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1 Finite Element Concepts

CHAPTER ROADMAP

In this chapter, we provide a simple introduction to the finite element method (FEM) and how 

it is related to other solution methods for engineering and physics problems. Throughout this 

chapter and the next, we avoid rigorous mathematical developments and equations and use 

simple examples that are easily understood by all students. We identify five basic steps or stag-

es for any type of finite element analysis. These are: modeling and discretization; formulation 

and element equations; assembly; boundary conditions and solution; and finally postprocess-

ing. In commercial FE programs these steps are lumped into three stages: modeling; solution; 

and postprocessing. One of the five steps, namely the assembly process, is quite simple and 

straightforward. A student may actually write a simple and general program in just one page 

that will do the assembly process. On the other hand, most of the research done and the text-

books written in the finite element area involve one or more of the other basic steps or stages. 

Throughout the introduction of the basic steps of the FE method, we introduce definitions of 

conceptual terminology that are common in the FE field, e.g., elements, nodes, boundary condi-

tions, degrees of freedom (DOFs). To enable the students to start the modeling step we highlight 

the common elements used in most commercial programs and their geometry, nodes and DOFs.

This chapter, then, provides a brief account of the history of the development of the FE 

method. This is presented in two parts: the history of the development of the formulation 

and algorithms of the method; and the history of the development of computer hardware and 

software related to the application of the method. The final section of the chapter presents 

some typical applications of the FEM, mostly from the work of the author. These are meant to 

give students an overview of the capabilities and limitations of the method in various fields.

1.1 General Solution of Continuum Problems

There are several approaches to solving engineering problems. The diagram shown 

in Figure 1.1 summarizes the general solution procedures of continuum problems. 

Conventionally, continuum problems are solved by analytical and exact solution 

methods that are normally obtained by direct integration of the governing differ-

ential equations. However, analytical solutions are, generally, limited to simple 

geometries, simple boundary conditions and linear material models. Such condi-

tions are, generally, not applicable to practical engineerng and design problems 

and therefore analytical solutions are usually dificult or even impossible to obtain.

To overcome the dificulties of analytical methods, numerical methods are employed 

to provide approximate solutions. Several numerical methods have been developed 
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2  Finite Element Concepts

over the past decades. Finite difference and numerical integration are two commonly 

used numerical techniques in which the governing differential or partial differential 

equations are solved numerically rather than in a closed form solution. Using these 

techniques, some fairly dificult problems have been solved. Over the past few dec-

ades, these numerical techniques have provided easier alternative solution procedures 

for problems involving different-material models, irregular geometrical boundaries, 

material nonlinearities (e.g., plasticity) and nonlinear boundary conditions.

Another, more recent, numerical approach is the inite element method, which is 

broadly deined as a group of numerical methods for approximating the governing 

equations of any continuous system. The inite element approach has a number 

of distinctive features which make it superior to other numerical approaches. It 

is suitable and easily adaptable for solving problems with general geometry and 

boundary conditions. Also, using this method it is straightforward to incorporate 

nonlinear effects and different-material models and the method may be applied to 

Figure 1.1 General solutions of continuum problems
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 1.1 General Solution of Continuum Problems 3

a wide range of engineering and physics problems. However, developing general 

purpose inite element programs requires intensive effort and many person-years 

of development. Additionally, building inite element models and interpreting the 

results of a model generally consumes a considerable amount of engineering time. 

Depending on the size of the model, heavy computer resources may be required.

Normally, all solution approaches start by analyzing and studying a very small 

part or domain of the structure, which we call an element. The underlying dif-

ference between the inite element approach and other numerical and analytical 

approaches is the choice of element size (refer to the diagram in Figure 1.2). In 

traditional analytical methods, an ininitesimal domain or element of the overall 

structure is used. The ininitely small element has ininitesimal dimensions, e.g., dx, 
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Figure 1.2 Differential and finite element methods
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4  Finite Element Concepts

dy, dz in the case of three-dimensional analyses. The element equations for this 

domain are easily established from physical laws and by using simple calculus of 

variations. Since the dimensions of the domain or the element are ininitesimal, 

the resulting element equations will be differential or partial differential equations. 

In order to obtain the overall system behavior, the element equations have to be 

integrated over the entire domain of the structure and the boundary conditions 

need to be applied. This is where dificulties arise. The analytical or closed form 

integration process is only viable for simple geometries and boundary conditions. 

Incorporating nonlinear effects or nonlinear boundary conditions with complicated 

geometries normally leads to serious dificulties in integrating the element equa-

tions. In other words, the process may be viewed as dividing the physical system or 

structure into an ininite number of ininitesimal size elements and the governing 

differential or partial differential equations are integrated over the entire system.

On the other hand, in the inite element method, the physical system is divided 

or discretized into a number of small but inite-size elements with inite dimen-

sions, e.g., a, b, c in three-dimensional analyses. The main difference here is that 

the element has small but inite dimensions and not ininitesimal dimensions. 

Because of this difference, certain approximations have to be assumed for the 

behavior of physical quantities over the domain of the element. Since the element 

is generally small, approximating the physical behavior within the element should 

be an easy task. This fact leads to a set of governing equations for the element 

that is algebraic. These element equations may be linear or nonlinear but they 

are still algebraic and not differential. To obtain the overall system behavior, the 

governing equations of all elements in the system are assembled to obtain a global 

system of equations. This process is analogous to the integration process in the 

analytical approach. Boundary conditions are then applied to the global system 

of equations for the overall structure. The global system of equations in the inite 

element approach may be linear or nonlinear algebraic equations. The solution of 

these equations may be obtained using matrix and linear algebra techniques.

• Approaches to solving engineering and physics problems usually start by 

analyzing a very small part or domain of the structure. The underlying dif-

ference between the finite element approach and other numerical and an-

alytical approaches is the choice of the element size (refer to the diagram 

in Figure 1.2). In traditional analytical methods, an infinitesimal domain or 

element of the overall structure is used, leading to a differential equation or 

partial differential equation (PDE). In the finite element approach, a small 

but finite size of domain or element is used, leading to algebraic equations.

Remarks
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 1.2 What is the Finite Element Method? 5

1.2 What is the Finite Element Method?

In the above section, we presented a brief overview of the inite element method 

and its relation to and differences from traditional analytical methods. In this 

section, we provide a more detailed account of the basic ideas and procedures on 

which the method is based.

To explain the basis of the method, we consider a very simple example. Suppose we 

want to determine the area of an irregular-shaped geometry as shown in Figure 1.3.  

One obvious way to do this is to divide the area into basic geometries such as 

rectangles and triangles, to calculate the area of each subdivision, and then to 

sum these areas to get the overall required area of the irregular geometry. This 

very simple procedure essentially provides the basic steps of a generalized inite 

element procedure.

In this example, the area is divided into ive rectangles and a triangle. In a 

typical inite element procedure, these subdivisions or subdomains are called ele-

ments and the process of subdividing the structure into small elements is called 

discretization, or meshing. Here, we may simply calculate the area of each of the 

subdivisions or elements. This is possible since we know the behavior of each sub-

division or element, i.e., we know the element area equations. In the general case, 

however, the behavior and the equations of each subdivision or element may be 

unknown and have to be derived.

1

2 3

4

5
6

Figure 1.3 Area of an irregular shape

• The above remark indicates that, conceptually, if a problem can be described 

or solved by DEs or PDEs then the same would be true if finite element 

equations are used.

Remarks (cont.)
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6  Finite Element Concepts

After establishing all element equations, we establish the global equations of the 

system. In our simple example, we seek to calculate the area of the irregular shape, 

which in more general terms represents the overall system behavior. In our exam-

ple, this is simply achieved by summing all the areas of the individual elements to 

obtain the global picture or equation for the area of the structure. In a typical inite 

element procedure, this step is called the assembly and solution.

To summarize the above steps for our simple example: we irst discretize the 

structure (called meshing or modeling), write the equations for each element (the 

element characteristic equations), add up all the individual element equations 

(assembly) and ind the overall behavior of the structure (the solution).

To further clarify the above steps, we consider the example of calculating the 

area of a circle. We will assume that we do not know the equation for the area, i.e., 

the system behavior is unknown. First, we subdivide or discretize the circle into 

smaller elements that are easier to analyze, i.e., for which it is easier to calculate 

the area. In this case, we choose an element with a triangular shape and consider 

eight elements, as shown in Figure 1.4. The collection of the eight elements that we 

use for discretization is called the mesh or model. Unlike in the previous example, 

we realize that there is a slight difference between the area of the discretized model 

and the area of the actual problem or system. This difference is due to the fact that 

the chosen elements have straight edges that will not exactly match the boundary 

of the original system unless there is an excessively large or ininite number of ele-

ments. This leads to an important conclusion: the more elements we use, the more 

accurate the results will be. In fact this is not only due to the fact that the elements 

are straight sided. To explain this point further, we consider a more general case of 

discretization, in which we do not know the element equation or element behavior. 

In such a case, we have to introduce certain approximations to derive character-

istic equations for the elements. Obviously, if we choose smaller element sizes, it 

will be easier to introduce more reasonable assumptions and the resulting element 

characteristic equations will be more accurate. Therefore, in order to increase the 

accuracy of the results, the densities of the elements have to be increased.
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Figure 1.4 Area of a circle
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 1.2 What is the Finite Element Method? 7

The remaining steps are quite similar to those performed in the example cor-

responding to Figure 1.3. For this example, the element characteristic equations 

are those for the areas of each element. The next step is to sum all the element 

equations or to perform the assembly process. The global system of equations, or 

the area of the circle, will simply be the summation of all the element areas.

The above example is, to some extent, trivial. To enforce ideas, we now consider 

a slightly different and more elaborate example. Consider a beam or shaft problem, 

as shown in Figure 1.5. The beam has three different cross sections, A
1
, A

2
 and A

3
 

with corresponding lengths l
1
, l

2
 and l

3
. The beam is subjected to an axial load P 

as shown in Figure 1.5 and it is required to calculate the delection at the end of 

the beam.

Following the same steps as the previous two examples, we start by modeling 

the beam using simple elements. In this example, we choose three axial spring 

elements to discretize and model the beam. The element numbers in Figure 1.5 are 

identiied by a circle around the number. The next step is to derive the element 

characteristic equations. In this case, we need to derive an equation that relates the 

force in each element to the response or the displacement of the element. This may 

not be a trivial equation, as in the previous two examples, but it may still be easy 

to derive. Each element is represented by an axial spring having only extensional 

degrees of freedom (DOF). The stiffness of each spring may be calculated using 

the equation

 k
E A

l
ino sum oni

i i

i

)(=  (1.1)

where i is the element number, k is the element stiffness, E is Young’s modulus for 

the element material, A is the cross sectional area of the element and l is the ele-

ment length. Having calculated the stiffness, the net extension or net displacement 

in each element may be readily obtained from the following equation:

 F k u
i

i=
( )  (1.2)

where F(i) is the force on the spring element, k
i
 is the element stiffness and u 

is the net extension or displacement in the element. Although Equation 1.2 
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Figure 1.5 Extension of a beam or shaft
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8  Finite Element Concepts

seems simple, it requires further discussion. We start by looking at the force on 

the element, F(i). Since Equation 1.2 represents the behavior or the equilibrium 

equation of the element, the element forces will be those forces acting on the 

element when it is separated from the structure as a free body. These are the 

reactions from the structure on the element at the points where the element is 

connected to the structure or what is normally called the element internal forces. 

Obviously, in the case of a simple spring element, these will be equal and oppo-

site forces at the end points of the element. Thus, for element 1, we have two 

equal and opposite forces at points 1 and 2 F F( , )1

1

2

1( ) ( ) ; for element 2, we have 

two equal and opposite forces at points 2 and 3 F F( , )2

2

3

2( ) ( ) ; and for element 3, we 

have two equal and opposite forces at points 3 and 4 F F( , )3

3

4

3( ) ( ) . The free body 

diagram for each element is shown in Figure 1.5. An important note should be 

given here. The element forces have been identiied with a superscript indicat-

ing the element number and a subscript indicating the point of application. This 

is now essential, since, in general, we may have more than one element meet-

ing at a given point. The equilibrium at each such point indicates that the sum 

of the external and internal forces at the point must be zero and the external 

forces at such a point will be shared by the elements meeting at the point. These 

points of connection between the element and its neighboring elements or with 

the supports are called nodes. In this example, we have four nodes, marked as 

1, 2, 3 and 4. The equilibrium of each node requires that the vector sum of all 

the forces at this node be zero, in the case of free nodes such as nodes 2 and 3, 

and equal to the external force or the reaction at nodes 4 and 1. According to 

the assumed force directions in Figure 1.5, this leads to the following relations 

for the nodal forces:

 F R F F F F F P, , ,1

1

1 2

1

2

2

3

2

3

3

4

3
= = − = − =

) ) ) ) ) )( ( ( ( ( (
 (1.3)

Now, we turn our attention to the response or the displacement of the element. 

In this case, the response is simply measured by the net displacement in the 

element. This will be u
2
 – u

1
 for element 1, u

3
 – u

2
 for element 2 and u

4
 – u

3
 for 

element 3.

Equation (1.2) for each element may now be rewritten in a more detailed way 

as follows:

 

For element F k u u F R k u u

For element F k u u F k u u

For element F P k u u F k u u

1: ( ), and ( ),

2 : ( ), and ( ),

3 : ( ), and ( )

2

(1)

1 2 1 1

(1)

1 1 2 1

3

(2)

2 3 2 2

(2)

2 3 2

4

(3)

3 4 3 3

(3)

3 4 3

= − = = − −

= − = − −

= = − = − −
 

(1.4)

It should be noted that in Equations 1.3, 1.4 we have assumed that the forces on 

each element are equal in magnitude and opposite in direction.
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 1.2 What is the Finite Element Method? 9

The next step is to assemble all element equations to obtain the overall system 

or global equations. By eliminating u
2
 and u

3
 from equation 1.4 and noting that 

all the forces in the elements are simply equal to P, we may obtain the following 

relation for the response of the system:

 u P
k k k

u
1 1 1

4

1 2 3

1= + +








 +  (1.5)

The above equation represents the overall system behavior before the boundary 

conditions are applied. It should be noted that by assigning any value to u
1
we have 

ininite solutions for the displacement u
4
. In order to complete the solution for the 

response of the system, i.e., in order to obtain a unique value for the displacement 

u
4
, we need to introduce the boundary condition which is simply u

1
 = 0. It should 

be noted here that without introducing boundary conditions, the global system 

equations (Equation 1.5 in this case) will have ininite solutions. For the general 

case, this means that the matrix representing the global system of equations is 

singular and is not a positive deinite matrix.

Introducing the boundary condition u 01 =  reduces the inal system or global 

equation to the following form:

 ∑= = + +






=






=

/ /P K u K
k k k k

where 1
1 1 1

1
1

g g

i i

4

1 2 3 1

3

 (1.6)

Equation 1.6 represents the assembly process and may be readily veriied by sum-

ming the stiffness of the three spring elements. The inal solution step is to solve 

Equation 1.6 to obtain the displacement u
4
.

Although the above example is a simple one, it essentially introduces the basic 

steps involved in linear inite element structural analysis, which may be summa-

rized as follows:

1. Modeling and Discretization (Preprocessing):

 In this step, the structure is divided into small elements that will be easier to 

study.

2. Element Characteristic Equations:

 In this step, each element is studied separately to derive its equilibrium or char-

acteristic element equations.

3. Assembling of Element Equations:

 In this step, all element equations are assembled into a global system of equa-

tions. In the third example presented above, this process is performed by 

eliminating internal variables. This is not the general approach, and a more 

systematic method will be presented to establish the assembled global equa-

tions of the system. In general, this step is straightforward and simple.
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10  Finite Element Concepts

4. Solution of Global Equations:

 In this step, we irst apply the boundary conditions of the global structure. 

Without applying the proper boundary conditions of the structure, the global 

equations may have an ininite number of solutions and the matrix represent-

ing the global equations will be singular.

We now present another example to clarify and highlight the basic procedures 

discussed in the above section.

It is required to calculate the area of the irregular shape given in Figure 1.6. Also, 

it is required to calculate the ratio of the bottom leg’s rectangular area to the total 

area of the structure.

Approach and Assumptions
This is a simple example in which we demonstrate the solution steps and which 

we will use as a reference for other more realistic examples. Since we do not 

know an equation to give us the area of the shape, we divide the shape into 

smaller regions (later called elements) that we can easily handle (i.e., in this case, 

whose area we can easily find). There is no conceptual constraint that requires 

these elements to be of the same type and/or shape.

EXAMPLE 1.1

2

1

3

4

5
6

Irregular shape Model for calculating the area
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Figure 1.6 Calculating the area of an irregular shape

www.cambridge.org/9781107194083
www.cambridge.org

