Introduction to Spacecraft Thermal Design

Develop a fundamental understanding of heat transfer analysis techniques as applied to Earth-based spacecraft with this practical guide. This essential text is written in a tutorial style and provides a how-to manual tailored for those who wish to understand and develop spacecraft thermal analyses. Providing an overview of basic heat transfer analysis fundamentals such as thermal circuits, limiting resistance, MLI, environmental thermal sources and sinks, as well as contemporary space-based thermal technologies, and the distinctions between design considerations inherent to room temperature and cryogenic temperature applications, this is the perfect tool for graduate students, professionals, and academic researchers.

Dr. Eric A. Silk is a lecturer in the Aerospace Engineering Department at the University of Maryland, College Park with 22 years of engineering experience in thermal system design and analysis for space-based systems.

Cambridge Aerospace Series

Editors: Wei Shyy and Vigor Yang

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury (ed.): Airship Technology, Second Edition
- 11. J. P. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, Second Edition
- 13. J. Katz and A. Plotkin: Low-Speed Aerodynamics, Second Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, Second Edition*
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity, Second Edition*
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Numerical Methods for High-Speed Flows
- 20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics
- 21. D. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: *Aerodynamics of Low Reynolds Number Flyers*
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. K. Kundu: Aircraft Design
- 28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: Dynamics of Rotating Machines
- 29. B. A. Conway (ed): Spacecraft Trajectory Optimization
- 30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
- 31. G. A. Flandro, H. M. McMahon, and R. L. Roach: Basic Aerodynamics
- 32. H. Babinsky and J. K. Harvey: Shock Wave-Boundary-Layer Interactions
- 33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach
- 34. A. Filippone: Advanced Aircraft Flight Performance
- 35. I. Chopra and J. Sirohi: Smart Structures Theory
- 36. W. Johnson: Rotorcraft Aeromechanics vol. 3
- 37. W. Shyy, H. Aono, C. K. Kang, and H. Liu: An Introduction to Flapping Wing Aerodynamics
- 38. T. C. Lieuwen and V. Yang: Gas Turbine Emissions
- 39. P. Kabamba and A. Girard: Fundamentals of Aerospace Navigation and Guidance
- 40. R. M. Cummings, W. H. Mason, S. A. Morton, and D. R. McDaniel: *Applied Computational Aerodynamics*

- 41. P. G. Tucker: Advanced Computational Fluid and Aerodynamics
- 42. Iain D. Boyd and Thomas E. Schwartzentruber: *Nonequilibrium Gas Dynamics and Molecular Simulation*
- 43. Joseph J. S. Shang and Sergey T. Surzhikov: Plasma Dynamics for Aerospace Engineering
- 44. Bijay K. Sultanian: Gas Turbines: Internal Flow Systems Modeling
- 45. J. A. Kéchichian: Applied Nonsingular Astrodynamics: Optimal Low-Thrust Orbit Transfer
- 46. J. Wang and L. Feng: Flow Control Techniques and Applications
- 47. D. D. Knight: Energy Disposition for High-Speed Flow Control
- 48. Eric A. Silk: Introduction to Spacecraft Thermal Design

Introduction to Spacecraft Thermal Design

ERIC A. SILK University of Maryland

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107193796 DOI: 10.1017/9781108149914

© Eric A. Silk 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Silk, Eric, author.

Title: Introduction to spacecraft thermal design / Eric Silk.

Description: New York : Cambridge University Press, 2020. | Series: Cambridge aerospace series | Includes bibliographical references and index.

Identifiers: LCCN 2019049044 (print) | LCCN 2019049045 (ebook) | ISBN 9781107193796 (hardback) | ISBN 9781108149914 (epub)

Subjects: LCSH: Space vehicles-Thermodynamics. | Heat-Transmission. | Space vehicles-Cooling. | Low temperature engineering.

Classification: LCC TL900 .S54 2020 (print) | LCC TL900 (ebook) | DDC 629.47–dc23 LC record available at https://lccn.loc.gov/2019049044

LC ebook record available at https://lccn.loc.gov/2019049045

ISBN 978-1-107-19379-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This work is dedicated to the two women that delivered me to my undergraduate educational institution (freshman year) where this journey began: my mother Rachel Silk and my aunt Maple Skinner.

1

2

3

4

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

Contents

List	of Figures	<i>page</i> xi
List	of Tables	xix
Nom	nenclature	xxi
Subs	scripts	xxvi
Intro	oduction	1
1.1	Background	1
1.2	Why Is Space Important?	1
1.3	Space-Based Thermal Energy Analysis Constructs	3
1.4	Units	4
1.5	Fundamental Heat Transfer Mechanisms	5
1.6	The Energy Balance	9
1.7	Supplemental Resources	10
Cond	duction Heat Transfer Analysis	13
2.1	Introduction	13
2.2	1-D Conduction	13
2.3	Finite Difference, Finite Element and the Energy Balance	25
2.4	Radial Geometries	37
2.5	2-D Conduction Shape Factors	42
2.6	Honeycomb Panel Structures	44
2.7	Lumped Body Heating Methodology	46
Radi	iative Heat Transfer Analysis	64
3.1	Fundamentals of Radiation	64
3.2	The Blackbody	65
3.3	Real Surfaces	71
3.4	Radiative Heat Transfer between Surfaces	77
3.5	Multilayer Insulation	96
The	Space Environment	114
4.1	Design Considerations	114
4.2	Earth-Based vs. Deep Space Missions	116
4.3	Astrodynamics Fundamentals	119
4.4	Lagrange Points	121
		іх

© in this web service Cambridge University Press

Х	Contents	
	4.5 Environmental Thermal Heating	123
	4.6 Analysis Methodologies	131
	4.7 Reduced Node SpaceCube Analysis	139
5	Space-Based Advanced Thermal Conductance and Storage Technologies	165
	5.1 Space-Based Technologies	165
	5.2 Transfer Processes	165
	5.3 Fundamental Technologies	167
	5.4 Boiling Heat Transfer Components in 1-g and Microgravity	181
	5.5 Thermoelectric Coolers and Generators	216
	5.6 Phase Change Materials	226
6	Sensors, Instrumentation and Test Support Hardware	263
	6.1 Introduction	263
	6.2 What Is a Sensor?	263
	6.3 Heaters	268
	6.4 Test Support Equipment	272
	6.5 Error Analysis	276
7	Fundamentals of Cryogenics	284
	7.1 Background	284
	7.2 Materials at Cryogenic Temperatures	285
	7.3 Transfer Processes at Low Temperature	293
	7.4 Design Features of Cryogenic Systems	300
	7.5 Standard Methods for Cool-Down	303
8	Developmental and Environmental Testing	333
	8.1 Background	333
	8.2 Spacecraft Systems Test Philosophy	334
	8.3 Assembly-Level Testing	337
	8.4 Cryogenic Considerations	338
	Appendix A	341
	Appendix B	345
	Appendix C	352
	Index	355
	Solutions	361

Figures

1.1	Heat flows onboard a simplified space structure	page 4
1.2	1-D heat flow through a solid	6
1.3	Molecular lattice	7
1.4	Heat transfer resultant from fluid flow over a heated surface	7
1.5	A surface radiating thermal energy away	9
1.6	Control volume undergoing thermal energy exchange, storage and	
	generation	9
P1.1	Control volume with energy storage	11
P1.2	Control volume with a heat flux boundary condition	11
P1.3	Rectangular control volume with unknown boundary temperature	11
P1.4	Convective heat transfer from a heated surface	12
P1.5	Radiating heat transfer surface	12
2.1	Heat flow through a 1-D plane wall	14
2.2	Thermal circuit for heat flow through a 1-D plane wall	15
2.3	Composite wall structure experiencing convective heat transfer along one	•
	boundary	16
2.4	Thermal circuit for composite wall structure with a convective boundary	
	condition	16
2.5	Composite wall structure with variable material cross-sectional area	17
2.6	Thermal circuit for composite wall structure with variable cross-	
	sectional area	18
2.7	Thermal circuit configuration with four parallel resistances	21
2.8	Composite wall parallel resistances along heat flow path	22
2.9	Thermal circuit for composite wall with multiple parallel resistances	22
2.10	Thermal circuit for Example 4 using adiabatic boundaries in the y	
	direction	23
2.11	Thermal circuit with multiple heat input locations	25
2.12	Thermal resistance network for circuit with multiple heat input locations	25
2.13	Finite difference and finite element nodalization schemes	26
2.14	Finite difference element configuration in thermal communication with	
	surrounding elements: a) element configuration; b) resistance network	27
2.15	Example finite difference nodal scheme	28
2.16	Thermal circuit and resistance for elements of unequal length and	
	aligned nodes	28
2.17	Elements with misaligned nodes	29

xi

xii L	ist of Figures
-------	----------------

2.18	Thermal circuit with aligned nodes and different cross-sectional areas Resistance network for thermal circuit with aligned nodes and different	29
2.19	cross sectional areas	30
2 20	Electronics how mounted on an L-bracket	31
2.20	Resistance network for L-bracket problem	31
2.21	Electronics hav mounted on top of a six-sided structural box	33
2.22	Resistance network for E-box on a box problem	34
2.23	Basic hollow cylinder geometry	38
2.24	Cross-section of concentric cylinders	30
2.25	Thermal circuit for concentric cylinder problem	30
2.20	Hollow cylinders with a shared interface	40
2.27	Hollow cylinder viewed along longitudinal axis	41
2.20	Square cylinder with a hollow circular channel along the longitudinal axis	44
2.2)	Honeycomb structures: a) Ribbon bonding layout: b) Cell-based view	45
2.30	Profile of honeycomb panel radiator	45
2.31	Resistance circuit for honeycomb panel configuration	45
2.32	Aluminum slab at initial temperature $T_{\rm c}$	46
P2.1	Composite wall with common cross-sectional area	51
P2 2	Misaligned nodes along heat flow path	51
P2.3	Thermal circuit with divergent heat flow path (bi-directional)	52
P2.4	Thermal circuit with divergent heat flow path (tri-directional)	52
P2.5	Thermal circuit with divergent heat flow path (bi-directional)	52
1 2.0	w/different aspect ratios)	53
P2.6	Composite wall with variation in element shape factors	53
P2.7	Radial configuration of a concentric geometry	54
P2.10	Thermal circuit nodalization comparison: a) reduced nodalization for	
	use with projection technique; b) increased nodalization for use without	
	projection technique	55
P2.11	Bellows tube	56
P2.12	Multi-element C-bracket with multiple heat inputs	57
P2.13	Multi-element wishbone bracket with multiple heat inputs	57
P2.15	Six-sided cubic enclosure with internal E-boxes	58
P2.16	Multi-tiered E-box mounting plates	59
P2.18	E-box with conductive path to a remote temperature sink	60
P2.19	T-bracket E-box mount configuration: a) side view; b) lateral view;	
	c) parallel struts for members 1 and 3	61
P2.20	Three E-boxes mounted on interior wall of hollow box	62
P2.21	Honeycomb panel parts separated	62
P2.22	Honeycomb L-bracket space platform	63
3.1	Virtual hemisphere for definition of blackbody emissive power	65
3.2	Differential surface area on the virtual hemisphere	66
3.3	Directional dependence for radiation intensity: a) direction of variation;	
	b) spectral hemispherical and directional intensity	67
3.4	Hemispherical spectral emissive power as a function of wavelength	68
3.5	Irradiation of a differential surface area	71

	List of Figures	xiii
3.6	Radiosity phenomena on a real surface	72
3.7	Absorption, reflection and transmission on a real opaque surface	73
3.8	Thermal energy exchange for an isothermal enclosure	75
3.9	Gray body spectral surface properties behavior	76
3.10	Viewing surfaces in the virtual enclosure: a) angular relations between	
	surface normal; b) differential solid angle for view of dA_2 within	
	dA_1 's FOV	77
3.11	Radiosity from a concave surface	79
3.12	Flat disk in a hollow cubic enclosure	80
3.13	L-bracket with three area sections	81
3.14	Simple surface in Earth orbit	82
3.15	Curved surfaces viewing each other	83
3.16	A sphere inside a spherical enclosure	85
3.17	Heat flows for an opaque gray body surface	86
3.18	Radiative thermal resistance for net heat transfer from a surface	87
3.19	Radiative thermal resistance for net heat transfer between two surfaces	88
3.20	Radiative thermal resistance for net heat transfer between surface <i>i</i> and	
	surfaces 1 and 2	88
3.21	Enclosure with two gray body active surfaces	89
3.22	Radiative thermal circuit for enclosure with two gray body active surfaces	89
3.23	Enclosure with three gray body active surfaces	90
3.24	Radiative thermal circuit for enclosure with three gray body active	0.0
2.25	surfaces	90
3.25	Photon reflection from gray body surfaces	92
3.26	Resistance for net heat transfer between gray body surfaces	94
3.27	Infinite parallel planes viewing each other	96
3.28	Radiation shield between two parallel planes	97
3.29	MLI stack-up: a) radiative and insulating MLI layers; b) sample MLI	00
2 20	coupon	99
3.30	MLI blanket elements	102
3.31 D2 2	Effect of gas pressure on thermal conductivity in an MLI blanket	102
P3.3	Subdivided elements perpendicular to one another joined at a	104
D2 4	Subdivided elements 00° out of plane with a remote element	104
P3.4	Subdivided elements 90° out of plane with a remote element	104
F3.3	Laterary subdivided elements perpendicular to one another joined at a	104
D2 8	Compound anglesures in a nested oven configuration	104
F 3.0 D2 0	Example of single rediction shield	105
F 3.9 D2 10	Matel cleave with four surfaces	100
D2 11	Opposing triangular anglesures with a common base	100
D2 12	Surface analogura with blocked view to interior from corner group	107
P2 12	Surface cherosure with blocked view to interior from corner areas	107
1 J.1 J P2 14	Sphere suspended in a cylindrical analosura	100
P3 15	Elat surface with normal perpendicular to padir direction	100
P2 16	Cubic structure with one side facing padir direction	109
1 5.10	Cubic subclute with one side facing flaun uncenton	109

xiv

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

List of Figures

P3.18	Probe exterior surface covered with MLI	109
P3.20	Enclosure with E-box mounted on an L-bracket: a) side profile;	
	b) E-box dimensions; c) L-bracket base dimension	110
P3.21	Calorimetric sensor in a spherical cavity	111
P3.22a	Internal geometry of SpaceCube	112
P3.22b	SpaceCube interior components, view in A-A direction	112
4.1	Radiative waves experienced by Earth at distance (r) from the Sun	117
4.2	Earth and beta angle, side profile at winter solstice location	119
4.3	Beta angles at 66.6° inclination relative to the equatorial plane as	
	viewed from the Sun	120
4.4	Circular and elliptical Earth-based orbits	120
4.5	Sun-Earth system Lagrange points	122
4.6	Thermal equilibrium case for a bare surface in space	123
4.7	Node <i>i</i> with energy inputs and outputs	124
4.8	Embedded node coupled to spacecraft exterior structure node	124
4.9	MLI node coupled to spacecraft exterior structure node	126
4.10	Relationship between the solar constant and the projected	
	surface area	129
4.11	Simple surface orbit path viewed from the Sun	132
4.12	A-A view of maximum and minimum orbit positions (shown with orbit	
	inclination of 66.6° relative to the equatorial plane and $\beta = 0^{\circ}$)	132
4.13	Transient vs. orbit time for an anti-nadir-facing flat plate in orbit	138
4.14	SpaceCube configuration	139
4.15	Maximum and minimum orbit positions for SpaceCube (shown	
	with orbit inclination of 66.6° relative to the ecliptic plane and $\beta = 0^{\circ}$)	140
4.16	SpaceCube thermal couplings for 60 W energy dissipation case	140
4.17	Energy balance at node 1	141
4.18	Energy balance at node 2	141
4.19	SpaceCube with uniform heat loss through MLI	145
4.20	SpaceCube with E-box separated from radiator	149
4.21	SpaceCube heat flows for nodes 1 and 2 with 60 W energy dissipation	
	from remote E-box	149
4.22	SpaceCube thermal couplings at node 3 with 60 W energy dissipation	
	from remote E-box	150
4.23	Box (or SpaceCube) configuration with remote E-box and added conduct	tor
	coupling to radiator	152
4.24	Heat flow for PV cell stack mounted on a honeycomb substrate	153
4.25	Spacecraft and solar array PV cell thermal energy capture area	154
4.26	Spacecraft and solar arrays, A–A view	154
P4.2	Thermal performance of a flat plate at varying angles of the surface nor	nal
	relative to the solar constant	155
P4.4	Maximum and minimum orbit positions with orbit inclination of 66.6°	
	relative to the equatorial plane and $\beta = 0^{\circ}$	156
	· · · ·	

P4.6 Spinning cubic structure illuminated by the Sun 157 P4.7 Example Orbit positions for a flat plate transient analysis 157 P4.8 Sunshields mitigating solar loading 158 P4.9 Spacecraft profile 159 P4.10 SpaceCube in orbit around the Sun at 1 AU 159 P4.11 Total thermal environmental load for a nadir-facing CubeSat in orbit 160 P4.14 Two-node SpaceCube with active surface viewing Earth 161 P4.16 SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane 162 P4.17 Two-node SpaceCube with active surface viewing celestial bodies 162 P4.18 SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions 163 P4.19 Solar array thermal loading in space 164 164 S.1 Heat pump system with associated thermomachinery 169 S.2 Plot for Neon Joule–Thomson coefficient curve 169 S.3 Vapor compression cycle on P-h diagram 170 S.4 Heat pump system with an LLSL-HX 174 S.5 Thermal strap connecting heat source and heat sink 177 <
P4.6Spinning cubic structure illuminated by the Sun157P4.7Example Orbit positions for a flat plate transient analysis157P4.8Sunshields mitigating solar loading158P4.9Spacecraft profile159P4.10SpaceCube in orbit around the Sun at 1 AU159P4.11Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14Two-node SpaceCube with active surface viewing Earth161P4.16SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17Two-node SpaceCube with active surface viewing celestial bodies162P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2
P4.7Example Orbit positions for a flat plate transient analysis157P4.8Sunshields mitigating solar loading158P4.9Spacecraft profile159P4.10SpaceCube in orbit around the Sun at 1 AU159P4.11Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14Two-node SpaceCube with active surface viewing Earth161P4.16SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17Two-node SpaceCube with active surface viewing celestial bodies162P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g usi
P4.8Sunshields mitigating solar loading158P4.9Spacecraft profile159P4.10SpaceCube in orbit around the Sun at 1 AU159P4.11Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14Two-node SpaceCube with active surface viewing Earth161P4.16SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17Two-node SpaceCube with active surface viewing celestial bodies162P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower186
P4.9Spacecraft profile159P4.10SpaceCube in orbit around the Sun at 1 AU159P4.11Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14Two-node SpaceCube with active surface viewing Earth161P4.16SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17Two-node SpaceCube with active surface viewing celestial bodies162P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2 second drop tower1865.12Heat pine sections with liquid and vapor flows187
P4.10SpaceCube in orbit around the Sun at 1 AU159P4.11Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14Two-node SpaceCube with active surface viewing Earth161P4.16SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17Two-node SpaceCube with active surface viewing celestial bodies162P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2 second drop tower1865.12Heat pine sections with liquid and vapor flows187
P4.11 Total thermal environmental load for a nadir-facing CubeSat in orbit160P4.14 Two-node SpaceCube with active surface viewing Earth161P4.16 SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17 Two-node SpaceCube with active surface viewing celestial bodies162P4.18 SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19 Solar array thermal loading in space1645.1 Heat pump system with associated thermomachinery1695.2 Plot for Neon Joule–Thomson coefficient curve1695.3 Vapor compression cycle on P-h diagram1705.4 Heat pump system with an LLSL-HX1745.5 Thermal strap connecting heat source and heat sink1775.6 View of endpoint cross-sections for braid and foil assembly conductors1785.7 Composite foils approximating to a contiguous material conductor1785.8 Braided thermal strap with header and footer flanges1795.9 Pool-boiling diagram1825.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2 second drop tower1865.12 Heat pipe sections with liquid and vapor flows187
P4.14 Two-node SpaceCube with active surface viewing Earth161P4.16 SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17 Two-node SpaceCube with active surface viewing celestial bodies162P4.18 SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19 Solar array thermal loading in space1645.1 Heat pump system with associated thermomachinery1695.2 Plot for Neon Joule–Thomson coefficient curve1695.3 Vapor compression cycle on P-h diagram1705.4 Heat pump system with an LLSL-HX1745.5 Thermal strap connecting heat source and heat sink1775.6 View of endpoint cross-sections for braid and foil assembly conductors1785.7 Composite foils approximating to a contiguous material conductor1785.8 Braided thermal strap with header and footer flanges1795.9 Pool-boiling diagram1825.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2 second drop tower1865.12 Heat pipe sections with liquid and vapor flows187
P4.16 SpaceCube in LEO at inclination of 6.6° relative to the equatorial plane162P4.17 Two-node SpaceCube with active surface viewing celestial bodies162P4.18 SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19 Solar array thermal loading in space1645.1 Heat pump system with associated thermomachinery1695.2 Plot for Neon Joule–Thomson coefficient curve1695.3 Vapor compression cycle on P-h diagram1705.4 Heat pump system with an LLSL-HX1745.5 Thermal strap connecting heat source and heat sink1775.6 View of endpoint cross-sections for braid and foil assembly conductors1785.7 Composite foils approximating to a contiguous material conductor1785.8 Braided thermal strap with header and footer flanges1795.9 Pool-boiling diagram1825.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) µ-g using NASA Glenn 2.2 second drop tower1865.12 Heat pipe sections with liquid and vapor flows187
P4.17 Two-node SpaceCube with active surface viewing celestial bodies162P4.18 SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19 Solar array thermal loading in space1645.1 Heat pump system with associated thermomachinery1695.2 Plot for Neon Joule–Thomson coefficient curve1695.3 Vapor compression cycle on P-h diagram1705.4 Heat pump system with an LLSL-HX1745.5 Thermal strap connecting heat source and heat sink1775.6 View of endpoint cross-sections for braid and foil assembly conductors1785.7 Composite foils approximating to a contiguous material conductor1785.8 Braided thermal strap with header and footer flanges1795.9 Pool-boiling diagram1825.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12 Heat pipe sections with liquid and vapor flows187
P4.18SpaceCube enclosure with an E-box mounted on an L-bracket: a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
a) internal configuration; b) E-box dimensions163P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
P4.19Solar array thermal loading in space1645.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
5.1Heat pump system with associated thermomachinery1695.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
5.2Plot for Neon Joule–Thomson coefficient curve1695.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
5.3Vapor compression cycle on P-h diagram1705.4Heat pump system with an LLSL-HX1745.5Thermal strap connecting heat source and heat sink1775.6View of endpoint cross-sections for braid and foil assembly conductors1785.7Composite foils approximating to a contiguous material conductor1785.8Braided thermal strap with header and footer flanges1795.9Pool-boiling diagram1825.10Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station1855.11Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower1865.12Heat pipe sections with liquid and vapor flows187
 5.4 Heat pump system with an LLSL-HX 5.4 Thermal strap connecting heat source and heat sink 5.5 Thermal strap connecting heat source and heat sink 5.6 View of endpoint cross-sections for braid and foil assembly conductors 5.7 Composite foils approximating to a contiguous material conductor 5.8 Braided thermal strap with header and footer flanges 5.9 Pool-boiling diagram 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 5.12 Heat pipe sections with liquid and vapor flows
 5.5 Thermal strap connecting heat source and heat sink 177 5.6 View of endpoint cross-sections for braid and foil assembly conductors 178 5.7 Composite foils approximating to a contiguous material conductor 178 5.8 Braided thermal strap with header and footer flanges 179 5.9 Pool-boiling diagram 182 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 185 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows 187
 5.6 View of endpoint cross-sections for braid and foil assembly conductors 178 5.7 Composite foils approximating to a contiguous material conductor 178 5.8 Braided thermal strap with header and footer flanges 179 5.9 Pool-boiling diagram 182 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 185 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows 187
 5.7 Composite foils approximating to a contiguous material conductor 178 5.8 Braided thermal strap with header and footer flanges 179 5.9 Pool-boiling diagram 182 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 185 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows 187
 5.8 Braided thermal strap with header and footer flanges 179 5.9 Pool-boiling diagram 182 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 185 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows 187
 5.9 Pool-boiling diagram 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows
 5.10 Bubble growth in a liquid pool of perfluoro-n-hexane onboard the International Space Station 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows
 International Space Station 5.11 Water-based spray cooling as a function of gravity: a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower 186 5.12 Heat pipe sections with liquid and vapor flows
 a) 1-g (Earth gravity), b) μ-g using NASA Glenn 2.2 second drop tower Heat pipe sections with liquid and vapor flows
5.12 Heat pipe sections with liquid and vapor flows 187
J.12 Heat Dide sections with induid and vapor nows 10/
5.12 Hast mine wisk areas satismus a) sintered mercu h) avial areasas
5.15 Heat pipe wick closs-sections: a) sintered poles; b) axial glooves;
5 14 Solid/liquid interface surface conditions: a) non wetting: b) wetting 100
5.14 Solid/liquid interface surface conditions. a) non-weiting, b) weiting in a porous wick: a) pore contact angle at fluid meniscus:
b) radii for the meniscus at the liquid/vanor interface
5 16 Heat nine operational limits 197
5.10 Heat pipe operational minus 172 5.17 Heat pipe extreme orientations 195
5.17 Heat pipe configurations: 1D and 2D 196
5.19 Variable conductance heat pipe
5.20 Heat pipe mounted on an electronics box by a saddle bracket 199
5.25 Theat pipe included on an electromes box of a suddle bracket 177
5.22 Heat pipe radiator 201
5.23 Loop heat pipe schematic 202
5.24 Compound wick configuration at the compensation chamber/loop
heat pipe intersection 203
5.25 Loop heat pipe evaporator section A–A of Figure 5.24 203
5.26 Loop heat pipe during standard operation 205
5.27 A failed loop heat pipe start-up 206

xvi

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

List of Figures

5.28	Loop heat pipe operational regimes during progressive heating	207
5.29	Tilt orientations between the CC and the evaporator	208
5.30	Elevation orientations between the condenser and the evaporator	209
5.31	Loop heat pipe cycle state points and heat flows	211
5.32	Detail of CC and evaporator with corresponding LHP state points	211
5.33	Isothermal conductor junction for dissimilar metals A and B	217
5.34	Conductor junction exposed to a temperature gradient across materials	
	A and B	217
5.35	Single thermoelectric couple: a) thermoelectric cooler configuration;	
	b) thermoelectric generator configuration	219
5.36	Energy balances: a) for thermoelectric cooler; b) for thermoelectric	
	generator	221
5.37	Basic TEC module	223
5.38	TEC with a fastener clamp	224
5.39	Multistage and finned TECs: a) multistage TEC; b) finned TEC	
	for atmospheric applications	224
5.40	TEC located remotely from heat rejection location	225
5.41	Solid/liquid/vapor heating cycle for a material	227
5.42	PCM (at partial melt) and encasement container	228
5.43	Pulse heating cycle	231
5.44	Pulse heating cycle melt energy	232
5.45	Melt-to-solidification ratio for pulse heating cycle	235
5.46	Stefan problem heat flow	235
5.47	Profile of PCM liquid and solid phases during transition	236
5.48	Heating/cooling profiles for radiator and E-box/PCM interface	242
P5.1	R410a vapor compression cycle	249
P5.2	Pressure-enthalpy diagram for an R32 heat pump cycle	249
P5.3	R744 heat pump cycle with an E-box/radiator thermal coupling	250
P5.5	Thermal strap thermal coupling between an E-box and a	
	temperature sink	251
P5.7	Thermal braid: a) basic; b) with heat input collar	252
P5.8	Multi-conductor thermal coupling between two plates	252
P5.9	Compound TS configuration	253
P5.10	Wishbone configuration thermal strap coupling	254
P5.13	Heat pipe schematic	255
P5.15	LHP temperature vs. time plot	256
P5.16	LHP temperature performance as a function of time: a) diagram of	
	local thermal architecture; b) LHP temperature vs. time plot at 120 W	
	heat input	257
P5.18	TEC with thermoelement dimensions	258
P5.21	TEC internal to a "dog house" enclosure	260
P5.22	4×4 TEG module configuration	260
P5.23	4×4 TEG module receiving solar loading	261
P5.25	PCM w/nadir-facing radiator	262
6.1	T-type thermocouple junction	264

	List of Figures	xvii
6.2	Thermistor bead with extension wire	264
6.3	Resistance-based temperature curve for Omega TM 44033 series TM	265
6.4	Phase change heat transfer laboratory microscale heater array [5]:	
	a) heater array; b) individualized heater elements on the microscale	
	heater array	267
6.5	Bolometer configuration at the detector level	268
6.6	Flexible heater in encapsulant material	269
6.7	a) Wirewound power resistor; b) cartridge heater	269
6.8	Deadband temperature variation between setpoints	271
6.9	Standard heater/controller configuration	271
6.10	Sub-atmospheric vs. pressurized vessel conditions	272
6.11	T-vac/vacuum pump system configuration	274
P6.3	Honeycomb deck with temperature zones and E-boxes	279
P6.4	Example LHP with select temperature sensor locations	280
P6.8	Temperature vs. time plot for item inside a "dog house"	281
7.1	Cool-down of a warm object placed in a temperature bath	286
7.2	Periodic table highlighting elements common to cryogenic fluids	286
7.3	Thermal conductivity of materials used in cryogenic systems:	
	a) metals and alloys; b) polymers and composites	289
7.4	Cryo-radiator/truss structure attached to a space platform	290
7.5	Phase diagram for a standard pure fluid	294
7.6	He ⁴ phase diagram	294
7.7	Type I and type II superconductor critical field phenomena	296
7.8	Magnetic field line cases for superconducting and non-superconducting	
	sphere in magnetic field	296
7.9	Superconductivity petri-dish demonstration using a YBCO cube	
	repelled above a disk of BSCCO in the superconducting stage	297
7.10	Electron orbits around a nucleus	298
7.11	Aligned vs. misaligned moments	298
7.12	Magnetization and temperature decrease for a paramagnetic material	299
7.13	Staged temperature control of a conductive heat flow path	300
7.14	Laboratory cryostat with electrical wiring feedthroughs	301
7.15	Ground-based standing dewar with vacuum gap space	304
7.16	Temperature-controlled volume with effective insulation	307
7.17	Vapor-cooled shield configuration	308
7.18	Spaceflight dewar for stored cryogens: a) outer vessel with low	
	thermal-conductivity struts; b) internal configuration	309
7.19	VCS dewar thermal couplings	310
7.20	Stirling cryocooler cycle	312
7.21	Pulse Tube cryocooler cycle	313
7.22	Recuperative heat exchanger system (J-T cryocooler cycle)	314
7.23	Reverse-Brayton cryocooler cycle	315
7.24	Cryocooler performance plot at variable heat-acquisition temperatures	323
P7.5	Copper wire with temperature sinks at length span locations	328
P7.6	Polystyrene storage container	329

xviii	List of Figures	

P7.7	Joule–Thomson cryocooler cycle	329
P7.9	Reverse-Brayton cryocooler cycle with heat pipe aftercooling	330
P7.10	Cryocooler configuration	331
P7.11	Liquid storage dewar configuration with inner and outer radiative	
	shield	332

Tables

1.1	Base units of measure	page 5
2.1	Common aerospace TIMs	19
2.2	Standard contact resistances for materials in vacuum at room temperature	19
2.3	Standard insulators for aerospace applications	20
2.4	Thermal conductivity values for some common materials	24
2.5	Common shape factors applicable to space structures	43
3.1	Electromagnetic wave scale segments effecting thermal radiation	
	phenomena	64
3.2	Spectral hemispherical and total hemispherical relations for absorptivity	,
	reflectivity and transmissivity	74
3.3	Potential causes of MLI performance degradation	101
4.1	Operational and survival temperature ranges for standard spacecraft	
	components	114
4.2	Standard design requirements and/or specifications	115
4.3	Spaceflight subsystems coupled to thermal	116
4.4	Past, present and future missions staged at Sun–Earth Lagrange points	122
4.5	Hot- and cold-case SpaceCube temperatures for E-box-to-radiator	
	spacer	145
4.6	SpaceCube temperatures for G10 E-box-radiator spacer and non-	
	ideal MLI	148
4.7	Hot- and cold-case temperatures for 3-node SpaceCube with separated	
	radiator	151
5.1	Categorization of standard spaceflight thermal conductance devices	168
5.2	Pool-boiling curve process points (1-g)	183
5.3	Standard heat pipe working fluids and their boiling points at 1 atm	192
5.4	Standard LHP working fluids for space applications	204
5.5	Common phase change materials	229
6.1	Standard temperature sensors	266
P6.5	Measured resistance as a function of temperature for sensor X	280
P6.10	Candidate polyimide heaters	282
7.1	Standard cryogenic fluids and their associated saturation temperatures	287
7.2	Linear expansion for common cryogenic materials at 77 K	288

XX	List of Tables		
----	----------------	--	--

7.3	Candidate strut materials for cryogenic applications at 77 K	291
7.4	T_C values for common materials	297
7.5	Stored cryogen spaceflight missions	306
8.1	Project life-cycle phases	335

Nomenclature

Α	Area [m ²]
А	Amps
Alb	Albedo, fraction of Earth-reflected solar energy
A_p	Projected surface area [m ²]
$B_{i, j}$	Fraction of gray body radiation transfer and absorption between
	surface <i>i</i> and <i>j</i>
Во	Bond number $\left[g(\rho_l - \rho_v) \cdot l_c^2 / \sigma_l \right]$
С	Thermal conductance [W/K], Vacuum line conductance [Pa \cdot m ³ /s]
CC	Compensation chamber
°C	Degrees Celsius
CHF	Critical heat flux [W/m ²]
COP	Coefficient of performance
CTE	Coefficient of thermal expansion $[K^{-1}]$
D	Diameter [m]
Ė	Rate of energy transfer [W]
Ε	Energy [J]
E_b	Blackbody emissive power [W/m ²]
E_{mod}	Modulus of elasticity [MPa]
$E_{\lambda b}$	Blackbody spectral emissive power $[W/m^2 \cdot \mu m]$
Eff	Effectiveness $[0 \Leftrightarrow 1.0]$
EIR	Earth IR energy [W/m ²]
$F_{i,i}$	View factor
$\hat{\mathbf{F}}_{i,i}$	Fraction of gray body radiation transfer between surface <i>i</i> and <i>j</i>
Ŧ	Radiative transfer factor
FOM	Figure of merit
G	Irradiation [W/m ²]
G_λ	Spectral irradiation $[W/m^2 \cdot \mu m]$
Η	Magnetic field intensity [A · N _{turns} /m]
HP	Heat pipe
Hz	Hertz
Ι	Intensity $[W/sr \cdot m^2]$, Current [A]
I_b	Blackbody intensity [W/m ²]
I_{λ}	Spectral intensity $[W/sr \cdot m^2 \cdot \mu m]$
IR	Infrared
J	Radiosity [W/m ²]

xxi

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

xxii Nomenclature

J	Joules
J_e	Current density [A/m ²]
J_λ	Spectral radiosity $[W/m^2 \cdot \mu m]$
K	Permeability [m ²]
Κ	Kelvin
KE	Kinetic energy [J]
km	Kilometers
L	Length vector [m]
L,l	Length [m], Honeycomb panel length [m]
L_o	Lorenz number $2.45 \times 10^{-8} [W \cdot Ohms/K^2]$
LHP	Loop heat pipe
Μ	Million
Ν	Newtons, Number
NCG	Non-condensable gas
0	On the order of
OP	Orbital period [minutes]
Q	Energy [J]
Ż	Heat transfer [W]
$\dot{Q}^{''}$	Heat flux [W/m ²]
Р	Pressure [kPa], Power [W]
PRT	Platinum resistance thermometer
R	Thermal resistance [K/W], Radius [m]
R	Radius on virtual hemisphere
Re	Reynolds number $[\rho \cdot d_h \cdot Vel/\mu]$
R_e	Electrical resistance [Ohms, Ω]
R _{Flow}	Fluid flow resistance $[m^{-1} \cdot s^{-1}]$
R_m	Radius of molecule [m]
RRR	Residual resistivity ratio
S	Shape factor [m]
S_y	Yield strength [MPa]
S.P.	Specific power
STC	Strength-to-thermal-conductivity ratio [MPa/W/m \cdot K]
Т	Temperature °C or K
Т	Honeycomb panel thickness [m], Tesla [N/A · m]
T_c	Transition temperature for super-conducting state [K]
TC	Thermocouple
Torr	0.133322 kPa
TM	Thermistor
TP	Transmission probability
U	Overall heat transfer coefficient $[W/m^2 \cdot K]$
USD	United States dollars
UV	Ultraviolet
V	Voltage
V	Volts

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

Nomenclature

Vel	Velocity [m/s]
Vol	Volume [m ³]
Vol	Volume flow rate [m ³ /s]
w,W	Width [m], Honeycomb panel width [m]
W	Watts [J/s]
Ŵ	Work input [W]
Wb	Weber $[T \cdot m^2]$
We	Weber number $\left[\rho_v \cdot Vel_{avg}^2 \cdot d_h/\sigma_l\right]$
X_{leak}	Leak rate $[Pa \cdot m^3/s]$
Ż	Throughput [Pa · m ³ /s]
а	Semi-major axis
Ca	Speed of light [2.9979 $\times 10^8$ m/s]
Cn	Specific heat $[J/kg \cdot K]$
cm	0.01 meters
dA	Differential surface area [m ²]
d_{k}	Hydraulic diameter [m]
d_{s}	Sphere diameter [m]
dB	Decibels
$d\Omega$	Differential solid angle [sr]
e^{-}	Charge of an electron $[-1.602 \times 10^{-19} \text{ Coulombs}]$
f	Friction factor
g	Earth gravitational acceleration [9.8 m/s]
ġ	Energy generation [W]
ġ‴	Energy generation per unit volume [W/m ³]
h	Height [m]
	Fluid enthalpy [kJ/kg], Planck's Constant $[6.6256 \times 10^{-34} \text{ J} \cdot \text{s}]$
h_{conv}	Convection coefficient $[W/m^2 \cdot K]$
h_{f}	Head loss [m], Liquid phase enthalpy [kJ/kg]
h_{fg}	Enthalpy of vaporization [kJ/kg]
h_s	Solid phase enthalpy [kJ/kg]
h_{sf}	Enthalpy of fusion [kJ/kg]
k	Thermal conductivity $[W/m \cdot K]$
k_B	Boltzmann's Constant $[1.381 \times 10^{-23} \text{ J/K}]$
k_{eff}	Effective thermal conductivity $[W/m \cdot K]$
kg	Kilograms
kPa	1,000 N/m ²
l_c	Characteristic length [m]
lbs	Pounds
m	Rate of mass change [kg/s], Mass flow rate [kg/s]
т	Mass [kg]
m .,	Meters
mil	1/100th of an inch
mV	millivolts

xxiii

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

xxiv Nomenclature

mK	milli-Kelvin
n , <i>n</i>	Surface normal direction
ġ	Heat transfer [W]
$\hat{\dot{q}}''$	Heat flux [W/m ²]
r	Radial length [m]
r_b	Average bubble radius [m]
r_p	Pore radius [m]
s	Seconds
S	Entropy [J/kg · K]
Sarc	Arc length
sr	Steradians
t	Time [seconds]
th	Thickness [m]
x	Length [m], Fluid quality $[0 \Leftrightarrow 1.0]$
x_{MSR}	Melt-to-solidification ratio $[0 \Leftrightarrow 1.0]$
у	Length [m]
z	Longitudinal length [m]
Ξ	Balance equations coefficient matrix
Φ	Balance equations solution vector
$\Phi_{\rm v}$	Viscous dissipation
Δ	Difference in value
Λ	Thomson coefficient [V/K]
Ω	Solid angle [sr], Ohms
П	Peltier coefficient [V]
Г	Seebeck coefficient [V/K]
α	Absorptivity
β	Beta angle
δ	Ribbon thickness [m], Error
δ_F	Foil thickness [mils]
η	Efficiency
θ	Azimuthal angle [Degs, °], Inclination angle [Degs, °]
8	Emissivity
ε^*	Effective emissivity
γ	Solar constant to surface normal angle [Degs, °]
λ	Wavelength [µm], Lambda point for transition of He into the
	superfluid state
λ_{MFP}	Mean free path [m]
ξ_{load}	Duty cycle for environmental thermal loading
ho	Density [kg/m ³], Reflectivity
ρ_e	Electrical resistivity $[\Omega \cdot m]$
ρ_l	Liquid density [kg/m ³]
$ ho_v$	Vapor density [kg/m ⁻]
ω	Honeycomb cell size [m]

١	r	v	
/	ſ	٨	۷

τ	Transmissivity
ϕ	Cylindrical circumferential direction, Circumferential angle [Degs, °]
ϕ	Porosity $[0 \Leftrightarrow 1.0]$, Electrostatic voltage $[V]$
μ_l	Liquid viscosity [kg/m · s]
μ	Product of universal gravitational constant and mass of earth
	$[3.98603 \times 10^{14} \text{ m}^3/\text{s}^2]$
μ -g	Microgravity
μ_{J-T}	Joule–Thomson coefficient [K/kPa]
μ_o	Magnetic permeability [Wb/A · m]
μm	Microns $[10^{-6} \text{ m}]$
π	3.14159265359
σ	Stefan Boltzmann constant $[5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4]$, Honeycomb
	ribbon extension factor
σ_{dc}	DC electrical conductivity $[\Omega^{-1} \cdot m^{-1}]$
σ_{e}	Electrical conductivity $[\Omega^{-1} \cdot m^{-1}]$
σ_l	Liquid surface tension $[N \cdot m]$

Subscripts

Adia	Adiabatic
C.c	Cold
CC	Compensation chamber
CHF	Critical heat flux
E	Endpoint
EIR	Earth-IR
F	Foils
FB	Film boiling
FE	Finite element
Fermi	Fermi-based value
H,h	Hot, High
HL	Heat leak
HX	Heat exchanger
Iso	Isothermal
L	Honeycomb panel height,Low
LHP	Loop heat pipe
LRL	Liquid return line
MHF	Minimum heat flux
MLI	Multi-layer insulation
NC	Natural convection
OFF	Off operating state
ON	On operating state
ONB	Onset of nucleate boiling
Р	Packing
РСМ	Phase-change material
PEL	Peltier
PV	Photovoltaic
RNB	Rapid nucleate boiling
S	Shape, Solar
Т	Temperature, Honeycomb panel thickness
Thom	Thomson effect
TS	Thermal strap
VL	Vapor line
W	Honeycomb panel width
а	Apogee

xxvi

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

Subscripts

xxvii

a,b,c	Nodal position in planar grid
abs	Absorption, absorber
actual	Actual value
avg	Average
b	Blackbody, Perigee
boil	Boiling
cap	Capillary
сотр	Compressor
con	Condenser
cond	Conduction
couple	Couple level
eff	Effective
elec	Electrical
emb	Embedded
ent	Entrainment
end	Endpoint
env	Environmental
evap	Evaporator
exit	At outlet location
final	Final or end state
g	Generated, Gravitational
h	Convection, Isenthalpic
high	High value, high end
i	Inner
in	Inflow/Ingoing
init	Initial
inlet	Entrance
int	Interface
isen	Isentropic
joule	Joule heating
k	Conductivity
l,liq	Liquid
lat	Lattice
link	Thermal coupling
load	Heat load value
low	Lower value
lower	Lower end
т	Mean
max	Maximum
melt	Value during melting
min	Minimum
mod	Module level
net	Net difference
0	Outer
out	Outwards, rejected, outflow/outgoing

Cambridge University Press 978-1-107-19379-6 — Introduction to Spacecraft Thermal Design Eric A. Silk Frontmatter <u>More Information</u>

xxviii Subscripts

р	Projected
par	Particle
para	Parallel
pri	Primary
ритр	At mechanical pump
r	Real, Radial direction
rad	Radiator, radiation
recup	Recuperator
ref	Reflected
rej	Rejected
S	Isentropic value
sat	Saturation
sec	Secondary
ser	Serial
sink	Circuit cold temperature location
sol	Solid
st	Stored
sup	Superheat
surf	Surface
tot	Total
tp	Triple point
tran	Transition point
trans	Transmitted
turb	Turbine
upper	Higher end
v,vap	Vapor
wall	At wall location
waste	Excess, non-usable
wick	Wick structure
wire	Wire/s
x	Cartesian x direction
У	Cartesian y direction
z	Cartesian z direction, Cylindrical longitudinal direction
λ	Spectral
2-Φ	Multiphase
θ	Cylindrical circumferential direction
∞	Infinite distance
+	Positive value

Negative value