved under Convexity 221
9.6 Extension Operators 222
9.7 Summarizing 227

10 Variable-Population Model: Consistency and Related Properties 229
 10.1 The Variable-Population Model 230
 10.2 Consistency and Related Properties 231
 10.3 Converse Consistency 239
 10.4 Other Logical Relations between Consistency, Its Converse, and Other Properties 241
 10.5 Lifting of Properties by Bilateral Consistency 249
 10.6 Characterizations 255
 10.7 Average Consistency 266

11 Constructing Consistent Extensions of Two-Claimant Rules 270
 11.1 A General Extension Technique 271
 11.2 Consistent Extensions of Two-Claimant Rules Satisfying Equal Treatment of Equals 277
 11.2.1 Consistent Extension of Weighted Averages of the Two-Claimant Constrained Equal Awards and Constrained Equal Losses Rules 277
 11.2.2 Two-Claimant Rules that Have No Consistent Extension 282
 11.2.3 Consistent ICI and CIC Rules 283
 11.2.4 Other Consistent Families 288
 11.3 Consistent Extensions of Two-Claimant Rules that May Not Satisfy Equal Treatment of Equals 289
 11.3.1 Generalizing the Talmud Rule by Not Insisting on Equal Treatment of Equals 290
 11.3.2 Consistent Extensions of Two-Claimant Rules Satisfying Homogeneity, Composition Down, and Composition Up 297
Contents

11.4 Further Characterizations Involving Consistency and Other Axioms but Not Equal Treatment of Equals 302

12 Variable-Population Model: Other Properties 308
 12.1 Population Monotonicity and Related Properties 308
 12.2 Guarantee Structures 313
 12.3 Merging and Splitting Claims; Manipulation Issues and Extension Operators 315
 12.3.1 No Advantageous Merging or Splitting and Variants 316
 12.3.2 Extension Operators Based on the Merging of Claims 320
 12.4 Replication and Division: Invariance and Limit Results 324
 12.4.1 Convergence of Rules under Replication 330
 12.5 Balanced Impact and Potential 334
 12.6 Multiple Parameter Changes; Logical Relations and Characterizations 335

13 Ranking Awards Vectors and Ranking Rules 339
 13.1 Orders Based on the Lorenz Criterion 340
 13.1.1 Maximality and Minimality Results 340
 13.1.2 A Criterion for Lorenz-Domination within the ICI Family 342
 13.2 Preservation of Orders by Operators 348
 13.3 Lifting of Orders by Bilateral Consistency 351
 13.4 Other Properties of Rules Pertaining to Orders 352
 13.5 Orders Based on Gap and Variance 354

14 Modeling Claims Problems as Games 359
 14.1 Modeling Claims Problems as Cooperative Games 359
 14.1.1 Bargaining Games 359
 14.1.2 Coalitional Games 367
 14.2 Modeling Claims Problems as Strategic Games 380
 14.2.1 Game of Stakes 380
 14.2.2 Game of Rules 383
 14.2.3 Sequential Game of Offers 388

15 Variants and Generalizations of the Base Model 390
 15.1 Claims Problems in Which No Claim Exceeds the Endowment 390
 15.2 Claims Problems in Which the Data Are Natural Numbers 391
 15.3 Claims Problems with a Large Number of Claimants 393
 15.4 Surplus-Sharing Problems 395
 15.5 Generalizing the Notion of a Rule 396
Contents

15.6 Computational Issues 397
15.7 Incorporating Additional Information into the Model 397
15.8 Experimental Testing 405
15.9 A Concluding Comment 406

16 Summary Graphs and Tables 408

17 Appendices 416
17.1 Deriving a Formula for the Minimal Overlap Rule 416
17.2 More about the CIC Rules 417
17.3 Paths of Awards of the DT Rule 420
17.4 Neither Claim Monotonicity Nor No-Transfer Paradox Is Preserved under the Duality Operator 422
17.5 Claim Monotonicity Is Not Preserved under the Attribution of Minimal Rights Operator 426
17.6 Lifting of Properties by Bilateral Consistency 428
17.7 Characterizing the Family of Equal-Sacrifice Rules 429
17.8 On the Existence and Uniqueness of Average Consistent Extensions 432
17.9 Constructing Consistent Extensions 434
17.10 On the Consistent Members of the CIC Family 436
17.11 Characterizing a Family of Sequential Talmud Rules 438
17.12 Completion of the Proof of the Characterization of Family \mathcal{M} 440
17.13 Population Monotonicity Is Not Preserved under Duality 444
17.14 Characterization of the Constrained Equal Awards Rule as Offering Maximal Group Guarantees 447
17.15 Under Replication, the Random Arrival Rule Converges to the Proportional Rule 449
17.16 Convexity of the TU Coalitional Game Associated with a Claims Problem 452
17.17 Proof of the Correspondence between the Talmud Rule and the Nucleolus, and of the Constrained Equal Awards Rule and the Dutta–Ray Solution 453

References 456

Index 472
Figures

1.1 Identifying the awards vectors of a two-claimant problem page 4
1.2 Identifying the awards vectors of a three-claimant problem 5
1.3 Three ways of depicting a division rule 8
1.4 Two puzzles in the Talmud 10
2.1 Proportional rule 23
2.2 Constrained equal awards and constrained equal losses rules 25
2.3 A simple way to calculate the constrained equal awards vector for a fixed claims vector and three values of the endowment 26
2.4 Constrained equal awards rule 27
2.5 Calculating the constrained equal losses vector for a fixed claims vector and three values of the endowment 28
2.6 Constrained equal losses rule 29
2.7 Scenario underlying concede-and-divide, a two-claimant rule 30
2.8 Concede-and-divide 30
2.9 Piniles’ rule applied to the examples in the Talmud 32
2.10 Comparing Piniles’ rule and concede-and-divide for two claimants 33
2.11 The Aumann–Maschler proposal, which simultaneously rationalizes the recommendations made in the Talmud for the contested garment and marriage contract problems 33
2.12 Constrained egalitarian rule applied to two-claimant examples 37
2.13 Constrained egalitarian rule applied to the two claims vectors in the Talmud 37
2.14 Random arrival rule 39
2.15 Configurations of claims yielding minimal overlap 42
2.16 Minimal overlap rule 42
2.17 Two sequential priority rules 46
List of Figures

2.18 Defining a Young rule 47
2.19 Young representations of the proportional, constrained equal awards, and constrained equal losses rules 49
2.20 Young representation of the Talmud rule when there is a maximal value that a claim can take, c_{max} 50
2.21 Young representations of Piniles’ and constrained egalitarian rules when there is a maximal value that a claim can take, c_{max} 50
2.22 Young representations of the Talmud and Piniles’ rules when no upper bound is imposed on claims 52
2.23 Schedules of awards of a four-claimant ICI rule for a particular claims vector 55
2.24 Paths of awards of four two-claimant ICI rules 58
2.25 Reverse Talmud rule 59
2.26 Young representation of the reverse Talmud rule when there is a maximal value that a claim can take, c_{max} 60
2.27 Paths of awards of four two-claimant CIC rules 61
3.1 The minimal rights lower bounds for two claimants 66
3.2 The minimal rights lower bounds for three claimants 67
3.3 The $\frac{1}{|N|}$-truncated-claims lower bounds on awards for two claimants 70
3.4 Conditional full compensation 77
3.5 Weighted versions of the proportional, constrained equal awards, and constrained equal losses rules 83
3.6 Weighted versions of concede-and-divide 85
3.7 Weighted versions of the Talmud rule seen as a hybrid of the constrained equal awards and constrained equal losses rules 87
3.8 Two rules violating order preservation and one rule satisfying the property for a particular claims vector 90
3.9 Group order preservation for three claimants 92
4.1 Endowment monotonicity 95
4.2 Progressivity and regressivity 100
4.3 Concavity and convexity 101
4.4 Various notions of visibility from below 103
4.5 Various notions of visibility from above 104
4.6 Claim monotonicity 105
4.7 Two violations of claim monotonicity 106
4.8 Bounded gain from claim increase 107
4.9 Two properties pertaining to changes in claims 109
4.10 For two claimants, claim monotonicity implies no transfer paradox 111
List of Figures

4.11 No transfer paradox does not imply claim monotonicity 112
4.12 Two endowment-monotonicity impact properties 113
4.13 Characterizing the constrained equal awards rule 114
4.14 Inverse sets for six rules 116
5.1 Claims truncation invariance 120
5.2 Paths of awards of rules satisfying claims truncation invariance 121
5.3 Illustrating a violation of minimal rights first 124
5.4 Two rules and minimal rights first 125
5.5 Characterizing concede-and-divide 126
5.6 Characterizing the family of weighted concede-and-divide rules 128
5.7 Characterizing a family of nonhomogeneous rules generalizing concede-and-divide 129
6.1 Composition down 132
6.2 Two rules and composition down 133
6.3 The signature of a rule satisfying composition down is a monotone space-filling tree in awards space 135
6.4 If a rule satisfies homogeneity and composition down, its generating curves are visible from the origin except possibly for an initial segment 138
6.5 Monotone path rules are generalizations of the constrained equal awards rule 139
6.6 Composition up 141
6.7 Three rules and composition up 142
6.8 The weighted proportional rules with unequal weights satisfy neither composition down nor composition up 142
6.9 Characterizing the constrained equal awards rule 145
6.10 Characterizing the constrained equal awards rule 148
6.11 Four members of family D 150
6.12 Two members of family D satisfying anonymity 152
6.13 The paths of awards of a rule satisfying homogeneity, composition down, and composition up are piecewise linear in (at most) two pieces 153
6.14 One rule satisfying composition down and composition up, and a second one satisfying homogeneity in addition 155
7.1 Self-duality 158
7.2 Relating the ICI and CIC families 159
7.3 The random arrival rule is self-dual 160
7.4 Averaging the constrained equal awards and constrained equal losses rules 163

© in this web service Cambridge University Press www.cambridge.org
List of Figures

7.5 Duals of a weighted concede-and-divide, Piniles’, and the constrained egalitarian rules 163
7.6 Linked claim-endowment monotonicity 166
7.7 Characterizing the proportional rule: the initial step 173
7.8 Characterizing the proportional rule: iterating 173
7.9 Characterizing the proportional rule: a second proof 175
7.10 Characterizing the constrained equal losses rule 176
7.11 Characterizing concede-and-divide 178
8.1 The constrained equal awards rule violates no advantageous transfer 183
8.2 Two convexity properties 189
8.3 Two additivity properties 190
8.4 Two invariance properties with respect to certain changes in claims vectors 193
8.5 Characterizing concede-and-divide 195
8.6 Two more invariance properties with respect to changes in the claims vector 197
9.1 Proportional rule operated from truncated claims 201
9.2 Constrained equal losses rule operated from truncated claims 202
9.3 Proportional rule operated from minimal rights 204
9.4 Constrained equal awards rule operated from minimal rights 204
9.5 Three weighted averages of the constrained equal awards and constrained equal losses rules 206
9.6 The duality operator relates the claims truncation and minimal rights operators 207
9.7 Relating the claim truncation and attribution of minimal rights operators through duality: an application 209
9.8 The attribution of minimal rights operator and the claims truncation operator commute 211
9.9 Endowment monotonicity is not preserved under claims truncation, even for two claimants 217
9.10 Neither composition down nor composition up is preserved under convexity 222
9.11 Operator to extend to the entire domain a rule \(S \) defined on the domain of problems in which the endowment is at most as large as the largest claim 224
9.12 Operator to extend to the entire domain a rule \(S \) defined on the domain of problems in which the endowment is at least as large as the largest claim 226
10.1 Consistency 232
10.2 The minimal overlap rule is not consistent 233
List of Figures

10.3 Young’s rules are consistent 234
10.4 A generalized Young representation of a monotone path rule 236
10.5 There is at most one bilaterally consistent rule that coincides for two claimants with a prespecified endowment monotonic rule 244
10.6 Elevator Lemma 245
10.7 Lifting of claim monotonicity with the assistance of endowment monotonicity 254
10.8 Characterizing the proportional rule 264
10.9 Average consistency 267
11.1 Constructing the consistent extension of a strictly endowment monotonic two-claimant rule 273
11.2 Constructing the consistent extension, if it exists, of an endowment monotonic (but not strictly so) two-claimant rule 274
11.3 Constructing the consistent extension, if it exists, of an endowment monotonic (but not strictly so) two-claimant rule (continued) 275
11.4 Constructing the consistent extension of a two-claimant weighted constrained equal awards rule 276
11.5 Constructing the consistent extension of concede-and-divide 277
11.6 Proof of Theorem 11.1: constructing the paths of awards for $c_{1,2}, c_{1,3},$ and $c_{2,3}$ 279
11.7 Proof of Theorem 11.1: constructing the first segment of Π 280
11.8 Proof of Theorem 11.1: constructing the first segment of Π (continued) 281
11.9 Young representation of the ICI^γ rule associated with some $\gamma \in \Gamma, ICI^\gamma$ 284
11.10 Proof of Theorem 11.5 286
11.11 A member of family T^1 291
11.12 Proof of Lemma 11.2(i); construction of Π 294
11.13 Proof of Lemma 11.2(ii); relating the claimants’ weights 295
11.14 A member of family M 298
11.15 Lemma 11.5: Partitioning the set of potential claimants into priority classes 300
12.1 Population monotonicity 309
12.2 Who’s who in a replica problem 325
12.3 Showing that anonymity and converse consistency together imply invariance under replication for two-claimant problems 328
12.4 Convergence of the minimal overlap rule to the constrained equal losses rule under replication of a two-claimant example 331
List of Figures

13.1 A criterion for Lorenz domination within the ICI family 344
13.2 Passing from one ICI rule to the other 346
13.3 Characterizing the constrained equal awards rule as gap minimizer 355
13.4 Characterizing the constrained equal awards rule as variance minimizer 355
13.5 Summarizing Lorenz rankings 357
14.1 Claims problems and their associated bargaining games, and two bargaining solutions 362
14.2 The extended equal losses bargaining solution 363
14.3 What it means for a division rule to correspond to a solution to bargaining games 364
14.4 Generating the paths of awards of the equal area rule 365
14.5 Core of the coalitional game associated with a claims problem 371
14.6 What it means for a division rule to correspond to a solution to coalitional games 373
14.7 Commutative diagram 375
14.8 Game in which strategies are claims on specific parts of the endowment 381
14.9 A game of rules for two claimants 384
14.10 A dual game of rules 387
15.1 Two models related to the base model of claims resolution 391
15.2 Two rules for surplus-sharing problems 396
15.3 Nontransferable utility claims problems 398
16.1 Paths of awards for six rules in the two-claimant case 409
16.2 Paths of awards for six more rules in the two-claimant case 410
17.1 Essential uniqueness of the configuration of claims yielding minimal overlap 417
17.2 Schedules of awards of a four-claimant CIC rule for a particular claims vector 419
17.3 Paths of awards of the DT rule 421
17.4 Paths of awards of the DT rule (continued) 422
17.5 Claim monotonicity is not preserved under duality 423
17.6 Rule 17.1 is claim monotonic 424
17.7 No transfer paradox is not preserved under duality 425
17.8 Claims monotonicity is not preserved under attribution of minimal rights 427
17.9 Paths of awards of Rule 17.4 428
17.10 Completing the proof of Lemma 10.14a 430
17.11 Characterizing the family of equal-sacrifice rules 431
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.12</td>
<td>Proof of Theorem 11.3</td>
<td>435</td>
</tr>
<tr>
<td>17.13</td>
<td>Young representations of two CIC* rules</td>
<td>437</td>
</tr>
<tr>
<td>17.14</td>
<td>Lemma 11.7, Substep 1-1</td>
<td>440</td>
</tr>
<tr>
<td>17.15</td>
<td>Lemma 11.7, Substep 1-2</td>
<td>441</td>
</tr>
<tr>
<td>17.16</td>
<td>Lemma 11.7, Step 2, Case 1</td>
<td>442</td>
</tr>
<tr>
<td>17.17</td>
<td>Lemma 11.8</td>
<td>444</td>
</tr>
<tr>
<td>17.18</td>
<td>Population monotonicity is not preserved under duality</td>
<td>446</td>
</tr>
</tbody>
</table>
Tables

2.1 Random arrival scenario applied to a marriage contract problem in the Talmud
16.1 Showing which of the main properties the main rules satisfy
16.2 Showing which properties are preserved under the operators

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Random arrival scenario applied to a marriage contract problem in the Talmud</td>
<td>38</td>
</tr>
<tr>
<td>16.1</td>
<td>Showing which of the main properties the main rules satisfy</td>
<td>411</td>
</tr>
<tr>
<td>16.2</td>
<td>Showing which properties are preserved under the operators</td>
<td>414</td>
</tr>
</tbody>
</table>
Acknowledgments

I thank the National Science Foundation for its support under grants SBR-9731431 and SES-0214691. I delivered a series of lectures at the University of Caen on the problem of adjudicating conflicting claims, and I thank Maurice Salles for giving me the opportunity to do so. I thank my coauthors on various related papers, Christopher Chambers, Youngsub Chun, Diego Dominguez, Toru Hokari, James Schummer, and Chun-Hsien Yeh, for sharpening my understanding of the subject. I also thank Youngsub Chun, Myeonghwan Cho, Sungick Cho, Lars Ehlers, Makoto Hagiwara, Eun Jeong Heo, Toru Hokari, Paula Jaramillo, Biung-Ghi Ju, Hyunkyu Jun, Bawoo Kim, Sun Young Kim, Yehhyun Lee, Lauren Merrill, Eiichi Miyagawa, Sunha Myong, John Stovall, Yuki Tamura, Michael Trubsky, Rodrigo Velez, and Hyeon Yang for their extremely useful comments. Most of all, I thank Çağatay Kayı, Toyotaka Sakai, Cori Vilella, and Chun-Hsien Yeh for their extensive and detailed readings of successive drafts of this manuscript. My greatest debt is to Patrick Harless and Juan Moreno-Ternero for their extremely careful reading of the final version. Finally, I thank the eagle-eyed referees of Cambridge University Press for their multiple suggestions to make my text more readable.
General Notation

Set of natural numbers
Set of real numbers
The closed interval in \(\mathbb{R} \) with endpoints \(a \) and \(b \)
The open interval with endpoints \(a \) and \(b \)
Given \(x, y \in \mathbb{R} \), for each \(i \in \mathbb{N} \), \(x_i \leq y_i \)
For each \(i \in \mathbb{N} \), \(x_i < y_i \)
Vector \(x \) from which \(i \)-th coordinate has been deleted
Vector \(x \) in which \(i \)-th coordinate has been replaced by \(x'_{i} \)
Vector \(x \) with coordinates rewritten in increasing order
Interior of \(A \subset \mathbb{R}^\ell \)
Interior of \(A \subset \mathbb{R}^\ell \) relative to \(\mathbb{R}^\ell_+ \)
Sets of claimants
Generic claims vectors
Generic endowments
Generic claims problems
Domain of problems with claimant set \(A \)
Awards space for claimant set \(A \)
Set of awards vectors of \((c, E) \in C^N \)
Claimant \(i \)'s claim \(c_i \) truncated at \(E \)
Vector of claims \(c \) each truncated at \(E \)
Cardinality of the set \(A \)
Family of finite subsets of \(\mathbb{N} \)
Union \(\bigcup_{N \in \mathbb{N}} C^N \)
Class of strict orders on \(\mathbb{N} \)
Class of weak orders on \(\mathbb{N} \)
General Notation

Class of bijections on N

 ith unit vector in \mathbb{R}^N

 Unit simplex in \mathbb{R}^N

 Vector of equal coordinates in Δ^N

 Given $N' \subset N$, projection of $x \in \mathbb{R}^N$ onto $\mathbb{R}^{N'}$

 Segment connecting x and $y \in \mathbb{R}^N$

 Broken segment connecting $x^1, \ldots, x^k \in \mathbb{R}^N$

 Given $x, y \in \mathbb{R}^N$ such that $x \leq y$, set of vectors ζ such that $x \leq \zeta \leq y$

Notation for Division Rules

Generic rules S, S', \bar{S}, \ldots

Path of awards of S for c $p^S(c)$

Individual Rules

Proportional rule P

Concede-and-divide (for $|N| = 2$) CD

Reverse concede-and-divide (for $|N| = 2$) CD'

Constrained equal awards rule CEA

Constrained equal losses rule CEL

Talmud rule T

Reverse Talmud rule T'

Piniles’ rule Pin

Constrained egalitarian rule CE

Random arrival rule RA

Minimal overlap rule MO

Random stakes rule RS

Adjusted proportional rule AP

Average of CEA and CEL Av

Families of Rules

Sequential priority rule relative to order $\prec \in O^N$ SP^\prec

Sequential Talmud rule relative to order $\preceq \in \Delta^N$ and weights $w \in \Delta^N$ $ST^{\preceq, w}$

Young rule of representation $f \in \Phi$ Y^f

Equal sacrifice rule relative to $u \in \mathcal{U}$ ES^u

ICI rule relative to $H \in \mathcal{H}^N$ ICI^H

CIC rule relative to $H \in \bar{\mathcal{H}}^N$ CIC^H
General Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^θ</td>
<td>TAL rule of parameter $\theta \in \Delta^N$</td>
</tr>
<tr>
<td>U^θ</td>
<td>Reverse TAL rule of parameter $\theta \in \Delta^N$</td>
</tr>
</tbody>
</table>

Operating on Rules

Rule S subjected to the
- attribution of minimal rights operator S^m
- claims truncation operator S'
- duality operator S_d
- operator p and then p' $S^{p \circ p}$