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1 Introduction

In this chapter, we first provide some motivation for the type of modeling

problems we address in this book. Then we provide an overview of the types

of mathematical model used to describe the behavior of the classes of systems of

interest. We also describe the types of uncertainty model adopted and how they

fit into the mathematical models that describe system behavior. In addition,

we provide a preview of the applications discussed throughout the book, mostly

centered around electric power systems. We conclude the chapter by providing

a brief summary of the content of subsequent chapters.

1.1 Motivation

Loosely speaking, an engineered system is a collection of hardware and soft-

ware components assembled and interacting in a particular way so that they

collectively fulfill some function. The interaction between components can be of

physical nature, i.e., components can be electrically, mechanically, or thermally

coupled, and thus may involve some exchange of energy. Components can also be

coupled in the sense that they exchange information with each other. Because of

phenomena external to the system, there is some uncertainty as to how the sys-

tem will perform. This phenomenon can materialize as an external (time-varying)

input that drives the system response, or as a change in the system structure.

In both cases, these external phenomena will alter the system nominal response

and might cause the system to fail to perform its function. While most systems

are typically designed to withstand some structural and operational uncertainty,

it is important to verify that this is the case before the system is deployed.

To illustrate these ideas, consider the power supply system in Fig. 1.1, whose

function is to reliably provide electric power to a mission-critical computer load,

labeled as IT load, at a certain voltage level. To this end, there are three sources

of power: two utility feeders, labeled as feeder 1 and feeder 2, and a backup

generator, labeled as genset. Having such a redundant arrangement ensures

delivery of power to the IT load with high assurance. While not depicted in

the figure, there is a computer-based control system in charge of monitoring and

controlling the power sources and switchgear, which plays an important role in

the analysis of the system.
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Figure1.1Schematicofpowersupplysystemformission-criticalload,whereφ1and

φ2denotetheactivepowerflowingthroughfeeder1andfeeder2,respectively,andξ

denotesthetotalpowerdeliveredtotheITload.

Undernormaloperatingconditions,bothswitch1andswitch2areopen

(thereforegensetisnotinitiallyusedtosupplypowertotheITload).Then,

feeder1suppliespowertobus1,which,inturn,serveshalfofthepowerdemanded

bytheITloadviasupply1.Similarly,feeder2suppliesbus2,whichinturn

servestheotherhalfofthepowerdemandedbytheITloadviasupply2.The

totalpowerdemandedbytheITloadisdeterminedbythecomputerworkload,

whichcanvaryaccordingtoexternalrequestsreceivedbythecomputerandis

aprioriunknown.Thus,fromthepointofviewofthepowersupplysystem,the

computerworkloadisanexternalinputthatdrivesthepowersupplysystem

response.Sincetheworkloadevolvesovertimeandisunknownapriori,thereis

someuncertaintyonhowthepowersupplysystemwillperformitsfunction.

Intheeventthatthereisanoutageineitherfeeder1orfeeder2,switch1will

closeandallpowertotheITloadwillbesuppliedbytheavailablefeeder.In

theeventthatthereisanoutageinbothfeeders(eithersequentialintimeor

simultaneous),switch2isclosedandthegensetwillsupplyallthepowertothe

ITloaduntileither(i)oneorbothutilityfeedersarerestoredbacktooperation,

atwhichpointintime,switch2isopenandthepowertotheITloadisonce

againsuppliedbyoneorbothutilityfeeders,or(ii)thereisaneventthatcauses

thegensettofail,atwhichpointtheITloadisshutdownoffline.Thus,the

phenomenacausingfeederoutagesandgensetfailureresultinachangeinthe

systemstructureinthesenseofhowpowerisroutedfromtheavailablesources

totheITload.
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1.2 System Models 3

In the context of the system above, one might be interested in quantifying the

impact of workload variability on certain variables of interest, e.g., the flows of

power through the wires connecting the buses and the IT load, and the magnitude

of the voltage at bus 1 and bus 2 (when not connected together). This analysis is

necessary to ensure that wires are sized correctly and protection equipment, e.g.,

under- and over-voltage protection relays, is calibrated appropriately. It is also

necessary to ensure that after outages in one or both feeders occur, subsequent

switching actions are correctly executed. In addition, one could be interested in

quantifying the impact of equipment failure on the system ability to perform its

function over some period of time.

The goal of this book is to develop analysis tools to perform the types of

analysis described above. The applications and examples throughout the book

draw heavily from electric power applications, including bulk power systems and

microgrids, and linear and switched linear circuits encountered in power electron-

ics applications. However, the modeling framework and techniques presented are

general and can be applied to other engineering domains, including automotive

and aerospace applications. For example, they can be used to assess the dynamic

performance of an automotive steer-by-wire system and the lateral-directional

control system of a fighter aircraft.

1.2 System Models

In a broad sense, one can think of an engineered system as an entity imposing con-

straints on certain variables associated with the system energy and information

content. With this point of view, we can represent the behavior of the system by a

set of mathematical relations between the aforementioned variables; this is what

we refer to as the model of the system. These relations can be a result of physical

laws, e.g., Kirchhoff’s laws, energy conservation law, or moment conservation law.

They can also arise from algorithms implemented in a digital computer, for mod-

ifying (controlling) the physical behavior of the system, e.g., the proportional-

integral control scheme used in a bulk power system to automatically regulate

frequency across the system. These mathematical relations will, in general, also

include numerous parameters, i.e., quantities defining physical or information

properties of the components comprising the system. Such system parameters

can be constant or vary with time, and their value can be a priori unknown

or uncertain. When modeling a system, the distinction between parameters and

variables is typically clear because the values taken by the system parameters

should not be affected by the values taken by the system variables or other

parameters. Indeed, if the value of some parameter p is actually affected by the

values taken by the system variables or other parameters, then the model should

reflect this dependence and instead of being treated as a parameter in the model,

p should be considered as an additional system variable and treated in the model

as such. Next, we illustrate the ideas above via some examples.
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4Introduction

Example1.1(Powersupplysystem)ConsiderthesysteminFig.1.1andas-

sumetherearenolossesinanyofitscomponents.Letφ1andφ2denotethe

activepowerflowingthroughfeeder1intobus1andtheactivepowerflowing

throughfeeder2intobus2,respectively.Letpgdenotetheactivepowersupplied

bythegenset.LetξdenotetheactivepowerdemandedbytheITload.Recallthat

undernormaloperatingconditions,halfofthepowertotheITloadissuppliedby

feeder1,whiletheotherhalfissuppliedbyfeeder2(thegensetdoesnotsupply

anypower).Then,sincetheactivepowerflowinginandoutofbothbus1and

bus2needstobebalanced,wehavethat

φ1=
ξ

2
,φ2=

ξ

2
,pg=0.(1.1)

Now,recallthatifthereisanoutageinfeeder1(feeder2),switch1willclose

andallthepowertotheITloadwillbedeliveredbyfeeder2(feeder1);thus,

φ1=0,φ2=ξ,pg=0,ifoutageinfeeder1andfeeder2inservice,

φ1=ξ,φ2=0,pg=0,ifoutageinfeeder2andfeeder1inservice.

(1.2)

Also,recallthatifthereisanoutageinbothfeeders,thegensetwillsupplyall

thepowertotheload;thus,

φ1=0,φ2=0,pg=ξ.(1.3)

Finally,forthecasewhenthereisanoutageinbothfeedersandafailureinthe

genset,wehavethat

φ1=0,φ2=0,pg=0,(1.4)

andtheITloadisshutdownoffline;thus,ξ=0.Notethattherelationsin(1.1–

1.4)onlyinvolveξ,φ1,φ2,andpg,whichinthiscasearethesystemvariables,

i.e.,themodelheredoesnotinvolveanyparameters.

Example1.2(Linearcircuit)ConsiderthecircuitinFig.1.2andassumethat

c(t)=c,t≥0,wherecisapositivescalar.First,notethat

+ r`

v2(t)

i1(t)
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il(t)

<latexit sha1_base64="MNWTPFdF7I/eBnR/IkpjMRhnOEs=">AAAB7XicbVA9SwNBEJ3zM55fUUubxSDEJtzFQu0CNpYRzAckR9jb7CVr9vaO3TkhhPwHGwtFbP0/dv4bN5cUmvhg4PHeDDPzwlQKg5737aytb2xubRd23N29/YPD4tFx0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4up35rSeujUjUA45THsR0oEQkGEUrNUVPlvGiVyx5FS8HWSX+gpRqLuSo94pf3X7CspgrZJIa06l6KQYTqlEwyaduNzM8pWxEB7xjqaIxN8Ekv3ZKzq3SJ1GibSkkufp7YkJjY8ZxaDtjikOz7M3E/7xOhtF1MBEqzZArNl8UZZJgQmavk77QnKEcW0KZFvZWwoZUU4Y2INeG4C+/vEqa1Yp/Wane2zRu5mlAAU7hDMrgwxXU4A7q0AAGj/AMr/DmJM6L8+58zFvXnMXMCfyB8/kDTzqO8Q==</latexit>

vs(t)

+

c(t)

<latexit sha1_base64="vchnz3IyXngKI8UgMmnvSb/QpMg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BItQLyWpgnorePFYwdZCG8pmu2mX7m7C7kQopX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxPBDXret1NYW9/Y3Cpul3Z29/YPyodHbROnmrIWjUWsOyExTHDFWshRsE6iGZGhYI/h+DbzH5+YNjxWDzhJWCDJUPGIU4KZRKt43i9XvJo3h7tK/JxUIEezX/7qDWKaSqaQCmJM1/cSDKZEI6eCzUq91LCE0DEZsq6likhmgun81pl7ZpWBG8XalkJ3rv6emBJpzESGtlMSHJllLxP/87opRtfBlKskRaboYlGUChdjN3vcHXDNKIqJJYRqbm916YhoQtHGU7Ih+Msvr5J2veZf1Or3l5XGTR5HEU7gFKrgwxU04A6a0AIKI3iGV3hzpPPivDsfi9aCk88cwx84nz9gT43F</latexit>

i2(t)

<latexit sha1_base64="V2dErc5SaPRe/UkLVXmjtPOwNnE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoMQL2E3Cuot4MVjBPOAZAmzk9lkzOzMMtMrhJB/8OJBEa/+jzf/xkmyB00saCiquunuChPBDXret5NbW9/Y3MpvF3Z29/YPiodHTaNSTVmDKqF0OySGCS5ZAzkK1k40I3EoWCsc3c781hPThiv5gOOEBTEZSB5xStBKTd6rlvG8Vyx5FW8Od5X4GSlBhnqv+NXtK5rGTCIVxJiO7yUYTIhGTgWbFrqpYQmhIzJgHUsliZkJJvNrp+6ZVfpupLQtie5c/T0xIbEx4zi0nTHBoVn2ZuJ/XifF6DqYcJmkyCRdLIpS4aJyZ6+7fa4ZRTG2hFDN7a0uHRJNKNqACjYEf/nlVdKsVvyLSvX+slS7yeLIwwmcQhl8uIIa3EEdGkDhEZ7hFd4c5bw4787HojXnZDPH8AfO5w+SBo5w</latexit>

+

v1(t)

<latexit sha1_base64="7np9mRn2T/yrsoS3xFY0eYmoLIk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBT0GvXiMYB6QLGF2MpuMmd1ZZnoDIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFRw6hUM15nSirdCqjhUsS8jgIlbyWa0yiQvBkM72Z+c8S1ESp+xHHC/Yj2YxEKRtFKjVHXK+N5t1hyK+4cZJV4GSlBhlq3+NXpKZZGPEYmqTFtz03Qn1CNgkk+LXRSwxPKhrTP25bGNOLGn8yvnZIzq/RIqLStGMlc/T0xoZEx4yiwnRHFgVn2ZuJ/XjvF8MafiDhJkcdssShMJUFFZq+TntCcoRxbQpkW9lbCBlRThjaggg3BW355lTQuKt5l5eLhqlS9zeLIwwmcQhk8uIYq3EMN6sDgCZ7hFd4c5bw4787HojXnZDPH8AfO5w+nKY6F</latexit>

Figure1.2Linearcircuit.
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1.2 System Models 5

v1(t) = r i1(t) + ℓ
di1(t)

dt
,

i2(t) = c
dv2(t)

dt
. (1.5)

Then, by using Kirchhoff’s laws, we can obtain the following model describing

the relation between the currents i1(t) and il(t), and the voltages vs(t) and v2(t):

0 = i1(t)− c
dv2(t)

dt
− il(t),

0 = vs(t)− r i1(t)− ℓ
di1(t)

dt
− v2(t), (1.6)

where r, ℓ, and c are positive constants. Here, i1(t), i2(t), vs(t), and v2(t) are

variables, whereas r, ℓ, and c are parameters. Now, assume that c(t) is known to

evolve according to

dc(t)

dt
= −c(t) + αu(t),

where α is a positive scalar; thus,

i2(t) = c(t)
dv2(t)

dt
+ v2(t)

(
− c(t) + αu(t)

)
.

Then, the model describing the circuit behavior is as follows:

0 = i1(t)− c(t)
dv2(t)

dt
− v2(t)

(
− c(t) + αu(t)

)
− il(t),

0 = vs(t)− ri1(t)− ℓ
di1(t)

dt
− v2(t),

0 =
dc(t)

dt
+ c(t)− αu(t); (1.7)

thus, in this model, the capacitance, c(t), is no longer a parameter but a variable.

There are some fundamental differences between the models in (1.1–1.4), (1.6),

and (1.7). First, in the models in (1.1–1.4) and (1.6), the relation between

the variables is linear, whereas in the model in (1.7), the relation between the

variables is nonlinear. Second, in the model in (1.1–1.4), the constraints imposed

on the system variables are in the form of a system of algebraic equations,

whereas in the models in (1.6) and (1.7), the constraints imposed on the system

variables are in the form of a set of ordinary differential equations (ODEs). In

this book, we refer to systems whose behavior can be described by a set of

algebraic equations as static systems, whereas systems whose behavior can be

described by a set of ODEs are referred to as continuous-time dynamical systems.

Furthermore, we refer to systems whose behavior can be described iteratively by

a set of recurrent relations as discrete-time dynamical systems.

So far, we have not discussed the nature of the variables describing the energy

and information state of a system; in general, we will categorize them as either
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6 Introduction

inputs or states. By inputs, we refer to variables that are set and can be varied

extraneously, whereas by states, we refer to variables that result from the con-

straints describing the system behavior and the values the inputs take. With this

categorization, we can rewrite the static system in (1.1–1.4) as follows:

x = Hiξ, i = 1, 2, 3, (1.8)

where x = [φ1, φ2, pg]
⊤, ξ ≥ 0, and

H1 =




1
2

1
2

0


 , H2 =



0

1

0


 , H3 =



1

0

0


 , (1.9)

and

x = H4ξ, (1.10)

where ξ = 0, and

H4 =



0

0

0


 . (1.11)

More generally, in this book we will consider static systems of the form

x = hi(w), i ∈ Q, (1.12)

where x ∈ R
n is referred to as the state vector, w ∈ R

m is referred to as the

input vector, Q takes values in some finite set, and hi : R
m → R

n, which we refer

to as the system input-to-state mapping, is defined by the relations between the

state variables (i.e., the entries of the state vector), the inputs (i.e., the entries

of the input vector), and the system parameters.

By using the same categorization of variables as inputs or states, we can rewrite

the model in (1.6) in state-space form as follows:

d

dt
x(t) = Ax(t) +Bw(t), t ≥ 0, (1.13)

where x(t) =
[
v2(t), i1(t)

]⊤
is referred to as the state vector, w(t) =

[
vs(t), il(t)

]⊤

is referred to as the input vector, and

A =

[
0 1

c

− 1
ℓ

− r
ℓ

]
, B =

[
0 − 1

c

1
ℓ

0

]
. (1.14)

More generally, we will consider continuous-time dynamical systems of the form

d

dt
x(t) = f

(
t, x(t), w(t)

)
, t ≥ 0, (1.15)

where f : [0,∞) × R
n × R

m → R
n, is defined by the relations between the

state variables (i.e., the entries of the state vector, x ∈ R
n); and the inputs

(i.e., the entries of the input vector, w(t) ∈ R
m). For example, the system in

(1.7) can be written as
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1.3 Uncertainty Models 7

d

dt
x(t) = f

(
x(t), w(t)

)
, (1.16)

where x(t) =
[
v2(t), i1(t), c(t)

]⊤
, w(t) =

[
vs(t), il(t), u(t)

]⊤
, and

f
(
x(t), w(t)

)
=




1

c(t)

(
v2(t)c(t)− αv2(t)u(t) + i1(t)− il(t)

)

1

ℓ

(
− v2(t)− r i1(t) + vs(t)

)

−c(t) + αu(t)



. (1.17)

Finally, in this book we also consider discrete-time dynamical systems of the

form

xk+1 = hk(xk, wk), k = 0, 1, 2, . . . , (1.18)

where xk ∈ R
n, wk ∈ R

m, and hk : R
n ×R

m → R
n, k = 0, 1, 2, . . . , is defined by

the relations between the state variables and inputs of the particular system

under consideration.

1.3 Uncertainty Models

Here, we provide an overview of the different uncertainty models considered

in subsequent chapters for both static and dynamical systems. In the process,

we also state the analysis objectives for both classes of systems under each

uncertainty model considered.

1.3.1 Static Systems

Consider a static system of the form:

x = hi(w), i ∈ Q. (1.19)

If the value that w takes is uncertain, we say the system is subject to input

uncertainty, whereas if the value that i takes is uncertain, we say the system

is subject to structural uncertainty. In terms of formally describing input un-

certainty, we will consider both probabilistic models and set-theoretic models.

In terms of formally describing structural uncertainty, we will only consider a

probabilistic model. Each of these models is briefly described next.

Probabilistic Input Uncertainty Model:We assume the values that w can

take are described by a random vector with known first and second moments or

known probability density function (pdf). Then, for each hi(·), i ∈ Q, the values

that x = hi(w) can take will be also random and described by some random

vector, and the objective is to characterize the first and second moments (or the

pdf) of this random vector.

Set-Theoretic Input Uncertainty Model: We assume the values that the

input vector, w, can take belong to some convex set. While in general this set can

have any shape, in this book we restrict our analysis to two particular classes of
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8 Introduction

closed, convex sets, namely ellipsoids and zonotopes. Then, for each hi(·), i ∈ Q,

the possible values that the state, x = hi(w), can take will belong to some set,

and the objective is to characterize such a set.

Structural Uncertainty Model: We assume that the input-to-state map-

ping, hi(·), evolves with time according to a Markov chain with known transition

probabilities. Thus, for a given w, the value that x = hi(w) takes will evolve

according to the aforementioned Markov process. Here, the value that w can

take is either a known constant or can be described by a probabilistic model like

the one above. Then, the objective is to characterize the state vector statistics.

1.3.2 Dynamical Systems

Consider continuous-time systems of the form

d

dt
x(t) = f

(
t, x(t), w(t)

)
, (1.20)

and discrete-time systems of the form

xk+1 = hk(xk, wk). (1.21)

Here we will only analyze the system behavior under input uncertainty, i.e., the

values that w(t) and wk can take are not a priori known, and will use both

probabilistic and set-theoretic models to describe them.

Probabilistic Input Uncertainty Model: For continuous-time dynamical

systems, we consider the case when the function f(·, ·, ·) is defined as follows:

f(t, x, w) = α
(
t, x) + β(t, x)w, (1.22)

whereas, for discrete-time dynamical systems, we do not impose any restrictions

on hk(·, ·). We assume that the values that w(t) and wk take are random and

governed by a “white noise” process; thus, the values that x(t) and xk take are

also random and governed by some stochastic process. We first consider the case

when we only know the mean and covariance functions of the “white noise” input

process and characterize the mean and covariance functions of the stochastic

process describing the evolution of x(t) and xk. Then, we further assume that the

“white noise” input process is Gaussian and provide the complete probabilistic

characterization of the stochastic process describing the evolution of x(t) and xk.

Set-Theoretic Input Uncertainty Model: We consider general functions

f(·, ·, ·) and hk(·, ·), and assume the values that w(t) and wk can take are known

to belong to a convex set, namely an ellipsoid. Then, the values that x(t) and xk

can take also belong to some set (not necessarily an ellipsoid), and the objective

is to characterize such a set. Providing an exact characterization of such a set

is difficult in general (even if f(·, ·, ·) and hk(·, ·) are affine functions); thus, we

settle for obtaining ellipsoidal upper bounds.
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1.4 Application Examples 9

1.4 Application Examples

Most of the techniques presented in the book are illustrated by using examples

from circuit theory, electric power systems, and power electronics. For example,

we utilize a simplified formulation of the power flow problem in AC power systems

to illustrate the techniques developed for analyzing static systems subject to

input uncertainty. Also, in order to illustrate the analysis techniques for dynam-

ical systems subject to input uncertainty, we utilize a simplified model of the

dynamics of an inertia-less AC microgrid, i.e., a small AC power system whose

generators and loads are interfaced with the network via power electronics.

1.4.1 Power Flow Analysis under Active Power Injection Uncertainty

Consider a three-phase power system comprising n buses (n> 1) indexed by the

elements in V = {1, 2, . . . , n}, and l transmission lines
(
n− 1 ≤ l ≤ n(n− 1)/2

)

indexed by the elements in the set L = {1, 2, . . . , l}, and assume the following

hold:

A1. The system is balanced and operating in sinusoidal regime.

A2. There is at most one transmission line connecting each pair of buses.

A3. Each transmission line is short and lossless.

A4. The voltage magnitude at each bus is fixed by some control mechanism.

Let pi denote the active power injected into the system network via bus i, and

let φe denote the active power flowing on transmission line e, e = 1, 2, . . . , l.

Assume that

pi = ξi, i = 1, 2, . . . , n− 1,

where ξi is extraneously set and a priori unknown. Then, since the system is

lossless, the injection into bus n must be such that
∑n

j=1 pj = 0; thus,

pn = −
n−1∑

j=1

ξj .

Define ξ = [ξ1, ξ2, . . . , ξn−1]
⊤ and φ = [φ1, φ2, . . . , φl]

⊤. Then, by imposing some

conditions on the values that ξ can take, there exists a function f : Rl → R
l

encapsulating the system network topology and transmission line parameters

such that

w = f(φ), (1.23)

where w =
[
ξ⊤,0⊤

l−n+1

]⊤
. The formulation above can be generalized to the

case when there are m, 1 ≤ m ≤ n− 1, power injections being extraneously set

with the remaining power injections being adjusted so that
∑n

j=1 pj = 0, which
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10 Introduction

is a necessary condition that the power injections need to satisfy because of the

assumption on the transmission lines in the system being lossless.

If the network is a tree, then we have that l = n− 1 and

ξ = M̃φ,

where M̃ ∈ R
(n−1)×(n−1) is invertible; thus, we can write

φ = M̃−1ξ. (1.24)

For the case when the network is not a tree, because of the assumptions made

on the values that ξ can take, we can ensure that there exists f−1 : Rl → R
l such

that

φ = f−1(w). (1.25)

Then, given either a probabilistic model or a set-theoretic model describing the

values that the vector of extraneous power injections, ξ, can take, the problem is

to characterize the values that the vector of line flows, φ, can take. We explore

such settings in detail in Chapter 3 and Chapter 7.

1.4.2 Analysis of Inertia-less AC Microgrids under Power Injection Uncertainty

Consider a three-phase microgrid comprising n buses (n > 1) indexed by the

elements in V = {1, 2, . . . , n}, and l transmission lines
(
n− 1 ≤ l ≤ n(n− 1)/2

)

and assume the following hold:

B1. The microgrid is balanced and operating in sinusoidal regime.

B2. There is at most one transmission line connecting each pair of buses.

B3. Each transmission line is short and lossless.

B4. Connected to each bus there is either a generating- or a load-type resource

interfaced via a three-phase voltage source inverter.

B5. The reactance of each voltage source inverter output filter is small when

compared to the reactance values of the network transmission lines.

B6. The phase angle of the inverter connected to each bus is regulated via a

droop control scheme updated at discrete time instants indexed by

k = 0, 1, 2, . . ..

B7. The inverter outer voltage and inner current control loops hold the inverter

output voltage magnitude constant throughout time.

Consider the case when the frequency-droop control setpoints of the inverters

at buses 1, 2, . . . ,m change randomly (this is typically the case in photovoltaic

installations endowed with maximum power point tracking). Let ξk denote an

m-dimensional vector whose entries correspond to the values taken at instant k

of said setpoints. Assume that in order to mitigate the effect of these random

fluctuations, the frequency-droop control setpoints of the inverters at buses m+

1,m+2, . . . , n are regulated via a closed-loop integral control scheme so that the

frequency across the microgrid network remains close to some nominal value. Let
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