
Cambridge University Press
978-1-107-18773-3 — Lectures on Logarithmic Algebraic Geometry
Arthur Ogus 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

LECTURES ON LOGARITHMIC

ALGEBRAIC GEOMETRY

This graduate textbook offers a self-contained introduction to the concepts and

techniques of logarithmic geometry, a key tool for analyzing compactification and

degeneration in algebraic geometry and number theory. It features a systematic

exposition of the foundations of the field, from the basic results on convex geometry

and commutative monoids to the theory of logarithmic schemes and their de Rham

and Betti cohomology. The book will be of use to graduate students and researchers

working in algebraic, analytic, and arithmetic geometry, as well as related fields.

Arthur Ogus is Professor Emeritus of Mathematics at the University of California,

Berkeley. His work focuses on arithmetic, algebraic, and logarithmic geometry. He is the

author of 35 research publications, and has lectured extensively on logarithmic geometry

in Berkeley, France, Italy, and Japan.

www.cambridge.org/9781107187733
www.cambridge.org


Cambridge University Press
978-1-107-18773-3 — Lectures on Logarithmic Algebraic Geometry
Arthur Ogus 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board

B. Bollobás, W. Fulton, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press.

For a complete series listing visit: www.cambridge.org/mathematics.

Already Published

138. C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II

139. B. Helffer Spectral theory and its applications

140. R. Pemantle & M. C. Wilson Analytic combinatorics in several variables

141. B. Branner & N. Fagella Quasiconformal surgery in holomorphic dynamics

142. R. M. Dudley Uniform central limit theorems (2nd Edition)

143. T. Leinster Basic category theory

144. I. Arzhantsev, U. Derenthal, J. Hausen & A. Laface Cox rings

145. M. Viana Lectures on Lyapunov exponents
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3.2 The symbol in de Rham cohomology 499

3.3 Ω
·log

X
and the Poincaré lemma 501
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1 Introduction

1.1 Motivation

Logarithmic geometry was developed to deal with two fundamental and related

problems in algebraic geometry: compactification and degeneration. A key as-

pect of algebraic geometry is that it is essentially global in nature. Algebraic

varieties can be compactified: any separated scheme S of finite type over a field

k admits an open embedding j : S ֒→ T , with T/k proper and with S Zariski

dense in T [55, 9]. Since proper schemes are much easier to study than general

schemes, it is often convenient to work with T even if it is the original scheme

S that is of primary interest. It then becomes necessary to keep track of the

complement Z := T \S and to study how functions, differential forms, sheaves,

and other geometric objects on T behave near Z, and to have a mechanism to

extract S from T . In differential topology, these problems are often addressed

by working with manifolds with boundary, and logarithmic geometry can be

thought of as a substitute for, or version of, the notion of “algebraic variety

with boundary.” Indeed, log schemes over the field of complex numbers have

“Betti realizations,”1 and the Betti realizations of logarithmically smooth log

schemes are topological manifolds with boundary.

The compactification problem is related to the phenomenon of degeneration.

A scheme S often arises as a moduli space, for example, a space parameterizing

smooth proper schemes of a certain type. If S is a fine moduli space, there

is a smooth proper morphism f : U → S whose fibers are the objects one

wants to classify. One can then hope to find a compactification T of S such that

the boundary points parameterize “decorated degenerations” of the original

objects. In this case there should be a proper and flat (but not smooth) g : X →

T extending f : U → S. Then one is left with the problem of comparing f to g

and in particular of analyzing the behavior of g near Y := X \U. In many cases

one can obtain important information about the original family f by studying

the degenerate family over Z. A typical example is the compactification of the

moduli stack of smooth curves by the moduli stack of stable curves.

The problems of compactification and degeneration are thus manifest in a

1 Betti realizations of log schemes were introduced by Kato and Nakayama and are often called
“Kato–Nakayama spaces.”
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x 1 Introduction

diagram of the form:

U ⊂ ✲ X ✛ ⊃ Y

S

f

❄

⊂ ✲ T

g

❄

✛ ⊃ Z.

g|Y

❄

It turns out that in many such cases there is a natural way to equip X and T with

log structures, which somehow “remember” U and S and are compatible with

g. Then g : X → T becomes a morphism of log schemes and inherits many

of the nice features of f . The log structures on X and T restrict in a natural

way to Y and Z, and the resulting morphism of log schemes g|Y : Y → Z still

remembers useful information about f , thanks to the “decoration” provided by

the log structures on Y and Z.

In good cases, the log structures on f , X, and T render the morphism f

logarithmically smooth, which makes it much easier to study than the under-

lying morphism of schemes. The concept of smoothness for log schemes fits

very naturally into Grothendieck’s geometric deformation theory. Furthermore,

Betti realizations of proper log smooth morphisms behave in some respects like

topological fibrations (see [44] and [57]). The fact that this picture works so

well both in topological and in arithmetical settings is one of the main justifi-

cations for the theory of log geometry.

Let us illustrate how log geometry works in the most basic case, that of

a (possibly partial) compactification. Let j : U → X be an open immersion,

with complementary closed immersion i : Y → X. Then Y (and hence U) is

determined by the sheaf IY ⊆ OX consisting of those local sections ofOX whose

restriction to Y vanishes, a sheaf of ideals of OX . However, it is not Y but rather

U that is our primary interest, so instead we consider the subsheafMU/X of OX

consisting of the local sections of OX whose restriction to U is invertible. If f

and g are sections ofMU/X , then so is f g, but f + g need not be. ThusMU/X is

not a sheaf of rings, but it is a sheaf of submonoids of the multiplicative sheaf

of monoids underlying OX . Note thatMU/X contains the sheaf of units O∗
X

, and

if X is integral, the quotient MU/X/O
∗
X

can be naturally identified2 with the

sheaf of effective Cartier divisors on X with support in the complement Y of

U in X. The morphism of sheaves of monoids αU/X : MU/X → OX (inclusion)

is a logarithmic structure, called the compactifying log structure associated to

the embedding j. In good cases this log structure “remembers” the inclusion

U → X and furthermore satisfies a technical coherence condition that makes

2 This identification takes the class of a local section m ofMU/X to the inverse of the (invertible)
ideal sheaf generated by αU/X(m).

www.cambridge.org/9781107187733
www.cambridge.org


Cambridge University Press
978-1-107-18773-3 — Lectures on Logarithmic Algebraic Geometry
Arthur Ogus 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction xi

Figure 1.1.1 Compactifying an open immersion

it manageable. In the category of log schemes, the open immersion j fits into a

commutative diagram

U
j̃
✲ (X, αU/X)

X.

τU/X

❄

j
✲

This diagram provides a relative compactification of the open immersion j.

The map τU/X is proper but the map j̃ somehow preserves much of the essential

nature of the original open immersion j: in good cases, it behaves like a local

homotopy equivalence. We can imagine that the log structure αU/X cuts away or

blows up enough of X to make it look like U, but leaves enough of a boundary

for it to remain compact. It is in this sense that the log scheme (X, αU/X) plays

the role of an “algebraic variety with boundary.” For example, in the case of

the standard embedding of Gm → A1, the corresponding log scheme (A1, α)

behaves very much like the complex plane in which the origin is blown up to

become a circle, as shown in Figure 1.1.1. The morphism in this picture can

be identified with the multiplication map R≥ × S1 → C, where R≥ is the set

of nonnegative real numbers and S1 is the set of complex numbers of absolute

value one. This “real blowup” resolves the ambiguity of polar coordinates. It

serves as a proper model of the inclusion Gm → A1, whose homotopy theory

it closely resembles. These ideas will be made more precise in Section 1 of

Chapter V, where we discuss Betti realizations of log schemes. In particular,

Theorem V.1.3.1 shows that the Betti realization of a (logarithmically) smooth

log scheme over C really is a topological manifold with boundary.

In general, a log structure on a scheme X is a morphism of sheaves of com-
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xii 1 Introduction

mutative monoids α : M→ OX inducing an isomorphism α−1(O∗
X

) → O∗
X

. We

do not require α to be injective. In particular, sections ofM can map to zero

in OX , although in good casesM is integral, so that onM, multiplication by

any local section is injective. The tension between these behaviors accounts

for much of the power, as well as many of the technical difficulties, of log

geometry, particularly those involving fiber products. The flexibility and func-

toriality of log structures allow us to restrict a compactifying log structure αU/X

to X \ U, where sections of the sheaf of monoidsM keep track of the “ghosts

of vanishing coordinates.”

The naturality of these constructions allows them to work in appropriate

relative settings, for example, in the context of semistable reduction. Let X

be a regular scheme, let T be the spectrum of a discrete valuation ring, and

let f : X → T be a flat and proper morphism whose generic fiber Xτ/τ is

smooth and whose special fiber is a reduced divisor with normal crossings.

Then the compactifying log structures αX and αT associated as above to the

open embeddings Xτ → X and τ→ T fit into a morphism of log schemes

f : (X, αX)→ (T, αT ),

which is in fact logarithmically smooth.

The value of the machinery of log geometry must be judged by its appli-

cations to problems outside the theory itself. A detailed discussion of any of

these would be beyond the scope of this book, and we can only point readers

to the literature. Historically, the first (and perhaps still most striking) such ap-

plication is in the proof, due to Hyodo and Kato [37], Kato [48], Tsuji [75],

Faltings [19] [18], and others, of the “Cst conjecture” in p-adic Hodge theory.

Indeed, log geometry began as an attempt to discern what additional structure

on the special fiber of a semistable reduction was needed to define a “limit-

ing crystalline cohomology,” in analogy to Steenbrink’s construction of lim-

iting mixed Hodge structures in the complex analytic context [73], [74]. In

ℓ-adic cohomology, the main applications have been to the Bloch conductor

formula [51] and higher dimensional Ogg–Shafarevich formulas [1] and to

results on resolution, purity, and duality [42]. Log geometry has also been

notably used in the theory of mirror symmetry [24] and the study of com-

pactifications of moduli spaces of curves [47], [68], abelian varieties [64], K3

surfaces [63], and toric Hilbert schemes [65].

1.2 Roots

The development of logarithmic geometry, like that of any organism, began

well before its official birth, and was preceded by many classical methods deal-
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ing with the problems of compactification and degeneration. These include

most notably the theories of toroidal embeddings, of differential forms and

equations with log poles and/or regular singularities, and of vanishing cycles

and monodromy. Logarithmic geometry was influenced by all these ideas and

provides a language that incorporates and extends them in functorial and sys-

tematic ways.

Logarithmic structures fit so naturally with the usual building blocks of

schemes that it is possible, and in most (but not all) cases, straightforward and

natural, to adapt many of the standard techniques and intuitions of algebraic

geometry to the logarithmic context. Log geometry seems to be especially

compatible with infinitesimal techniques, including Grothendieck’s notions of

smoothness, differentials, and differential operators. The sheaf of Kähler dif-

ferentials of a logarithmic scheme (X, αX), constructed from Grothendieck’s

deformation-theoretic viewpoint, coincides with the classical sheaf of differ-

ential forms of X with log poles along X \ U; this fact is one justification for

the terminology. Furthermore, any toric variety (with the log structure corre-

sponding to the dense open torus it contains) is log smooth, and the theory of

toroidal embeddings is essentially equivalent to the study of (logarithmically)

smooth log schemes over a field.

1.3 Goals

Our aim in this book is to provide an introduction to the basic notions and

techniques of log geometry that is accessible to graduate students with a basic

knowledge of algebraic geometry. We hope the material will also be useful to

researchers in other areas of geometry, to which we believe the theory can be

profitably adopted, as has already been done in the case of complex analytic

geometry. For the sake of concreteness, we work systematically with schemes

as locally ringed spaces, although it certainly would have been possible and

profitable to develop the theory for complex analytic varieties, or for algebraic

spaces or stacks. Even in the case of schemes, it is quite valuable to work

locally in the étale topology, and we shall allow ourselves to do so, although

we do not use the language of topos theory. (That more powerful approach is

taken in the very thorough treatment in [22].)

Just as scheme theory starts with the study of commutative rings, log geom-

etry starts with the study of commutative monoids. Much of this foundational

material is already available in the literature, but we have decided to offer a

self-contained presentation more directly suited to our purposes. In log geom-

etry, in an apparent contrast with toric geometry, the study of the category of

monoids, and in particular of homomorphisms of monoids, plays a fundamen-
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xiv 1 Introduction

tal role. This difference was part of our motivation for including this material,

and we hope our treatment may be of interest apart from its applications to

log geometry per se. Thus Chapter I begins with the study of limits and col-

imits in the category of monoids, and in particular with the construction of

pushouts, which are analogous to tensor products in the category of rings. We

then discuss sets endowed with a monoid action (the analogs of modules in

ring theory), ideals, localization, and the spectrum of a monoid, with its Zariski

topology. After these preliminaries we turn to more familiar constructions in

convex geometry, including basic results about finiteness, duality, and cones.

Then we discuss monoid algebras and some facts about affine toric varieties.

The final sections of Chapter I are devoted to a deeper study of properties of

homomorphisms and actions of monoids, and in particular to certain analogs

of flatness. Of particular importance is Kato’s key concept of exactness, which

we encounter in Section 1.1. An example of its importance is manifest in the

“four point lemma” 4.2.16, where exactness is needed to make fiber products

of logarithmically integral log schemes behave well. Integrality and saturation

of morphisms, which we discuss next, are refinements of the notion of exact-

ness. Theorem 4.7.2 reveals the structure of “critically” and “locally” exact

homomorphisms and plays an important role throughout log geometry and this

text. We finish by showing how locally exact homomorphisms can be made

integral and saturated by a suitable base change, which can be viewed as a log-

arithmic version of semistable reduction. This material is more technical than

the rest of our exposition and can be skipped over in a first reading.

Chapter II discusses sheaves of monoids on topological spaces. After dis-

posing of some generalities, we define monoschemes, which are constructed

by gluing together spectra of commutative monoids, just as schemes are con-

structed by gluing together spectra of commutative rings. Our monoschemes

are sometimes called “schemes over F1” in the literature [12] and are general-

izations of the fans used to construct toric varieties. We use this concept to con-

struct monoidal transformations (blowups) for monoids (and monoschemes).

The main application is Theorem 1.8.1, which explains how a homomorphism

of monoids can be made locally exact by a monoidal transformation. Sec-

tion 1.10 explains the moment map for a monoid scheme A
Q

, which gives

a linearized model of the set of its R≥-valued points. As an application, we

show that the “positive part” of each fiber of a monoidal transformation is con-

tractible. The remainder of Chapter II is devoted to Kato’s important notions of

charts and coherence for sheaves of monoids, which form the main technical

link between logarithmic and toric geometry.

With the preliminaries well in hand, we are ready in Chapter III to turn to

logarithmic geometry per se, including two variants of the standard theory:
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idealized log schemes and relatively coherent log structures. We work with log

structures in both the Zariski and étale topologies, since each has its own ad-

vantages and disadvantages, and explain the relation between the two. After

giving the main definitions and basic constructions, we discuss some exam-

ples: log points and dashes, and the compactifying log structures coming from

open immersions U → X. We then describe in some detail a precursor of the

notion of log structures, due (independently) to Deligne and Faltings. This no-

tion, although less flexible and functorial than the point of view taken here, is

convenient for describing the log structures that arise in the context of divisors

with normal crossings and semistable reduction. It was in some sense already

envisioned in the work of Friedman [20] and Steenbrink [73]. We then discuss

hollow and especially solid log structures. In the first case, the log structure

reflects the geometry of the part of a scheme that has been cut away, and in

the second the log structure is tightly tied to the part of the geometry of the

scheme which can be modelled by a toric structure. The notion of solidity of

a log structure is closely related to, and helpful in, the study of Kato’s notion

of log regularity, which we discuss next. Finally, we briefly discuss frames for

log structures, a weak version of charts that can be quite useful.

The remainder of Chapter III is devoted to the study of morphisms of log

schemes, including the rather delicate construction of fibered products. Exact

morphisms of log schemes play an especially important role, as well as the re-

lated notions of integral and saturated morphisms. We also study the logarith-

mic versions of immersions, inseparable morphisms, and Kummer and small

morphisms, as well as logarithmic blowups.

Chapter IV is devoted to logarithmic differentials and logarithmic smooth-

ness. We begin with a purely algebraic construction of Kähler differentials for

(pre) log schemes, then explain its geometric meaning in terms of deforma-

tion theory. Next we discuss smoothness for logarithmic schemes, defined in

terms of a logarithmic version of Grothendieck’s infinitesimal lifting criterion.

Although smooth morphisms in logarithmic geometry are much more com-

plicated than in classical geometry, locally they admit nice toric models. As in

the classical case, smoothness and regularity are related notions, the former be-

ing a “relative” version of the latter. We next discuss the more general notion

of logarithmic flatness, which is quite useful but, as of this writing, techni-

cally challenging. We explore the relationships among the notions of flatness,

smoothness, exactness, and integrality, extending in some cases the fundamen-

tal results of Kato.

In Chapter V we discuss topology and cohomology. To provide a geomet-

ric intuition, we begin with the construction of the Betti realization Xlog of a

log scheme X over C. This is a topological space that comes with a natural
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proper map τX : Xlog → Xan which embodies the picture exemplified in Fig-

ure 1.1.1. We explain the definition and basic topological properties of Betti

realizations, make them explicit for toric models, and show that the Betti re-

alization of a smooth analytic space is a topological manifold with boundary.

(We do not include the proof, but in fact the Betti realization of a smooth

proper and exact morphism of log analytic spaces is a topological fibration of

manifolds with boundary [57].) We then define the sheaf of rings O
log

X
on Xlog,

which is obtained by adjoining logarithms of sections of MX in a canonical

way and which allows for a generalization of the familiar exponential sequence

in classical complex analytic geometry. Our next main topic is logarithmic de

Rham cohomology. We begin with an algebraic description of the logarith-

mic de Rham complex of a monoid algebra and some of the natural filtrations

(defined by faces and ideals) it carries. Then we explain the sheafification and

globalization of these constructions for log schemes. We give several versions

of the logarithmic Poincaré lemma in the analytic setting, proving that analytic

de Rham cohomology calculates the Betti cohomology of Xlog. In the alge-

braic setting, we construct the Cartier isomorphism and the Cartier operator

in positive characteristics, and explain how the Cartier operator relates to the

restricted Lie-algebra structure on the logarithmic tangent sheaf. Finally we

study algebraic de Rham cohomology in characteristic zero, concluding with

some finiteness theorems and comparisons with analytic, and hence log Betti,

cohomology.

Time and space constraints have prevented us from discussing many impor-

tant topics which we had earlier hoped to include and for which we can only

indicate some references in the literature. Some fundamental results not cov-

ered include the resolution of toric singularities [49],[58],[42], the cohomol-

ogy of log blowups [39], and the fact that normal toric varieties are Cohen–

Macaulay [36]. We have also had to omit examples of applications of log ge-

ometry and can only suggest that the reader look at work on the moduli of sta-

ble curves [47], on the logarithmic Riemann–Hilbert correspondence [40, 61],

and on crystalline cohomology [37, 60], as a scattered set of examples.

1.4 Organization

The goals of this text are to introduce the reader to the basic ideas of log geom-

etry and to provide a technical foundation for further work on the theory and

its applications. These goals are somewhat contradictory, in that a good deal

of the foundational material depends on the algebra of monoids and the geom-

etry of convex bodies, the study of which can impede the momentum toward

the ultimate goals coming from algebraic geometry. Although a fair amount of
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this material can be found in the literature, we have decided to treat it care-

fully here, partly because the author himself wanted to become comfortable

with it and partly because the perspective from log geometry, in which homo-

morphisms play a central role, is not to be found in the standard texts. We

have grouped nearly all this material in the first two chapters and consequently

don’t arrive at log geometry itself until Chapter III, potentially discouraging a

reader eager to try out log geometry in some specific context. Such a reader

may find it preferable to skip some of the earlier sections, returning to them as

necessary. We hope our exposition will make this possible. In particular, the

material on idealized monoids, idealized log schemes, and relative coherence,

concepts whose ultimate utility has not yet been convincingly demonstrated,

can be skipped on a first reading. Probably the same is true of monoschemes,

which are really just an alternative to the classical theory of fans from toric

geometry. Readers focused on the essence of log geometry could try reading

only Sections 1.1, 4.1, and 4.2 of Chapter I, and then Sections 1.1 and 2.1 of

Chapter II, before proceeding to Chapter III. Readers whose primary interest

is convex rather than log geometry may find it interesting to concentrate on

the material in Chapters I and II, since some of it may be new to them, es-

pecially Section 4 of Chapter I. Unfortunately, the key concept of logarithmic

smoothness does not appear until well into Chapter IV; fortunately, this con-

cept was already well explained in Kato’s original paper [48]. In any case, we

hope that impatient readers will find our treatment palatable even if they have

not digested all the preceding material.

To facilitate flexibility in reading the text, we have tried to be careful with

references. We use the same numbering scheme for definitions, theorems, re-

marks, etc. within each chapter. When referring to a result from a different

chapter, we include the (roman numeral) chapter number in the reference; oth-

erwise we omit it.

It is probably appropriate to remark on the writing style. We have attempted

to include a considerable degree of detail, both in motivating and in defin-

ing concepts and in writing the proofs. Some readers, especially those fa-

miliar with the techniques of toric geometry, may consequently find the pre-

sentation ponderous. However, we found no alternative compatible with the

goals of solidifying our understanding and of avoiding a plethora of errors,

which would otherwise crop up not just in the proofs themselves, but also

in statements of theorems and, worse, definitions. It seems easier for the

reader to skip some arguments as s/he sees fit rather than to worry about er-

rors hidden in unwritten proofs. Readers who feel the (understandable) de-

sire for exercises can refrain from reading the proofs supplied and provide

their own and/or content themselves with the search for errors, of which we

www.cambridge.org/9781107187733
www.cambridge.org


Cambridge University Press
978-1-107-18773-3 — Lectures on Logarithmic Algebraic Geometry
Arthur Ogus 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xviii 1 Introduction

fear many may remain. We would be grateful for notifications of any errors,

which we hope eventually to correct on a web page available at <https:

//math.berkeley.edu/˜ogus/logpage.html>.
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