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1 Introduction

In this chapter, we first provide some motivation for the type of modeling
problems we address in this book. Then we provide an overview of the types
of mathematical model used to describe the behavior of the classes of systems of
interest. We also describe the types of uncertainty model adopted and how they
fit into the mathematical models that describe system behavior. In addition,
we provide a preview of the applications discussed throughout the book, mostly
centered around electric power systems. We conclude the chapter by providing
a brief summary of the content of subsequent chapters.

1.1 Motivation

Loosely speaking, an engineered system is a collection of hardware and soft-
ware components assembled and interacting in a particular way so that they
collectively fulfill some function. The interaction between components can be of
physical nature, i.e., components can be electrically, mechanically, or thermally
coupled, and thus may involve some exchange of energy. Components can also be
coupled in the sense that they exchange information with each other. Because of
phenomena external to the system, there is some uncertainty as to how the sys-
tem will perform. This phenomenon can materialize as an external (time-varying)
input that drives the system response, or as a change in the system structure.
In both cases, these external phenomena will alter the system nominal response
and might cause the system to fail to perform its function. While most systems
are typically designed to withstand some structural and operational uncertainty,
it is important to verify that this is the case before the system is deployed.

To illustrate these ideas, consider the power supply system in Fig. 1.1, whose
function is to reliably provide electric power to a mission-critical computer load,
labeled as IT load, at a certain voltage level. To this end, there are three sources
of power: two utility feeders, labeled as feeder 1 and feeder 2, and a backup
generator, labeled as genset. Having such a redundant arrangement ensures
delivery of power to the IT load with high assurance. While not depicted in
the figure, there is a computer-based control system in charge of monitoring and
controlling the power sources and switchgear, which plays an important role in
the analysis of the system.
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1.2 System Models 3

In the context of the system above, one might be interested in quantifying the
impact of workload variability on certain variables of interest, e.g., the flows of
power through the wires connecting the buses and the IT load, and the magnitude
of the voltage at bus 1 and bus 2 (when not connected together). This analysis is
necessary to ensure that wires are sized correctly and protection equipment, e.g.,
under- and over-voltage protection relays, is calibrated appropriately. It is also
necessary to ensure that after outages in one or both feeders occur, subsequent
switching actions are correctly executed. In addition, one could be interested in
quantifying the impact of equipment failure on the system ability to perform its
function over some period of time.

The goal of this book is to develop analysis tools to perform the types of
analysis described above. The applications and examples throughout the book
draw heavily from electric power applications, including bulk power systems and
microgrids, and linear and switched linear circuits encountered in power electron-
ics applications. However, the modeling framework and techniques presented are
general and can be applied to other engineering domains, including automotive
and aerospace applications. For example, they can be used to assess the dynamic
performance of an automotive steer-by-wire system and the lateral-directional
control system of a fighter aircraft.

1.2 System Models

In a broad sense, one can think of an engineered system as an entity imposing con-
straints on certain variables associated with the system energy and information
content. With this point of view, we can represent the behavior of the system by a
set of mathematical relations between the aforementioned variables; this is what
we refer to as the model of the system. These relations can be a result of physical
laws, e.g., Kirchhoff’s laws, energy conservation law, or moment conservation law.
They can also arise from algorithms implemented in a digital computer, for mod-
ifying (controlling) the physical behavior of the system, e.g., the proportional-
integral control scheme used in a bulk power system to automatically regulate
frequency across the system. These mathematical relations will, in general, also
include numerous parameters, i.e., quantities defining physical or information
properties of the components comprising the system. Such system parameters
can be constant or vary with time, and their value can be a priori unknown
or uncertain. When modeling a system, the distinction between parameters and
variables is typically clear because the values taken by the system parameters
should not be affected by the values taken by the system variables or other
parameters. Indeed, if the value of some parameter p is actually affected by the
values taken by the system variables or other parameters, then the model should
reflect this dependence and instead of being treated as a parameter in the model,
p should be considered as an additional system variable and treated in the model
as such. Next, we illustrate the ideas above via some examples.
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1.2 System Models 5
) di (t
or(t) = rin(t) + ¢ chzi ),
. dus(t
ia(t) = ¢ “;t( ). (1.5)

Then, by using Kirchhoff’s laws, we can obtain the following model describing
the relation between the currents i1 (¢) and ¢;(t), and the voltages v, (t) and vo(t):

CL&(t) — (1)

dt
diy(t)
—va(t), 1.6
2 ) (1.6)
where r, £, and ¢ are positive constants. Here, i1(t), ia(t), vs(t), and vo(t) are
variables, whereas r, ¢, and c¢ are parameters. Now, assume that ¢(¢) is known to
evolve according to

0=11(t) -

0=wvs(t) —riy(t) — ¢

de(t)
dt
where « is a positive scalar; thus,
) dvg(t
ia(t) = c(t) ;t( ) +v2(t) (= c(t) + au(t)).

Then, the model describing the circuit behavior is as follows:

— —c(t) + au(t),

0=i(t) — c(t) d”;t(t) —wa(t) (= et) + au(t)) —i(t),
0 = vs(t) — i () — ed’;it) — (1),
_dc(t) )
0= o + c(t) — au(t); (1.7)

thus, in this model, the capacitance, ¢(t), is no longer a parameter but a variable.

There are some fundamental differences between the models in (1.1-1.4), (1.6),
and (1.7). First, in the models in (1.1-1.4) and (1.6), the relation between
the variables is linear, whereas in the model in (1.7), the relation between the
variables is nonlinear. Second, in the model in (1.1-1.4), the constraints imposed
on the system variables are in the form of a system of algebraic equations,
whereas in the models in (1.6) and (1.7), the constraints imposed on the system
variables are in the form of a set of ordinary differential equations (ODEs). In
this book, we refer to systems whose behavior can be described by a set of
algebraic equations as static systems, whereas systems whose behavior can be
described by a set of ODEs are referred to as continuous-time dynamical systems.
Furthermore, we refer to systems whose behavior can be described iteratively by
a set of recurrent relations as discrete-time dynamical systems.

So far, we have not discussed the nature of the variables describing the energy
and information state of a system; in general, we will categorize them as either
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6 Introduction

inputs or states. By inputs, we refer to variables that are set and can be varied
extraneously, whereas by states, we refer to variables that result from the con-
straints describing the system behavior and the values the inputs take. With this
categorization, we can rewrite the static system in (1.1-1.4) as follows:

r=H¢, i=1,23, (1.8)
where v = [¢17¢27pg]—r7 é- Z 0) and
1
2 0 1
H, = % , Hoy=|1|, Hsz3= |0}, (1.9)
0 0 0
and
x = HyE, (1.10)
where ¢ = 0, and
0
Hy= (0] . (1.11)
0

More generally, in this book we will consider static systems of the form
r=hi(w), i€Q, (1.12)

where z € R"” is referred to as the state vector, w € R™ is referred to as the
input vector, Q takes values in some finite set, and h;: R™ — R™, which we refer
to as the system input-to-state mapping, is defined by the relations between the
state variables (i.e., the entries of the state vector), the inputs (i.e., the entries
of the input vector), and the system parameters.

By using the same categorization of variables as inputs or states, we can rewrite
the model in (1.6) in state-space form as follows:

d

—z

dt
where z(t) = [v2(t), 11(t)] T is referred to as the state vector, w(t) = [vs(t),i(t)] T
is referred to as the input vector, and

0 1

C

(t) = Az(t) + Buw(t), t>0, (1.13)

A= l,z’B:
7 7

0o -1
c
. ] . (1.14)
7
More generally, we will consider continuous-time dynamical systems of the form

%x(t) = f(t,z(t),w(t)), t=>0, (1.15)

where f:[0,00) X R" x R™ — R", is defined by the relations between the
state variables (i.e., the entries of the state vector, x € R™); and the inputs
(i.e., the entries of the input vector, w(t) € R™). For example, the system in
(1.7) can be written as
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1.3 Uncertainty Models 7
d t) = t t 1.16
2720 = f (@), w (D)), (1.16)
where 2(t) = [va(t),i1(2), ¢(t)] ", w(t) = [vs(t),it(t), u(t)] ", and

— (va(t)e(t) — ava(t)u(t) + i1 (t) — (1))

(—v2(t) = rix(t) + vs(t)) (1.17)

—c(t) + au(t)

|

Finally, in this book we also consider discrete-time dynamical systems of the
form

Th+1 :hk(xkvwk)a k:071727"'7 (]‘18)

where z; € R", wi € R™ and hy: R" xR™ — R"™, k=0,1,2,..., is defined by
the relations between the state variables and inputs of the particular system
under consideration.

1.3 Uncertainty Models

Here, we provide an overview of the different uncertainty models considered
in subsequent chapters for both static and dynamical systems. In the process,
we also state the analysis objectives for both classes of systems under each
uncertainty model considered.

1.3.1 Static Systems
Consider a static system of the form:
x = hi(w), i€Q. (1.19)

If the value that w takes is uncertain, we say the system is subject to input
uncertainty, whereas if the value that ¢ takes is uncertain, we say the system
is subject to structural uncertainty. In terms of formally describing input un-
certainty, we will consider both probabilistic models and set-theoretic models.
In terms of formally describing structural uncertainty, we will only consider a
probabilistic model. Each of these models is briefly described next.

Probabilistic Input Uncertainty Model: We assume the values that w can
take are described by a random vector with known first and second moments or
known probability density function (pdf). Then, for each h;(-), i € Q, the values
that « = h;(w) can take will be also random and described by some random
vector, and the objective is to characterize the first and second moments (or the
pdf) of this random vector.

Set-Theoretic Input Uncertainty Model: We assume the values that the
input vector, w, can take belong to some convex set. While in general this set can
have any shape, in this book we restrict our analysis to two particular classes of
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8 Introduction

closed, convex sets, namely ellipsoids and zonotopes. Then, for each h;(-), i € Q,
the possible values that the state, x = h;(w), can take will belong to some set,
and the objective is to characterize such a set.

Structural Uncertainty Model: We assume that the input-to-state map-
ping, h;(-), evolves with time according to a Markov chain with known transition
probabilities. Thus, for a given w, the value that = = h;(w) takes will evolve
according to the aforementioned Markov process. Here, the value that w can
take is either a known constant or can be described by a probabilistic model like
the one above. Then, the objective is to characterize the state vector statistics.

132 Dynamical Systems

Consider continuous-time systems of the form

d
%J:(t) = f(t,z(t), w(t)), (1.20)

and discrete-time systems of the form
Tk+1 = hk(zk,wk). (121)

Here we will only analyze the system behavior under input uncertainty, i.e., the
values that w(t) and wj, can take are not a priori known, and will use both
probabilistic and set-theoretic models to describe them.

Probabilistic Input Uncertainty Model: For continuous-time dynamical
systems, we consider the case when the function f(:,-,-) is defined as follows:

ft,z,w) = a(t,m) + B(t, v)w, (1.22)

whereas, for discrete-time dynamical systems, we do not impose any restrictions
on hy(-,-). We assume that the values that w(t) and wy take are random and
governed by a “white noise” process; thus, the values that x(t) and xj, take are
also random and governed by some stochastic process. We first consider the case
when we only know the mean and covariance functions of the “white noise” input
process and characterize the mean and covariance functions of the stochastic
process describing the evolution of z(¢) and xj. Then, we further assume that the
“white noise” input process is Gaussian and provide the complete probabilistic
characterization of the stochastic process describing the evolution of z(t) and x.

Set-Theoretic Input Uncertainty Model: We consider general functions
f(, ) and hg(-,-), and assume the values that w(t) and wy, can take are known
to belong to a convex set, namely an ellipsoid. Then, the values that z(¢) and x
can take also belong to some set (not necessarily an ellipsoid), and the objective
is to characterize such a set. Providing an exact characterization of such a set
is difficult in general (even if f(-,-,-) and hg(:,-) are affine functions); thus, we
settle for obtaining ellipsoidal upper bounds.
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1.4 Application Examples 9

1.4 Application Examples

Most of the techniques presented in the book are illustrated by using examples
from circuit theory, electric power systems, and power electronics. For example,
we utilize a simplified formulation of the power flow problem in AC power systems
to illustrate the techniques developed for analyzing static systems subject to
input uncertainty. Also, in order to illustrate the analysis techniques for dynam-
ical systems subject to input uncertainty, we utilize a simplified model of the
dynamics of an inertia-less AC microgrid, i.e., a small AC power system whose
generators and loads are interfaced with the network via power electronics.

141 Power Flow Analysis under Active Power Injection Uncertainty

Consider a three-phase power system comprising n buses (n > 1) indexed by the
elements in V=1{1,2,...,n}, and [ transmission lines (n —1 <! < n(n —1)/2)
indexed by the elements in the set £ = {1,2,...,l}, and assume the following
hold:

A1. The system is balanced and operating in sinusoidal regime.

A2. There is at most one transmission line connecting each pair of buses.
A3. Each transmission line is short and lossless.

A4. The voltage magnitude at each bus is fixed by some control mechanism.

Let p; denote the active power injected into the system network via bus 4, and
let ¢. denote the active power flowing on transmission line e, e = 1,2,...,1.
Assume that

p1:§77 7::172’"'7”717

where &; is extraneously set and a priori unknown. Then, since the system is
lossless, the injection into bus n must be such that 2?21 p; = 0; thus,

n—1
DPn = — Z gj-
j=1

Define &€ = [¢1,6o,...,&,—1] " and ¢ = [¢1, d2,...,¢] . Then, by imposing some
conditions on the values that ¢ can take, there exists a function f: R! — R!
encapsulating the system network topology and transmission line parameters
such that

w = f(¢), (1.23)

T . .
where w = [5—'—,0;” +1] - The formulation above can be generalized to the
case when there are m, 1 < m < n — 1, power injections being extraneously set
with the remaining power injections being adjusted so that Z?:1 p; = 0, which
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10 Introduction

is a necessary condition that the power injections need to satisfy because of the
assumption on the transmission lines in the system being lossless.
If the network is a tree, then we have that [ = n — 1 and

¢= Mo,
where M € R(m—1)x(n=1) jg invertible; thus, we can write
¢ =Mt (1.24)

For the case when the network is not a tree, because of the assumptions made
on the values that ¢ can take, we can ensure that there exists f~!: R — R! such
that

6= (w). (1.25)

Then, given either a probabilistic model or a set-theoretic model describing the
values that the vector of extraneous power injections, £, can take, the problem is
to characterize the values that the vector of line flows, ¢, can take. We explore
such settings in detail in Chapter 3 and Chapter 7.

142 Analysis of Inertia-less AC Microgrids under Power Injection Uncertainty

Consider a three-phase microgrid comprising n buses (n > 1) indexed by the
elements in V = {1,2,...,n}, and [ transmission lines (n — 1 <1 < n(n—1)/2)
and assume the following hold:

B1. The microgrid is balanced and operating in sinusoidal regime.

B2. There is at most one transmission line connecting each pair of buses.

B3. Each transmission line is short and lossless.

B4. Connected to each bus there is either a generating- or a load-type resource
interfaced via a three-phase voltage source inverter.

B5. The reactance of each voltage source inverter output filter is small when
compared to the reactance values of the network transmission lines.

B6. The phase angle of the inverter connected to each bus is regulated via a
droop control scheme updated at discrete time instants indexed by
k=0,1,2,....

B7. The inverter outer voltage and inner current control loops hold the inverter
output voltage magnitude constant throughout time.

Consider the case when the frequency-droop control setpoints of the inverters
at buses 1,2,...,m change randomly (this is typically the case in photovoltaic
installations endowed with maximum power point tracking). Let & denote an
m-~dimensional vector whose entries correspond to the values taken at instant k
of said setpoints. Assume that in order to mitigate the effect of these random
fluctuations, the frequency-droop control setpoints of the inverters at buses m +
1,m+2,...,n are regulated via a closed-loop integral control scheme so that the
frequency across the microgrid network remains close to some nominal value. Let
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