Contents

List of Definitions and Theorems
List of Examples
Preface

1 Motivation and Background
1.1 Automorphic Forms and Eisenstein Series
1.2 Why Eisenstein Series and Automorphic Forms?
1.3 Analysing Automorphic Forms and Adelisation
1.4 Reader’s Guide and Main Theorems

PART ONE AUTOMORPHIC REPRESENTATIONS

2 Preliminaries on p-adic and Adelic Technology
2.1 p-adic Numbers
2.2 p-adic Integration
2.3 p-adic Characters and the Fourier Transform
2.4 p-adic Gaussian and Bessel Functions
2.5 Adeles
2.6 Adelisation
2.7 Adelic Analysis of the Riemann Zeta Function

3 Basic Notions from Lie Algebras and Lie Groups
3.1 Real Lie Algebras and Real Lie Groups
3.2 p-adic and Adelic Groups

4 Automorphic Forms
4.1 Preliminaries on $SL(2, \mathbb{R})$
4.2 Classical Modular Forms
4.3 From Classical Modular Forms to Automorphic Forms
4.4 Adelic Automorphic Forms
4.5 Eisenstein Series

© in this web service Cambridge University Press
www.cambridge.org
Contents

5 **Automorphic Representations and Eisenstein Series** 87
5.1 A First Glimpse at Automorphic Representations 87
5.2 Automorphic Representations 93
5.3 Principal Series Representations 96
5.4 Eisenstein Series and Induced Representations 97
5.5 Classifying Automorphic Representations 98
5.6 Embedding of the Discrete Series in the Principal Series 100
5.7 Eisenstein Series for Non-minimal Parabolics 106
5.8 Induced Representations and Spherical Vectors* 115

6 **Whittaker Functions and Fourier Coefficients** 123
6.1 Preliminary Example: $SL(2, \mathbb{R})$ Whittaker Functions 123
6.2 Fourier Expansions and Unitary Characters 128
6.3 Induced Representations and Whittaker Models 136
6.4 Wavefront Set and Small Representations 141
6.5 Method of Piatetski-Shapiro and Shalika* 151

7 **Fourier Coefficients of Eisenstein Series on $SL(2, \mathbb{A})$** 155
7.1 Statement of Theorem 155
7.2 Constant Term 158
7.3 The Non-constant Fourier Coefficients 165

8 **Langlands Constant Term Formula** 170
8.1 Statement of Theorem 170
8.2 Bruhat Decomposition 171
8.3 Parametrising the Integral 172
8.4 Obtaining the a-dependence of the Integral 173
8.5 Solving the Remaining Integral by Induction 174
8.6 The Gindikin–Karpelevich Formula 175
8.7 Assembling the Constant Term 178
8.8 Functional Relations for Eisenstein Series 179
8.9 Expansion in Maximal Parabolics* 181

9 **Whittaker Coefficients of Eisenstein Series** 186
9.1 Reduction of the Integral and the Longest Weyl Word 186
9.2 Unramified Local Whittaker Functions 189
9.3 The Casselman–Shalika Formula 191
9.4 Whittaker Functions for Generic Characters ψ 197
9.5 Degenerate Whittaker Coefficients 199
9.6 The Casselman–Shalika Formula and Langlands Duality* 204
9.7 Quantum Whittaker Functions* 207
9.8 Whittaker Coefficients on $SL(3, \mathbb{A})^*$ 209
Contents

Part One

10 Analysing Eisenstein Series and Small Representations 219

10.1 The \(SL(2, \mathbb{R}) \) Eisenstein Series as a Function of \(s \) 220

10.2 Properties of Eisenstein Series 223

10.3 Evaluating Constant Term Formulas 232

10.4 Evaluating Spherical Whittaker Coefficients 242

11 Hecke Theory and Automorphic \(L \)-functions 255

11.1 Classical Hecke Operators and the Hecke Ring 255

11.2 Hecke Operators for \(SL(2, \mathbb{R}) \) 257

11.3 The Spherical Hecke Algebra 265

11.4 Hecke Algebras and Automorphic Representations 268

11.5 The Satake Isomorphism 271

11.6 The \(L \)-group and Generalisation to \(GL(n) \) 273

11.7 The Casselman–Shalika Formula Revisited 277

11.8 Automorphic \(L \)-functions 282

11.9 The Langlands–Shahidi Method* 285

12 Theta Correspondences 290

12.1 Classical Theta Series 290

12.2 Representation Theory of Classical Theta Functions 293

12.3 Theta Correspondence 296

12.4 Theta Series and the Weil Representation 297

12.5 The Siegel–Weil Formula 298

12.6 Exceptional Theta Correspondences 300

Part Two

APPLICATIONS IN STRING THEORY 305

13 Elements of String Theory 307

13.1 String Theory Concepts 308

13.2 Four-Graviton Scattering Amplitudes 324

13.3 The Four-Graviton Tree-Level Amplitude* 328

13.4 One-Loop String Amplitudes and Theta Lifts* 333

13.5 D-branes* 349

13.6 Non-perturbative Corrections from Instantons* 355

14 Automorphic Scattering Amplitudes 367

14.1 U-duality Constraints in the \(\alpha' \)-expansion 367

14.2 Physical Interpretation of the Fourier Expansion 370

14.3 Automorphic Representations and BPS Orbits 382

14.4 Supersymmetry Constraints* 388

15 Further Occurrences of Automorphic Forms in String Theory 395

15.1 \(\nabla^6 R^4 \)-amplitudes and Generalised Automorphic Forms 395
Contents

15.2 Modular Graph Functions 398
15.3 Automorphic Functions and Lattice Sums 405
15.4 Black Hole Counting and Automorphic Representations 408
15.5 Moonshine 416

PART THREE ADVANCED TOPICS 429

16 Connections to the Langlands Program 431
16.1 The Classical Langlands Program 431
16.2 The Geometric Langlands Program 434
16.3 The Langlands Program and Physics 439
16.4 Modular Forms and Elliptic Curves 442

17 Whittaker Functions, Crystals and Multiple Dirichlet Series 451
17.1 Generalisations of the Weyl Character Formula 451
17.2 Whittaker Functions and Crystals 453
17.3 Weyl Group Multiple Dirichlet Series 456

18 Automorphic Forms on Non-split Real Forms 460
18.1 Eisenstein Series on $SU(2, 1)$ 460
18.2 Constant Term and L-functions 465
18.3 Connection with the Langlands–Shahidi Method 468
18.4 Global Whittaker Coefficients 473
18.5 More General Number Fields 474
18.6 String Theory and Enumerative Geometry 475
18.7 Twistors and Quaternionic Discrete Series 478

19 Extension to Kac–Moody Groups 487
19.1 Motivation 488
19.2 Eisenstein Series on Affine Kac–Moody Groups 490
19.3 Extension to General Kac–Moody Groups 497

APPENDICES 507

Appendix A $SL(2, \mathbb{R})$ Eisenstein Series and Poisson Resummation 509
Appendix B Laplace Operators on G/K and Automorphic Forms 513
Appendix C Structure Theory of $sl(2, 1)$ 518
Appendix D Poincaré Series and Kloosterman Sums 521

References 527
Index 559