

REMOTE COMPOSITIONAL ANALYSIS

How do planetary scientists analyze and interpret data from telescopic and spacecraft observations of planetary surfaces? What elements, minerals, and volatiles are found on the surfaces of our Solar System's planets, moons, asteroids, and comets? This comprehensive volume answers these topical questions by providing an overview of the theory and techniques of remote compositional analysis of planetary surfaces. Bringing together eminent researchers in Solar System exploration, it describes state-of-the-art results from spectroscopic, mineralogical, and geochemical techniques used to analyze the surfaces of planets, moons, and small bodies. The book introduces the methodology and theoretical background of each technique, and presents the latest advances in space exploration, telescopic observation, and laboratory instrumentation, and major new work in theoretical studies. This engaging volume provides a comprehensive reference on planetary surface composition and mineralogy for advanced students, researchers, and professional scientists.

JANICE L. BISHOP is a senior research scientist at the SETI Institute, where she is Chair of Astrobiology and on the Science Council. She investigates Mars surface composition, mineral spectroscopy, and volcanic alteration, and has worked with data from many martian missions, including MRO/CRISM for which she is a Co-I. She has served as editor of *Icarus* and special issues of *American Mineralogist* and *Clay Minerals*. She has received awards from the Clay Minerals Society, the Humboldt Foundation, and the Helmholtz Foundation, and is a Fellow of GSA and MSA.

JAMES F. BELL III is a professor at Arizona State University, where he specializes in astronomy and planetary science. He studies the geology, geochemistry, and mineralogy of Solar System objects using telescopes and spacecraft. He received the Carl Sagan Medal from the American Astronomical Society for excellence in public communication in the planetary sciences, and asteroid 8146 Jimbell was named after him by the International Astronomical Union. He edited *The Martian Surface: Composition, Mineralogy, and Physical Properties* (Cambridge, 2008) and coedited *Asteroid Rendezvous* (Cambridge, 2002).

JEFFREY E. MOERSCH is a professor of Earth and Planetary Sciences and Director of the Planetary Geosciences Institute at the University of Tennesee. His research focuses on the geology of planetary surfaces, remote sensing, terrestrial analog field work, and planetary instrument development. He has extensive spacecraft mission experience, including work as a member of the science teams of the Mars Exploration Rover mission, the Mars Odyssey mission, and the Mars Science Laboratory mission. He has conducted astrobiology-related research in many terrestrial analog field sites, including Death Valley and the Mojave Desert, the Atacama Desert, the Andes, and the Arctic. From 2010 to 2015 he was the Mars Editor for *Icarus*.

Cambridge Planetary Science

Series Editors: Fran Bagenal, David Jewitt, Carl Murray, Jim Bell, Ralph Lorenz, Francis Nimmo, Sara Russell

Books in the Series:

 Jupiter: The Planet, Satellites and Magnetosphere[†]
 Edited by Bagenal, Dowling and McKinnon
 978-0-521-03545-3

2. Meteorites: A Petrologic, Chemical and Isotopic Synthesis † Hutchison

978-0-521-03539-2

3. The Origin of Chondrules and Chondrites[†]

Sears

978-1-107-40285-0

4. Planetary Rings

Esposito

978-1-107-40247-8

5. The Geology of Mars: Evidence from Earth-Based Analogs[†]

Edited by Chapman 978-0-521-20659-4

6. The Surface of Mars[†]

o. The surjuce of Ma

Carı

978-0-521-87201-0

7. Volcanism on Io: A Comparison with Earth[†]

Davies

978-0-521-85003-2

8. Mars: An Introduction to Its Interior, Surface and Atmosphere †

Barlow

978-0-521-85226-5

9. The Martian Surface: Composition, Mineralogy and Physical Properties

Edited by Bell

978-0-521-86698-9

10. Planetary Crusts: Their Composition, Origin and Evolution[†]

Taylor and McLennan

978-0-521-14201-4

11. Planetary Tectonics†

Edited by Watters and Schultz

978-0-521-74992-3

12. Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives[†]

Edited by Apai and Lauretta

978-0-521-51772-0

13. Planetary Surface Processes

Melosh

978-0-521-51418-7

[†] Reissued as a paperback

> Titan: Interior, Surface, Atmosphere and Space Environment Edited by Müller-Wodarg, Griffith, Lellouch and Cravens 978-0-521-19992-6

15. Planetary Rings: A Post-Equinox View (Second edition)
Esposito

978-1-107-02882-1

 Planetesimals: Early Differentiation and Consequences for Planets Edited by Elkins-Tanton and Weiss 978-1-107-11848-5

17. Asteroids: Astronomical and Geological Bodies
Burbine

978-1-107-09684-4

The Atmosphere and Climate of Mars
 Edited by Haberle, Clancy, Forget, Smith and Zurek
 978-1-107-01618-7

 Planetary Ring Systems
 Edited by Tiscareno and Murray 978-1-107-11382-4

 Saturn in the 21st Century
 Edited by Baines, Flasar, Krupp and Stallard 978-1-107-10677-2

21. *Mercury: The View after MESSENGER*Edited by Solomon, Nittler and Anderson
978-1-107-15445-2

22. Chondrules: Records of Protoplanetary Disk Processes
Edited by Russell, Connolly Jr. and Krot
978-1-108-41801-0

23. Spectroscopy and Photochemistry of Planetary Atmospheres and Ionospheres Krasnopolsky 978-1-107-14526-9

24. Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
Edited by Bishop, Bell III and Moersch

978-1-107-18620-0

REMOTE COMPOSITIONAL ANALYSIS

Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces

Edited by

JANICE L. BISHOP

SETI Institute

JAMES F. BELL III

Arizona State University

JEFFREY E. MOERSCH

University of Tennessee, Knoxville

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107186200
DOI: 10.1017/9781316888872

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Bishop, Janice L., editor. | Bell, Jim, 1965– editor. | Moersch, Jeffrey E., 1966– editor.

Title: Remote compositional analysis: techniques for understanding spectroscopy, mineralogy, and geochemistry of planetary surfaces / edited by Janice L. Bishop (SETI Institute), James F. Bell, III (Arizona State University), Jeffrey E. Moersch (University of Tennessee, Knoxville).

Description: Cambridge; New York, NY: Cambridge University Press, [2020] | Includes bibliographical references and index.

Identifiers: LCCN 2019002564 | ISBN 9781107186200 (alk. paper)
Subjects: LCSH: Planets – Spectra. | Astronomical spectroscopy. | Planetary science.
Classification: LCC QB603.S6 R46 2019 | DDC 523.4028/7-dc23
LC record available at https://lccn.loc.gov/2019002564

ISBN 978-1-107-18620-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Contributors		page xi	
	reword RLÉ M. PIETERS AND PETER A. J. ENGLERT	xix	
	rle m. Pieters and Peter A. J. Englert Eface	xxi	
Acknowledgments		xxii	
Paı	rt I Theory of Remote Compositional Analysis Techniques and Laboratory Measurements	1	
1	Electronic Spectra of Minerals in the Visible and Near-Infrared Regions GEORGE R. ROSSMAN AND BETHANY L. EHLMANN	3	
2	Theory of Reflectance and Emittance Spectroscopy of Geologic Materials in the Visible and Infrared Regions JOHN F. MUSTARD AND TIMOTHY D. GLOTCH	21	
3	Mid-infrared (Thermal) Emission and Reflectance Spectroscopy: Laboratory Spectra of Geologic Materials MELISSA D. LANE AND JANICE L. BISHOP	42	
4	Visible and Near-Infrared Reflectance Spectroscopy: Laboratory Spectra of Geologic Materials JANICE L. BISHOP	68	
5	Spectroscopy of Ices, Volatiles, and Organics in the Visible and Infrared Regions DALE P. CRUIKSHANK, LYUBA V. MOROZ, AND ROGER N. CLARK	102	
6	Raman Spectroscopy: Theory and Laboratory Spectra of Geologic Materials SHIV K. SHARMA AND MILES J. EGAN	120	
7	Mössbauer Spectroscopy: Theory and Laboratory Spectra of Geologic Materials M. DARBY DYAR AND ELIZABETH C. SKLUTE	147	

viii	Contents	
8	Laser-Induced Breakdown Spectroscopy: Theory and Laboratory Spectra of Geologic Materials SAMUEL M. CLEGG, RYAN B. ANDERSON, AND NOUREDDINE MELIKECHI	168
9	Neutron, Gamma-Ray, and X-Ray Spectroscopy: Theory and Applications THOMAS H. PRETTYMAN, PETER A. J. ENGLERT, AND NAOYUKI YAMASHITA	191
10	Radar Remote Sensing: Theory and Applications JAKOB VAN ZYL, CHARLES ELACHI, AND YUNJIN KIM	239
Par	rt II Terrestrial Field and Airborne Applications	259
11	Visible and Near-Infrared Reflectance Spectroscopy: Field and Airborne Measurements ROGER N. CLARK	261
12	Raman Spectroscopy: Field Measurements PABLO SOBRON, ANUPAM MISRA, FERNANDO RULL, AND ANTONIO SANSANO	274
Par	t III Analysis Methods	287
13	Effects of Environmental Conditions on Spectral Measurements EDWARD CLOUTIS, PIERRE BECK, JEFFREY J. GILLIS-DAVIS, JÖRN HELBERT, AND MARK J. LOEFFLER	289
14	Hyper- and Multispectral Visible and Near-Infrared Imaging Analysis WILLIAM H. FARRAND, ERZSÉBET MERÉNYI, AND MARIO C. PARENTE	307
15	Thermal Infrared Spectral Modeling JOSHUA L. BANDFIELD AND A. DEANNE ROGERS	324
16	Geochemical Interpretations Using Multiple Remote Datasets SUNITI KARUNATILLAKE, LYNN M. CARTER, HEATHER B. FRANZ, LYDIA J. HALLIS, AND JOEL A. HUROWITZ	337
Par	rt IV Applications to Planetary Surfaces	349
17	Spectral Analyses of Mercury SCOTT L. MURCHIE, NOAM R. IZENBERG, AND RACHEL L. KLIMA	351
18	Compositional Analysis of the Moon in the Visible and Near-Infrared Regions CARLÉ M. PIETERS, RACHEL L. KLIMA, AND ROBERT O. GREEN	368
19	Spectral Analyses of Asteroids JOSHUA P. EMERY, CRISTINA A. THOMAS, VISHNU REDDY,	393

AND NICHOLAS A. MOSKOVITZ

	Contents	ix
20	Visible and Near-Infrared Spectral Analyses of Asteroids and Comets from Dawn and Rosetta M. CRISTINA DE SANCTIS, FABRIZIO CAPACCIONI, ELEONORA AMMANNITO, AND GIANRICO FILACCHIONE	413
21	Spectral Analyses of Saturn's Moons Using the <i>Cassini</i> Visual Infrared Mapping Spectrometer BONNIE J. BURATTI, ROBERT H. BROWN, ROGER N. CLARK, DALE P. CRUIKSHANK, AND GIANRICO FILACCHIONE	428
22	Spectroscopy of Pluto and Its Satellites DALE P. CRUIKSHANK, WILLIAM M. GRUNDY, DONALD E. JENNINGS, CATHERINE B. OLKIN, SILVIA PROTOPAPA, DENNIS C. REUTER, BERNARD SCHMITT, AND S. ALAN STERN	442
23	Visible to Short-Wave Infrared Spectral Analyses of Mars from Orbit Using CRISM and OMEGA SCOTT L. MURCHIE, JEAN-PIERRE BIBRING, RAYMOND E. ARVIDSON, JANICE L. BISHOP, JOHN CARTER, BETHANY L. EHLMANN, YVES LANGEVIN, JOHN F. MUSTARD, FRANCOIS POULET, LUCIE RIU, KIMBERLY D. SEELOS, AND CHRISTINA E. VIVIANO	453
24	Thermal Infrared Spectral Analyses of Mars from Orbit Using the Thermal Emission Spectrometer and Thermal Emission Imaging System VICTORIA E. HAMILTON, PHILIP R. CHRISTENSEN, JOSHUA L. BANDFIELD, A. DEANNE ROGERS, CHRISTOPHER S. EDWARDS, AND STEVEN W. RUFF	484
25	Thermal Infrared Remote Sensing of Mars from Rovers Using the Miniature Thermal Emission Spectrometer STEVEN W. RUFF, JOSHUA L. BANDFIELD, PHILIP R. CHRISTENSEN, TIMOTHY D. GLOTCH, VICTORIA E. HAMILTON, AND A. DEANNE ROGERS	499
26	Compositional and Mineralogic Analyses of Mars Using Multispectral Imaging on the Mars Exploration Rover, Phoenix, and Mars Science Laboratory Missions JAMES F. BELL III, WILLIAM H. FARRAND, JEFFREY R. JOHNSON, KJARTAN M. KINCH, MARK LEMMON, MARIO C. PARENTE, MELISSA S. RICE, AND DANIKA WELLINGTON	513
27	Mössbauer Spectroscopy at Gusev Crater and Meridiani Planum: Iron Mineralogy, Oxidation State, and Alteration on Mars RICHARD V. MORRIS, CHRISTIAN SCHRÖDER, GÖSTAR KLINGELHÖFER, AND DAVID G. AGRESTI	538

X	Contents	
28	Elemental Analyses of Mars from Rovers Using the Alpha-Particle X-Ray Spectrometer RALF GELLERT AND ALBERT S. YEN	555
29	Elemental Analyses of Mars from Rovers with Laser-Induced Breakdown Spectroscopy by ChemCam and SuperCam NINA L. LANZA, ROGER C. WIENS, SYLVESTRE MAURICE, AND JEFFREY R. JOHNSON	573
30	Neutron, Gamma-Ray, and X-Ray Spectroscopy of Planetary Bodies THOMAS H. PRETTYMAN, PETER A. J. ENGLERT, NAOYUKI YAMASHITA, AND MARGARET E. LANDIS	588
31	Radar Remote Sensing of Planetary Bodies JEFFREY J. PLAUT	604
Inde	ex	624

Contributors

Editors

JANICE L. BISHOP Carl Sagan Center, SETI Institute, Mountain View, CA, USA

JAMES F. BELL III School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

JEFFREY E. MOERSCH
Earth and Planetary Science Department,
University of Tennessee, Knoxville,
TN, USA

Contributing Authors

DAVID G. AGRESTI
Department of Physics, University of
Alabama at Birmingham, Birmingham,
AL, USA

ELEONORA AMMANNITO Agenzia Spaziale Italiana, Via del Politecnico snc, Rome, Italy

RYAN B. ANDERSON Astrogeology Science Center, United States Geological Survey, Flagstaff, AZ, USA

RAYMOND E. ARVIDSON
Department of Earth and Planetary
Sciences, Washington University in
St. Louis, St. Louis, MO, USA

JOSHUA L. BANDFIELD formerly, Space Science Institute, Boulder, CO. USA

PIERRE BECK Institut de Planétologie et d'Astrophysique de Grenoble, Université Grenoble Alpes, Saint-Martin-d'Hères, Grenoble Cedex, France

JAMES F. BELL III School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

JEAN-PIERRE BIBRING Institut d'Astrophysique Spatiale, Orsay Cedex, France

JANICE L. BISHOP Carl Sagan Center, SETI Institute, Mountain View, CA, USA

ROBERT H. BROWN University of Arizona, Tucson, AZ, USA

BONNIE J. BURATTI Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

FABRIZIO CAPACCIONI Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy

xii

List of Contributors

JOHN CARTER

Institut d'Astrophysique Spatiale, Orsay Cedex, France

LYNN M. CARTER

Department of Planetary Sciences, University of Arizona, Tucson, AZ, USA

PHILIP R. CHRISTENSEN
School of Earth and Space Exploration,
Arizona State University, Tempe,

AZ, USA

ROGER N. CLARK

Planetary Science Institute, Tucson, AZ, USA

SAMUEL M. CLEGG

Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA

EDWARD CLOUTIS

Department of Geography, University of Winnipeg, Winnipeg, MB, Canada

DALE P. CRUIKSHANK

NASA Ames Research Center, Moffett Field, CA, USA

M. CRISTINA DE SANCTIS

Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy

M. DARBY DYAR

Department of Astronomy, Mount Holyoke College, South Hadley, MA, USA, and Planetary Science Institute, Tucson, AZ, USA

CHRISTOPHER S. EDWARDS

Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA MILES J. EGAN

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI, USA

BETHANY L. EHLMANN

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

CHARLES ELACHI

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

JOSHUA P. EMERY

Earth and Planetary Science Department, University of Tennessee, Knoxville, TN, and Astronomy and Planetary Science Department, Northern Arizona University, Flagstaff, AZ, USA

PETER A. J. ENGLERT

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI, USA

WILLIAM H. FARRAND

Space Science Institute, Boulder, CO, USA

GIANRICO FILACCHIONE

Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy

HEATHER B. FRANZ

NASA Goddard Space Flight Center, Greenbelt, MD, USA

RALF GELLERT

Department of Physics, University of Guelph, Guelph, ON, Canada

List of Contributors

xiii

JEFFREY J. GILLIS-DAVIS

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI, USA

TIMOTHY D. GLOTCH

Department of Geosciences, Stony Brook University, Stony Brook, NY, USA

ROBERT O. GREEN

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

WILLIAM M. GRUNDY

Lowell Observatory, Flagstaff, AZ, USA

LYDIA J. HALLIS

School of Geographical and Earth Sciences, University of Glasgow, Glasgow, Scotland

VICTORIA E. HAMILTON

Department of Space Studies, Southwest Research Institute, Boulder, CO, USA

JÖRN HELBERT

Deutsches Zentrum für Luft und Raumfahrt e.V. (DLR), Berlin, Germany

JOEL A. HUROWITZ

Department of Geosciences, Stony Brook University, Stony Brook, NY, USA

NOAM R. IZENBERG

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

DONALD E. JENNINGS

NASA Goddard Space Flight Center, Greenbelt, MD, USA

JEFFREY R. JOHNSON

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA SUNITI KARUNATILLAKE

Planetary Science Lab, Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA

YUNJIN KIM

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

KJARTAN M. KINCH

Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Denmark

RACHEL L. KLIMA

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

GÖSTAR KLINGELHÖFER

formerly, Institut für Anorganische und Analytische Chemie, Johannes Gutenberg-Universität, Mainz, Germany

MARGARET E. LANDIS

Planetary Science Institute, Tucson, AZ, USA

MELISSA D. LANE

Fibernetics LLC, Lititz, PA, USA

YVES LANGEVIN

Institut d'Astrophysique Spatiale, Orsay Cedex, France

NINA L. LANZA

Space and Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM, USA

MARK LEMMON

Texas A&M University, College Station, TX, USA

xiv

List of Contributors

MARK J. LOEFFLER

Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA

SYLVESTRE MAURICE

Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

NOUREDDINE MELIKECHI

Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA, USA

ERZSÉBET MERÉNYI

Department of Statistics, and Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

ANUPAM MISRA

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI, USA

LYUBA V. MOROZ

University of Potsdam, Potsdam, Germany

RICHARD V. MORRIS

Exploration and Integration Science Division, NASA Johnson Space Center, Houston, TX, USA

NICHOLAS A. MOSKOVITZ

Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA, and Lowell Observatory, Flagstaff, AZ, USA

SCOTT L. MURCHIE

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

JOHN F. MUSTARD

Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA CATHERINE B. OLKIN

Southwest Research Institute, Boulder, CO, USA

MARIO C. PARENTE

Department of Electrical and Computer Engineering, University of Massachusetts at Amherst, Amherst, MA, USA

CARLÉ M. PIETERS

Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA

JEFFREY J. PLAUT

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

FRANCOIS POULET

Institut d'Astrophysique Spatiale, Orsay Cedex, France

THOMAS H. PRETTYMAN

Planetary Science Institute, Tucson, AZ, USA

SILVIA PROTOPAPA

Southwest Research Institute, Boulder, CO, USA

VISHNU REDDY

Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA

DENNIS C. REUTER

NASA Goddard Space Flight Center, Greenbelt, MD, USA

MELISSA S. RICE

Western Washington University, Bellingham, WA, USA

List of Contributors

χv

LUCIE RIU

Institut d'Astrophysique Spatiale, Orsay Cedex, France

A. DEANNE ROGERS

Department of Geosciences, Stony Brook University, Stony Brook, NY, USA

GEORGE R. ROSSMAN

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

STEVEN W. RUFF

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

FERNANDO RULL

University of Valladolid/Unidad Asociada UVa-CSIC Centro de Astrobiología, Valladolid, Spain

ANTONIO SANSANO

University of Valladolid/Unidad Asociada UVa-CSIC Centro de Astrobiología, Valladolid, Spain

BERNARD SCHMITT

Université Grenoble Alpes, Saint-Martind'Hères, France

CHRISTIAN SCHRÖDER

Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK

KIMBERLY D. SEELOS

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

SHIV K. SHARMA

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI, USA ELIZABETH C. SKLUTE

Department of Astronomy, Mount Holyoke College, South Hadley, MA, USA, and Planetary Science Institute, Tucson, AZ, USA

PABLO SOBRON

Impossible Sensing, St. Louis, MO, USA, and Carl Sagan Center, the SETI Institute, Mountain View, CA, USA

S. ALAN STERN

Department of Space Studies, Southwest Research Institute, Boulder, CO, USA

CRISTINA A. THOMAS

Planetary Science Institute, Tucson, AZ, USA

CHRISTINA E. VIVIANO

Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

DANIKA WELLINGTON

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

ROGER C. WIENS

Space and Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM, USA

NAOYUKI YAMASHITA

Planetary Science Institute, Tucson, AZ, USA

ALBERT S. YEN

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

JAKOB VAN ZYL

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

xvi

List of Contributors

Chapter Reviewers S. MICHAEL ANGEL (University of South	WILLIAM H. FARRAND (Space Science Institute)
Carolina) GABRIELA ARNOLD (German Aerospace Center, DLR-Berlin)	ABIGAIL A. FRAEMAN (Jet Propulsion Laboratory)
	PATRICK J. GASDA (Los Alamos National
JAMES W. ASHLEY (Jet Propulsion Laboratory)	Laboratory) MARTHA S. GILMORE (Wesleyan
JOSHUA L. BANDFIELD formerly, (Space Science Institute)	University)
ADRIAN BROWN (Plancius Research)	тімотну D. GLOTCH (Stony Brook University)
BONNIE J. BURATTI (Jet Propulsion Laboratory)	WILLIAM M. GRUNDY (Lowell Observatory)
JAMES BYRNE (Universität Tübingen) BRUCE CAMPBELL (Smithsonian National	VICTORIA E. HAMILTON (Southwest Research Institute)
Air and Space Museum)	CRAIG HARDGROVE (Arizona State University)
DONALD B. CAMPBELL (Cornell University)	AMANDA HENDRIX (Planetary Science
LYNN M. CARTER (University of Arizona)	Institute)
SAMUEL M. CLEGG (Los Alamos National Laboratory)	TAKAHIRO HIROI (Brown University) BRIONY HORGAN (Purdue University)
EDWARD CLOUTIS (University of	MELISSA D. LANE (Fibernetics LLC)
Winnipeg) EDDY DE GRAVE (University of Ghent) M. CRISTINA DE SANCTIS (Istituto di Astrofisica e Planetologia Spaziali)	LUCY F. LIM (NASA Goddard Space Flight Center)
	PAUL G. LUCEY (University of Hawai'i at Mānoa)
	ROBERT L. MARCIALIS (University of Arizona)
M. DARBY DYAR (Mount Holyoke College and Planetary Science Institute)	THOMAS MCCORD (Bear Fight Institute)
CHRISTOPHER S. EDWARDS (Northern Arizona University)	FRANCIS M. MCCUBBIN (NASA Johnson Space Center)
BETHANY L. EHLMANN (California	LUCY ANN A. MCFADDEN (NASA Goddard Space Flight Center)

Goddard Space Flight Center)

Institute of Technology)

$List\ of\ Contributors$

xvii

HARRY Y. MCSWEEN (University of Tennessee)	A. DEANNE ROGERS (Stony Brook University)
NOUREDDINE MELIKECHI (University of Massachusetts Lowell)	TED L. ROUSH (NASA Ames Research Center)
ALBERT E. METZGER (Jet Propulsion Laboratory)	MARK SALVATORE (Northern Arizona University)
JOSEPH R. MICHALSKI (University of Hong Kong)	CHRISTIAN SCHRÖDER (University of Stirling)
DOUGLAS W. MING (NASA Johnson Space Center)	SHIV K. SHARMA (University of Hawaiʻi at Mānoa)
ANDRZEJ W. MIZIOLEK (US Army Research Laboratory, retired)	GREGG A. SWAYZE (US Geological Survey Boulder)
GARETH A. MORGAN (Planetary Science Institute)	STEFANIE TOMPKINS (Colorado School of Mines)
RICHARD V. MORRIS (NASA Johnson Space Center)	TOON VAN ALBOOM (University of Ghent) ANNE VERBISCER (University of
JOHN F. MUSTARD (Brown University)	Virginia)
ION PRISECARU (Bruker, WMOSS)	ALIAN WANG (Washington University in St. Louis)
VISHNU REDDY (Lunar and Planetary Laboratory)	SHOSHANA Z. WEIDER (Imperial College London)
ROBERT C. REEDY (Planetary Science Institute)	JAMES J. WRAY (Georgia Institute of Technology)

Foreword

CARLÉ M. PIETERS AND PETER A. J. ENGLERT

So much has happened in the 25 years since the last collection of expert papers documenting principles and products of remote compositional analyses were brought together as a book! Of course, it is not that the physics and chemistry governing properties of planetary materials has changed much in a generation. However, great advances have been made during the intervening decades as new instruments were built and new spacecraft were flown across the Solar System. This is coupled with advances in information extraction techniques and instrument technology that enable the measurement of these properties with increasing detail both in the laboratory and remotely. Consequently, understanding nuances of the diagnostic properties forming the basis for compositional analyses has grown in leaps and bounds along with remarkable and expanding new data from the inner to outer Solar System, including both rocky and icy bodies with and without an atmosphere.

The 1993 book *Remote Geochemical Analyses: Elemental and Mineralogical Composition* was compiled near the end of the last millennium following a symposium bringing together planetary scientists across many disciplines. At that time, remote planetary exploration techniques were just beginning to grow in importance and impact. The impetus for bringing together information and technical background in one book was to make the scientific basis for this relatively new field readily available across a growing community. The initial discussions in *Remote Geochemical Analysis* laid the foundation for years of basic exploration of Solar System bodies in all their diversity and mystery. Subsequent expansion and maturation of remote sensing data obtained using telescopes and increasingly sophisticated exploratory spacecraft opened a wide range of data types and approaches with which to obtain information and understand the diverse and complex bodies of our Solar System.

Today, several decades later, the initial reconnaissance of the Solar System is complete. We have now looked at everything from Mercury to the Kuiper belt at least once. That has taught us there is a LOT more to learn. The path that exploration has taken has provided profound insight, awesome discoveries, and continuous inspiration. Nevertheless, it necessarily has not been a linear or complete process. We are now embarking on an era of detailed and serious exploration, that cries for in-depth knowledge of, and comparisons between, the diverse rocky, hydrated, icy, and gaseous bodies of our Solar System (including Earth) – and even planets of other star systems. Although the exploration focus and

xx Foreword

resulting data acquired have been uneven, a plethora of fundamental questions are posed and remain unanswered regarding the composition of each planetary body we have come to know. In parallel with the quest for deeper scientific understanding, modern technology provides increasingly sophisticated instruments to measure compositional properties remotely, and such exploration tools promise many exciting decades ahead.

The chapters in this completely new *Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces* provide a diverse and enormously updated taste of what we know and what we have been able to learn about the composition of planetary bodies using remote sensing techniques over the last few decades. Remote compositional analysis has become a mature interdisciplinary field of science and has evolved into an indispensable component of Earth and planetary exploration.

Preface

The field of remote sensing is integral to exploration of our Solar System and encompasses results acquired from telescopic, spacecraft, and landed missions. The remote sensing techniques described in this book span a range of processes, compositions, and planetary bodies. It is a dramatically updated version of the original first edition from 1993. Since then, significant advances have occurred in space exploration, including dozens of new missions from NASA, ESA, and other space agencies around the world; substantial advances in telescopic and laboratory instrumentation, and major new work in theoretical studies have also occurred. As a result, every topic has been updated from the original book edited by C. M. Pieters and P. A. J. Englert, and new content has been added to reflect major advancements since 1993. This work sprung out of a 1988 symposium on mineral spectroscopy organized by L. M. Coyne with assistance from J. L. Bishop that was sponsored by the Division of Geochemistry of the American Chemical Society. The purpose of that symposium was to bring together an interdisciplinary, international community to foster spectral identification of minerals.

We have attempted to provide an introduction to the field of planetary surface composition and mineralogy for upper-level undergraduates, graduate students, or professional researchers just moving into this topic. This book is organized into four sections including (I) theory and laboratory measurements, (II) terrestrial field and airborne applications, (III) analysis methods, and (IV) applications to planetary surfaces. Among the types of remote sensing techniques covered are visible to infrared reflectance spectroscopy, infrared emission spectroscopy (also called thermal infrared spectroscopy), Raman spectroscopy, Mössbauer spectroscopy, Laser-Induced Breakdown Spectroscopy (LIBS), neutron spectroscopy, X-ray spectroscopy, gamma-ray spectroscopy, and radar. The basic premise of each technique, information on how to perform measurements, and example spectra of rocks, regolith, minerals, and volatiles are provided.

This book covers the minerals, elements, and molecules found on airless rocky bodies including Mercury, the Moon, and asteroids. It describes the kinds of volatiles (ices, organics, hydrated minerals) found on the surfaces of our Solar System's planets, moons, asteroids, and comets, and how they are related to volatiles on Earth. Finally, several chapters specifically focus on the composition and processes taking place on Mars, the planet most studied besides Earth.

Acknowledgments

We are grateful to the countless planetary scientists and engineers around the world who have contributed toward developing and operating the phenomenal instruments, telescopes, and spacecraft that enabled the compositional remote sensing results presented here. Obtaining these data from planets, moons, asteroids, and comets in our Solar System has required laborious efforts and diligence from large teams of people from space centers, research institutes, and universities. We appreciate the hard work of the authors who contributed state-of-the-art summaries of current topics in planetary remote sensing to this book and made it possible.

Unfortunately, two of our authors, Joshua Bandfield and Göstar Klingelhöfer, passed unexpectedly this year and we will miss them. They contributed to Chapters 15, 24, 25, and 27, where memorial statements are included.

Many others contributed to this book as well. The generous time volunteered by numerous reviewers is much appreciated. We also thank C. Gross for assistance with the cover art, L. Gründler for assistance with the index and editing, and S. Perrin for assistance with the references and editing. Finally, assistance from E. Kiddle, Z. Pruce, S. Ramamoorthy, and T. Kornak from the Cambridge University Press office and copyediting teams is much appreciated.