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1 Introduction

In controls we make use of the abstract concept of a system: we identify a phenomenon

or a process, the system, and two classes of signals, which we label as inputs and outputs.

A signal is something that can be measured or quantified. In this book we use real

numbers to quantify signals. The classification of a particular signal as an input means

that it can be identified as the cause of a particular system behavior, whereas an output

signal is seen as the product or consequence of the behavior. Of course the classification

of a phenomenon as a system and the labeling of input and output signals is an abstract

construction. A mathematical description of a system and its signals is what constitutes

a model. The entire abstract construction, and not only the equations that we will later

associate with particular signals and systems, is the model.

We often represent the relationship between a system and its input and output signals

in the form of a block-diagram, such as the ones in Fig. 1.1 through Fig. 1.3. The dia-

gram in Fig. 1.1 indicates that a system, G, produces an output signal, y, in the presence

of the input signal, u. Block-diagrams will be used to represent the interconnection of

systems and even algorithms. For example, Fig. 1.2 depicts the components and signals

in a familiar controlled system, a water heater; the block-diagram in Fig. 1.3 depicts an

algorithm for converting temperature in degrees Fahrenheit to degrees Celsius, in which

the output of the circle in Fig. 1.3 is the algebraic sum of the incoming signals with

signs as indicated near the incoming arrows.

1.1 Models and Experiments

Systems, signals, and models are often associated with concrete or abstract experiments.

A model reflects a particular setup in which the outputs appear correlated with a pre-

scribed set of inputs. For example, we might attempt to model a car by performing the

following experiment: on an unobstructed and level road, we depress the accelerator

pedal and let the car travel in a straight line.1 We keep the pedal excursion constant and

let the car reach constant velocity. We record the amount the pedal has been depressed

and the car’s terminal velocity. The results of this experiment, repeated multiple times

with different amounts of pedal excursion, might look like the data shown in Fig. 1.4.

In this experiment the signals are

1 This may bring to memory a bad joke about physicists and spherical cows . . .
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2 Introduction
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Figure 1.1 System represented as a block-diagram; u is the input signal; y is the output signal;

y and u are related through y = G(u) or simply y = Gu.
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Figure 1.2 Block-diagram of a controlled system: a gas water heater; the blocks thermostat,

burner, and tank, represent components or sub-systems; the arrows represent the flow of input

and output signals.
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Figure 1.3 Block-diagram of an algorithm to convert temperatures in Fahrenheit to Celsius:

Celsius = 5/9(Fahrenheit − 32); the output of the circle block is the algebraic sum of the

incoming signals with the indicated sign, i.e. z = Fahrenheit − 32.
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Figure 1.4 Experimental determination of the effect of pressing the gas pedal on the car’s terminal

velocity; the pedal excursion is the input signal, u, and the car’s terminal velocity is the output

signal, y.
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Figure 1.5 Fitting the curve y = α tan−1(βu) to the data from Fig. 1.4.

input: pedal excursion, in cm, inches, etc.;

output: terminal velocity of the car, in m/s, mph, etc.

The system is the car and the particular conditions of the experiment. The data captures

the fact that the car does not move at all for small pedal excursions and that the terminal

velocity saturates as the pedal reaches the end of its excursion range.

From Fig. 1.4, one might try to fit a particular mathematical function to the exper-

imental data2 in hope of obtaining a mathematical model. In doing so, one invariably

loses something in the name of a simpler description. Such trade-offs are commonplace

in science, and it should be no different in the analysis and design of control systems.

Figure 1.5 shows the result of fitting a curve of the form

y = α tan−1(βu),

where u is the input, pedal excursion in inches, and y is the output, terminal velocity

in mph. The parameters α = 82.8 and β = 1.2 shown in Fig. 1.5 were obtained from a

standard least-squares fit. See also P1.11.

The choice of the above particular function involving the arc-tangent might seem

somewhat arbitrary. When possible, one should select candidate functions from first

principles derived from physics or other scientific reasoning, but this does not seem to

be easy to do in the case of the experiment we described. Detailed physical modeling

of the vehicle would involve knowledge and further modeling of the components of the

vehicle, not to mention the many uncertainties brought in by the environment, such as

wind, road conditions, temperature, etc. Instead, we make an “educated choice” based on

certain physical aspects of the experiment that we believe the model should capture. In

this case, from our daily experience with vehicles, we expect that the terminal velocity

2 All data used to produce the figures in this book is available for download from the website

http://www.cambridge.org/deOliveira.
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Figure 1.6 Linear mathematical models of the form y = γ u for the data in Fig. 1.4 (dashed); the

model with γ = 47.8 was obtained by a least-squares fit; the model with γ = 99.4 was obtained

after linearization of the nonlinear model (solid) obtained in Fig. 1.5; see P1.12 and P1.11.

will eventually saturate, either as one reaches full throttle or as a result of limitations on

the maximum power that can be delivered by the vehicle’s powertrain. We also expect

that the function be monotone, that is, the more you press the pedal, the larger the termi-

nal velocity will be. Our previous exposure to the properties of the arc-tangent function

and engineering intuition about the expected outcome of the experiment allowed us to

successfully select this function as a suitable candidate for a model.

Other families of functions might suit the data in Fig. 1.5. For example, we could have

used polynomials, perhaps constrained to pass through the origin and ensure monotonic-

ity. One of the most useful classes of mathematical models one can consider is that of

linear models, which are, of course, first-order polynomials. One might be tempted to

equate linear with simple. Whether or not this might be true in some cases, simplicity

is far from a sin. More often than not, the loss of some feature neglected by a linear

model is offset by the availability of a much broader set of analytic tools. It is better to

know when you are wrong than to believe you are right. As the title suggests, this book

is mostly concerned with linear models. Speaking of linear models, one might propose

describing the data in Fig. 1.4 by a linear mathematical model of the form

y = γ u. (1.1)

Figure 1.6 shows two such models (dashed lines). The curve with slope coefficient

γ = 47.8 was obtained by performing a least-squares fit to all data points (see P1.11).

The curve with coefficient γ = 99.4 is a first-order approximation of the nonlinear

model calculated in Fig. 1.5 (see P1.12). Clearly, each model has its limitations in

describing the experiment. Moreover, one model might be better suited to describe cer-

tain aspects of the experiment than the other. Responsibility rests with the engineer or

the scientist to select the model, or perhaps set of models, that better fits the problem in

hand, a task that at times may resemble an art more than a science.
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1.2 Cautionary Note 5

1.2 Cautionary Note

It goes without saying that the mathematical models described in Section 1.1 do not pur-

port to capture every detail of the experiment, not to mention reality. Good models are

the ones that capture essential aspects that we perceive or can experimentally validate as

real, for example how the terminal velocity of a car responds to the acceleration pedal

in the given experimental conditions. A model does not even need to be correct to be

useful: for centuries humans used3 a model in which the sun revolves around the earth to

predict and control their days! What is important is that models provide a way to express

relevant aspects of reality using mathematics. When mathematical models are used in

control design, it is therefore with the understanding that the model is bound to capture

only a subset of features of the actual phenomenon they represent. At no time should

one be fooled into believing in a model. The curious reader will appreciate [Fey86] and

the amusingly provocative [Tal07].

With this caveat in mind, it is useful to think of an idealized true or nominal model,

just as is done in physics, against which a particular setup can be mathematically eval-

uated. This nominal model might even be different than the model used by a particular

control algorithm, for instance, having more details or being more complex or more

accurate. Of course physical evaluation of a control system with respect to the under-

lying natural phenomenon is possible only by means of experimentation which should

also include the physical realization of the controller in the form of computer hardware

and software, electric circuits, and other necessary mechanical devices. We will dis-

cuss in Chapter 5 how certain physical devices can be used to implement the dynamic

controllers you will learn to design in this book.

The models discussed so far have been static, meaning that the relationship between

inputs and outputs is instantaneous and is independent of the past history of the system

or their signals. Yet the main objective of this book is to work with dynamic models, in

which the relationship between present inputs and outputs may depend on the present

and past history4 of the signals.

With the goal of introducing the main ideas behind feedback control in a simpler

setup, we will continue to work with static models for the remainder of this chapter. In

the case of static models, a mathematical function or a set of algebraic equations will

be used to represent such relationships, as done in the models discussed just above in

Section 1.1.

Dynamic models will be considered starting in Chapter 2. In this book, signals will be

continuous functions of time, and dynamic models will be formulated with the help of

ordinary differential equations. As one might expect, experimental procedures that can

estimate the parameters of dynamic systems need to be much more sophisticated than

the ones discussed so far. A simple experimental procedure will be briefly discussed in

Section 2.4, but the interested reader is encouraged to consult one of the many excellent

works on this subject, e.g. [Lju99].

3 Apparently 1 in 4 Americans and 1 in 3 Europeans still go by that model [Gro14].
4 What about the future?
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6 Introduction

1.3 A Control Problem

Consider the following problem:

Under the experimental conditions described in Section 1.1 and given a target terminal

velocity, ȳ, is it possible to design a system, the controller, that is able to command the

accelerator pedal of a car, the input, u, to produce a terminal velocity, the output, y,

equal to the target velocity?

An automatic system that can solve this problem is found in many modern cars, with

the name cruise controller. Of course, another system that is capable of solving the

same problem is a human driver.5 In this book we are mostly interested in solutions that

can be implemented as an automatic control, that is, which can be performed by some

combination of mechanical, electric, hydraulic, or pneumatic systems running without

human intervention, often being programmed in a digital computer or some other logical

circuit or calculator.

Problems such as this are referred to in the control literature as tracking problems:

the controller should make the system, a car, follow or track a given target output, the

desired terminal velocity. In the next sections we will discuss two possible approaches

to the cruise control problem.

1.4 Solution without Feedback

The role of the controller in tracking is to compute the input signal u which produces the

desired output signal y. One might therefore attempt to solve a tracking problem using

a system (controller) of the form

u = K(ȳ).

This controller can use only the reference signal, the target output ȳ, and is said to be

in open-loop,6 as the controller output signal, u, is not a function of the system output

signal, y.

With the intent of analyzing the proposed solution using mathematical models,

assume that the car can be represented by a nominal model, say G, that relates the

input u (pedal excursion) to the output y (terminal velocity) through the mathematical

function

y = G(u).

The connection of the controller with this idealized model is depicted in the block-

diagram in Fig. 1.7. Here the function G can be obtained after fitting experimental data

as done in Figs. 1.5 and 1.6, or borrowed from physics or engineering science principles.

5 After some 16 years of learning.
6 As opposed to closed-loop, which will be discussed in Section 1.5.
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1.5 Solution with Feedback 7

K G
u yy

Figure 1.7 Open-loop control: the controller, K, is a function of the reference input, ȳ, but not a

function of the system output, y.

The block-diagram in Fig. 1.7 represents the following relationships:

y = G(u), u = K(ȳ),

that can be combined to obtain

y = G (K(ȳ)) .

If G is invertible and K is chosen to be the inverse of G, that is K = G−1, then

y = G
(

G−1(ȳ)
)

= ȳ.

Matching the controller, K, with the nominal model, G, is paramount: if K �= G−1 then

y �= ȳ.

When both the nominal model G and the controller K are linear,

y = G u, u = K ȳ, y = G K ȳ,

from which ȳ = y only if the product of the constants K and G is equal to one:

K G = 1 �⇒ K = G−1, u = G−1 ȳ.

Because the control law relies on knowledge of the nominal model G to achieve its goal,

any imperfection in the model or in the implementation of the controller will lead to less

than perfect tracking.

1.5 Solution with Feedback

The controller in the open-loop solution considered in Section 1.4 is allowed to make

use only of the target output, ȳ. When a measurement, even if imprecise, of the system

output is available, one may benefit from allowing the controller to make use of the

measurement signal, y. In the case of the car cruise control, the terminal velocity, y, can

be measured by an on-board speedometer. Of course the target velocity, ȳ, is set by the

driver.

Controllers that make use of output signals to compute the control inputs are called

feedback controllers. In its most general form, a feedback controller has the functional

form

u = K(ȳ, y).

In practice, most feedback controllers work by first creating an error signal, ȳ − y,

which is then used by the controller:

u = K(e), e = ȳ − y. (1.2)
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8 Introduction

K G
e u y
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Figure 1.8 Closed-loop feedback control: the controller, K, is a function of the reference input, ȳ,

and the system output, y, by way of the error signal, e = ȳ − y.

This scheme is depicted in the block-diagram in Fig. 1.8. One should question whether it

is possible to implement a physical system that replicates the block-diagram in Fig. 1.8.

In this diagram, the measurement, y, that takes part in the computation of the control,

u, in the controller block, K, is the same as that which comes out of the system, G. In

other words, the signals flow in this diagram is instantaneous. Even though we are not

yet properly equipped to address this question, we anticipate that it will be possible to

construct and analyze implementable or realizable versions of the feedback diagram in

Fig. 1.8 by taking into account dynamic phenomena, which we will start discussing in

the next chapter.

At this point, we are content to say that if the computation implied by feedback is per-

formed fast enough, then the scheme should work. We analyze the proposed feedback

solution only in the case of static linear models, that is, when both the controller, K, and

the system to be controlled, G, are linear. Feedback controllers of the form (1.2), which

are linear and static, are known by the name proportional controllers, or P controllers

for short. In the closed-loop diagram of Fig. 1.8, we can think of the signal ȳ, the target

velocity, as an input, and of the signal y, the terminal velocity, as an output. A mathe-

matical description of the relationship between the input signal, ȳ, and output signal, y,

assuming linear models, can be computed from the diagram:

y = Gu, u = Ke, e = ȳ − y.

After eliminating the signals e and u we obtain

y = GKe = GK(ȳ − y) �⇒ (1 + GK )y = GKȳ.

When GK �= −1,

y = Hȳ, H =
GK

1 + GK
.

A mathematical relationship governing a particular pair of inputs and outputs is called a

transfer-function. The function H calculated above is known as a closed-loop transfer-

function.

Ironically, a first conclusion from the closed-loop analysis is that it is not possible

to achieve exact tracking of the target velocity since H cannot be equal to one for any

finite value of the constants G and K, not even when K = G−1, which was the open-

loop solution. However, it is not so hard to make H get close to one: just make K large!

More precisely, make the product GK large. How large it needs to be depends on the

particular system G. However, a welcome side-effect of the closed-loop solution is that

the controller gain, K, does not depend directly on the value of the system model, G.
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1.5 Solution with Feedback 9

Table 1.1 Closed-loop transfer-function, H , for various values of K and G

K

G 0.02 0.05 0.5 1 3

47.8 0.4888 0.7050 0.9598 0.9795 0.9931

73.3 0.5945 0.7856 0.9734 0.9865 0.9955

99.4 0.6653 0.8325 0.9803 0.9900 0.9967

As the calculations in Table 1.1 reveal, the closed-loop transfer-function, H , remains

within 1% of 1 for values K greater than or equal to 3 for any value of G lying between

the two crude linear models estimated earlier in Fig. 1.6.

In other words, feedback control does not seem to rely on exact knowledge of the

system model in order to achieve good tracking performance. This is a major feature

of feedback control, and one of the reasons why we may get away with using incom-

plete and not extremely accurate mathematical models for feedback design. One might

find this strange, especially to scientists and engineers trained to look for accuracy and

fidelity in their models of the world, a line of thought that might lead one to believe

that better accuracy requires the use of complex models. For example, the complexity

required for accurately modeling the interaction of an aircraft with its surrounding air

may be phenomenal. Yet, as the Wright brothers and other flight pioneers demonstrated,

it is possible to design and implement effective feedback control of aircraft without

relying explicitly on such complex models.

This remarkable feature remains for the most part true even if nonlinear7 models

are considered, although the computation of the transfer-function, H , becomes more

complicated.8 Figure 1.9 shows a plot of the ratio y/ȳ for various choices of gain, K,

when a linear controller is in feedback with the static nonlinear model, G, fitted in

Fig. 1.5. The trends are virtually the same as those obtained using linear models. Note

also that the values of the ratio of the terminal velocity by the target velocity are close to

the values of H calculated for the linear model with gain G = 99.4 which was obtained

through “linearization” of the nonlinear model, especially at low velocities.

Insight on the reasons why feedback control can achieve tracking without relying

on precise models is obtained if we look at the control, the signal u, that is effectively

computed by the closed-loop solution. Following steps similar to the ones used in the

derivation of the closed-loop transfer-function, we calculate

u = Ke = K(ȳ − y) = K(1 − H ) ȳ =
K

1 + GK
ȳ =

1

K−1 + G
ȳ.

Note that limK→∞ u = G−1 ȳ, which is exactly the same control as that computed in

open-loop (see Section 1.4). This time, however, it is the feedback loop that computes

the function G−1 based on the error signal, e = ȳ − y. Indeed, u is simply equal to

7 Many but not all nonlinear models.
8 It requires solving the nonlinear algebraic equation y = G(K(ȳ − y)) for y. The dynamic version of this

problem is significantly more complex.
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Figure 1.9 Effect of the gain K on the ability of the terminal velocity, y, to track a given target

velocity, ȳ, when the linear feedback control, u = K(y − ȳ), is in closed-loop (Fig. 1.8) with the

nonlinear model, y = G(u) = 82.8 tan−1(1.2u) from Fig. 1.5.

K(ȳ − y), which, when K is made large, converges to G−1ȳ by virtue of feedback, no

matter what the value of G is. A natural question is what are the side-effects of raising

the control gain in order to improve the tracking performance? We will come back to

this question at many points in this book as we learn more about dynamic systems and

feedback.

1.6 Sensitivity

In previous sections, we made statements regarding how insensitive the closed-loop

feedback solution was with respect to changes in the system model when compared

with the open-loop solution. We can quantify this statement in the case of static linear

models.

As seen before, in both open- and closed-loop solutions to the tracking control prob-

lem, the output y is related to the target output ȳ through

y = H (G) ȳ.

The notation H (G) indicates that the transfer-function, H , depends on the system

model, G. In the open-loop solution H (G) = GK and in the closed-loop solution

H (G) = GK(1 + GK )−1.

Now consider that G assumes values in the neighborhood of a certain nominal model

Ḡ and that H (Ḡ) �= 0. Assume that those changes in G affect H in a continuous and

differentiable way so that9

H (G) = H (Ḡ) + H ′(Ḡ)(�G) + O
(

�G2
)

, �G = G − Ḡ,

9 The notation O(xn ) indicates a polynomial in x that has only terms with degree greater than or equal to n.
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