Economics of Electricity

This comprehensive and up-to-date book explains the economic rationale behind the production, delivery and exchange of electricity. Cretì and Fontini explain why electricity markets exist, outlining the economic principles behind the exchange and supply of power to consumers and firms. They identify the specificities of electricity, as compared to other goods, and furthermore suggest how markets should be optimally designed to produce and deliver electricity effectively and efficiently. The authors also address key issues, including how electricity can be decarbonized. Written in a technical yet accessible style, this book will appeal to readers studying power-system economics and the economics of electricity, as well as those more generally interested in energy economics, including engineering and management students looking to gain an understanding of electricity-market analysis.

Anna Cretì is Professor of Economics at the Paris Dauphine University, senior research associate at the École Polytechnique and external affiliate of the Siebel Institute at the University of California, Berkeley. She is the Scientific Director of the Climate Economics Chair and the Natural Gas Chair at Paris Dauphine University. She is the author of numerous articles in international peer-reviewed journals.

Fulvio Fontini is Professor of Economics at the Department of Economics and Management, University of Padova (Italy). He has been co-chair of the ESS task force of the Council of European Energy Regulators (CEER), and member of several task forces of CEER and the Agency for Cooperation of Energy Regulators (ACER), where he was seconded as national expert. He is the author of numerous articles in international peer-reviewed journals.
Economics of Electricity

Markets, Competition and Rules

ANNA CRETÌ
Université Paris Dauphine, PSL Research University, France

FULVIO FONTINI
University of Padova, Italy
A. C.: A te, Manfredi.

F. F.: Alla mia famiglia. Loro sanno perché!
Contents

List of Figures xiv
List of Tables xvi
Acknowledgments xvii

Introduction 1

Part I Introduction to Energy and Electricity 5

1 Basic Principles, Definitions and Unit Measures 7
 1.1 Introduction 7
 1.2 Basic Principles of Energy 7
 1.3 Primary Energy Sources and Energy Carriers 12
 1.4 Energy Units and Energy Measures 14

2 Introduction to Electricity: Brief History of the Power Industry 17
 2.1 Introduction 17
 2.2 Basic Principles of Electricity 17
 2.3 Brief History of the Commercial Development of Electricity 22
 2.4 Introduction to Power Generation Technologies and Costs 25

Part II The Basic Design of Electricity Systems and Markets 33

3 Electricity Systems and the Electricity Supply Chain 35
 3.1 Introduction to Electricity Systems 35
 3.1.1 Power Plants 36
 3.1.2 Load 37
 3.1.3 Transmission and Distribution Networks 39
 3.2 The Electricity Supply Chain 44
 3.2.1 Production 44
 3.2.2 Transmission 44
 3.2.3 Distribution 45
3.2.4 Metering and Retailing 46
3.2.5 Dispatching 47
3.3 Representing the ESC 47

4 The Four Market Designs of the Electricity System 50
4.1 Introduction 50
4.2 The Vertical Integrated Industry 50
4.3 The Single Buyer Model 51
4.4 The Wholesale Market 53
4.5 The Wholesale and Retail Markets Model 56

5 Energy Products and the Time Dimension of Electricity Markets 59
5.1 Introduction 59
5.2 Energy, Ancillary Services and Generation Capacity 59
5.3 The Time Structure of Electricity Markets 61
5.3.1 Energy Markets 63
5.3.2 Ancillary Services Markets 65
5.3.3 Capacity Markets 67
5.4 The Settlement Process 68

6 Some Principles of Electricity Sector Regulation 72
6.1 Introduction 72
6.2 Why Regulate the Electricity Sector? 72
6.3 Pricing Natural Monopolies 75
6.4 Electricity Tariffs and Bills 79

Part III Simplified Isolated Markets without Network Congestion 81

7 Load and Power Generation 83
7.1 Introduction 83
7.2 The Time Structure of Load 83
7.3 The Characteristics of Power Generation Costs 89

8 The Centralized Solution of Optimal Dispatching 94
8.1 Introduction 94
8.2 The Cost Minimization Problem with Two Power Plants 95
8.2.1 Case I 96
8.2.2 Case II 99
8.3 The Cost Minimization Problem with \(n \) Plants 101
8.4 The Welfare Maximization Problem with Several Consumers 103
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Welfare Maximization with Time-Varying Load</td>
<td>106</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>9.2</td>
<td>The Two-Hour Case</td>
<td>107</td>
</tr>
<tr>
<td>9.3</td>
<td>The Case of T Hours</td>
<td>108</td>
</tr>
<tr>
<td>9.4</td>
<td>Economic Dispatching</td>
<td>111</td>
</tr>
<tr>
<td>9.5</td>
<td>Welfare Maximization with Capacity Constraint: Optimal Load Shedding</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>The Market Solution to Optimal Dispatching</td>
<td>121</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>10.2</td>
<td>The Case of a Fixed Rigid Load</td>
<td>122</td>
</tr>
<tr>
<td>10.3</td>
<td>The Wholesale Market Case: Variable Load</td>
<td>127</td>
</tr>
<tr>
<td>10.4</td>
<td>Market Equilibria and Welfare Maximization</td>
<td>130</td>
</tr>
<tr>
<td>10.5</td>
<td>Market Equilibria in Different Hours</td>
<td>132</td>
</tr>
<tr>
<td>11</td>
<td>Balancing Markets</td>
<td>136</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>136</td>
</tr>
<tr>
<td>11.2</td>
<td>Positive and Negative Imbalances</td>
<td>137</td>
</tr>
<tr>
<td>11.3</td>
<td>The Welfare Effects of Imbalances</td>
<td>140</td>
</tr>
<tr>
<td>11.4</td>
<td>The Coexistence of Day-Ahead and Real-Time Markets</td>
<td>142</td>
</tr>
<tr>
<td>11.5</td>
<td>The Double Settlement</td>
<td>144</td>
</tr>
<tr>
<td>11.6</td>
<td>A Centralized Imbalance Market</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Appendix to Part III: A Market Game of the Wholesale Electricity Market</td>
<td>153</td>
</tr>
<tr>
<td>Part IV</td>
<td>Competition in Wholesale Electricity Markets</td>
<td>155</td>
</tr>
<tr>
<td>12</td>
<td>Wholesale Market Competition</td>
<td>157</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>12.2</td>
<td>Classification of Models</td>
<td>157</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Optimization Models</td>
<td>157</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Equilibrium Models</td>
<td>158</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Simulation Models</td>
<td>160</td>
</tr>
<tr>
<td>12.3</td>
<td>Three Models of Market Power in Electricity Markets</td>
<td>160</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Cournot Competition</td>
<td>160</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Supply Function Equilibria</td>
<td>162</td>
</tr>
<tr>
<td>12.4</td>
<td>Auctions</td>
<td>165</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Uniform Auctions and Market Power</td>
<td>166</td>
</tr>
<tr>
<td>13</td>
<td>Market Power in Electricity Markets</td>
<td>171</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>13.2</td>
<td>Physical Withholding to Exert Market Power</td>
<td>172</td>
</tr>
<tr>
<td>13.3</td>
<td>Economic Withholding and Transmission Constraints</td>
<td>174</td>
</tr>
<tr>
<td>13.4</td>
<td>Detecting and Measuring Market Power</td>
<td>175</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Measures of Concentration</td>
<td>175</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Measures of Market Power</td>
<td>176</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Inferring Market Power by Bids</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part V</th>
<th>Introducing Transmission Networks: Network Congestion and Electricity Import-Export</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Electricity Transmission: Basic Principles</td>
<td>185</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>14.2</td>
<td>Optimal Dispatching with Transmission Constraints and Nodal Prices</td>
<td>185</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Case 1: A Single Power Plant</td>
<td>186</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Case 2: Asymmetric Plants, Located at Different Nodes</td>
<td>188</td>
</tr>
<tr>
<td>14.3</td>
<td>Transmission Constraints and Line Losses</td>
<td>191</td>
</tr>
<tr>
<td>14.4</td>
<td>Optimal Dispatching and Nodal Pricing with Losses</td>
<td>192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Meshed Networks and Congestion</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>15.2</td>
<td>From Two Nodes to Three-Nodes Systems</td>
<td>195</td>
</tr>
<tr>
<td>15.3</td>
<td>Nodal Prices in Three-Nodes Networks</td>
<td>198</td>
</tr>
<tr>
<td>15.4</td>
<td>Transmission Congestion and Loop Flows: Some Examples</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Transmission Pricing in Practice</th>
<th>204</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>204</td>
</tr>
<tr>
<td>16.2</td>
<td>Network Pricing Classification</td>
<td>204</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Postage Stamps</td>
<td>206</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Zonal Prices</td>
<td>207</td>
</tr>
<tr>
<td>16.3</td>
<td>Distributional Issues with Network Pricing</td>
<td>210</td>
</tr>
<tr>
<td>16.4</td>
<td>Transmission Pricing: Some Experiences</td>
<td>211</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Transmission Pricing in the United States</td>
<td>211</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Zonal Pricing in Practice</td>
<td>212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>From Nodal Prices to Transmission Capacity Expansion</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>17.2</td>
<td>Interconnections and Net Export Curves</td>
<td>215</td>
</tr>
<tr>
<td>17.3</td>
<td>Welfare Analysis in the Absence of Interconnection Costs</td>
<td>218</td>
</tr>
</tbody>
</table>
Contents

17.4 Optimal Transmission Investment with Investment Costs 220
17.5 Transmission Capacity Expansion and Market Failures 222

18 Transmission Rights and Price Risk Hedging 226

18.1 Introduction 226
18.2 Physical and Financial Transmission Rights 226
18.3 Value Equivalence of PTRs and FTRs 229
18.4 Transmission Rights and Risk Hedging 230
18.5 Measuring Transmission Capacity 232

Part VI Economics of Electricity Retail Markets 235

19 Retail Competition: Supplying Electricity to Final Consumers 237

19.1 Introduction 237
19.2 Real-Time Pricing under Competitive Retail Markets 237
19.3 Retail Competition and (In)efficiency of Real-Time Pricing 239
19.4 Retail Competition in the Borenstein and Holland (2005) Model: Specific Issues
 19.4.1 Second-Best Pricing 241
 19.4.2 Fraction of Consumers on Real-Time Prices 241
 19.4.3 Welfare Gains 242
 19.4.4 Endogenous Consumers’ Switching 242
 19.4.5 Long-Run Effects of Retail Competition 242
 19.4.6 Empirical Evidence on RTP 243
19.5 RTP versus Two-Part Tariffs 243
19.6 Real-Time Pricing in Practice 244

20 Assessing the Benefits of Retail Competition 246

20.1 Introduction 246
20.2 Benefits from Retail Competition
 20.2.1 Efficiency 246
 20.2.2 Pricing 247
 20.2.3 Differentiation and Equipment Innovation 248
20.3 Competition with Market Imperfections
 20.3.1 Switching Costs 252
 20.3.2 Informational Complexities 253
 20.3.3 Consumer Inertia 254
 20.3.4 Customer Segmentation 254
 20.3.5 Innovative Processes 254
20.4 Equity Concerns in Competitive Retail Markets 255
Part VII Investing in Power Generation

21 Optimal Investment in Power Generation

21.1 Introduction
21.2 The Optimal Investment Problem with a Single Technology
21.3 The Cost Minimization Problem
21.4 The Competitive Solution to Optimal Investment

22 Energy-Only Markets vs. Markets with Capacity Remuneration Mechanisms

22.1 Introduction
22.2 Generation Adequacy in Practice
22.2.1 The Existence of Markets for Hedging Risks
22.2.2 Market Power
22.2.3 Lack of Coordination and Asymmetric Information
22.3 Electricity-Only Markets and Capacity Remuneration Mechanisms
22.3.1 Insufficient Capacity Due to Price Caps
22.3.2 Insufficient Capacity Due to Extra Costs

23 Analysis of Capacity Remuneration Mechanisms

23.1 Introduction
23.2 Classifications of CRMs
23.3 Typologies of CRMs
23.3.1 Capacity Payments (CP)
23.3.2 Capacity Auctions (CA)
23.3.3 Capacity Obligations (CO)
23.3.4 Strategic Reserves (SR)
23.3.5 Reliability Options (RO)
23.4 Operating Reserve Demand Curve

Part VIII Environmental Challenges and the Future of Electricity Markets

24 Global Warming and the Electricity Markets

24.1 Introduction
24.2 Decarbonization of Electricity Production
24.3 RES and Energy Markets after the Paris Agreement
24.4 The Impact of Climate Change on Electricity Demand and Supply
24.5 The Impact of CO₂ Prices on Electricity Markets
Contents

25 Renewable Energy Sources and Electricity Production 311
25.1 Introduction 311
25.2 The Reasons for Choosing Renewables 311
25.3 The Levelized Cost of Energy 312
25.4 RES Support Policies 315
25.4.1 Price-Based Policies 316
25.4.2 Quantity-Based Policies 317

26 The Integration of Renewable Energy Sources in the Electricity System 319
26.1 Introduction 319
26.2 Variable Energy Resources: Some Stylized Facts 320
26.3 Integration Costs 321
26.4 The Impact of VER on the System Marginal Price 323

27 Smart Grids 326
27.1 Introduction 326
27.2 Defining Smart Grids 327
27.2.1 Generation 329
27.2.2 Transmission 329
27.2.3 Distribution 330
27.2.4 Supply 332
27.3 Economic and Environmental Benefits of Smart Grids 333
27.4 The Deployment of Smart Grids 334

References 336
Index 347
Figures

1.1 An example of energy associated to a mass m falling under gravity
1.2 The ideal Carnot machine
1.3 Primary energy sources and energy carriers
3.1 European and North American synchronous grid
3.2 A schematic representation of the ESC
4.1 The vertical integrated industry
4.2 The single buyer model
4.3 The wholesale market model
4.4 The wholesale and retail markets model
5.1 The time dimension of electricity markets
6.1 Costs for a natural monopoly
6.2 Demand and natural monopoly
6.3 Average cost pricing
7.1 A typical yearly load pattern
7.2 A typical daily load pattern
7.3 The Load duration curve of Figure 7.1
8.1 Cost minimization with two power plants, such that $Q_{\text{max}}^i \geq Q_{i}^i$, $i = 1, 2$
8.2 Cost minimization with two power plants, such as $Q_{\text{max}}^i < Q_{i}^i$, $i = 1, 2$
8.3 Cost minimization with three plants. (a): all three plants are necessary; (b): two plants are sufficient
9.1 The LDC of Example 9.1
9.2 Welfare maximization with time-varying load and three power plants
9.3 ACC curves of Example 9.1
9.4 The welfare maximization problem of Example 9.1
9.5 Merit order dispatching with a generic LDC
9.6 Welfare maximization in the case of Example 9.1 with load shedding
10.1 Market equilibrium with equal marginal costs
10.2 Market equilibrium with plants with different marginal costs
10.3 An example of a market demand curve
10.4 The four possible market equilibria
10.5 The market clearing of the French market on EPEX SPOT, hour 07–08, date June 16, 2013
11.1 Positive and negative imbalances due to generation and load
List of Figures

11.2 Welfare loss due to reduction of supply, demand and aggregate imbalances in real time 141
12.1 A taxonomy of market power models 158
13.1 Wholesale market with four plants 173
13.2 Wholesale market with three plants: physical withholding 173
14.1 An example of equilibrium with a non-congested (panel a) and a congested (panel b) transmission line 188
14.2 Equilibrium with no congestion (panel a), partial congestion (panel b) and absolute congestion (panel c) 191
14.3 Inefficient dispatching due to transmission losses 193
15.1 Equilibrium in a two-nodes system 196
15.2 Equilibrium in a three-nodes system 197
15.3 A three-nodes system with positive externality 199
16.1 Equilibrium in a zonal market: market coupling 208
16.2 Equilibrium in a zonal market: market splitting in two zones 209
16.3 Equilibrium in a zonal market: market splitting in more than two zones 209
17.1 Energy demand and supply in two zones 216
17.2 Net export curves and congestion rent 217
17.3 Market power in the importing node 223
20.1 Electricity prices: households 250
20.2 Electricity prices: industrial consumers 251
21.1 The LDC and the PDC for the three plants case 267
22.1 Insufficient level of investment due to a price cap 278
22.2 Optimal and effective investment in the capacity-money space 281
23.1 Capacity demand curve, UK capacity auction 287
23.2 The ORDC of ERCOT 295
23.3 The scarcity value of capacity and operating reserves using the ORDC 295
23.4 Scarcity pricing in a tight week at ERCOT 296
24.1 Windfall profits accruing from grandfathering of emission permits 307
24.2 Auctions and carbon costs without merit order switch 308
24.3 Auctions and carbon costs with merit order switch 309
26.1 The Duck Curve 321
26.2 The reduction of the SMP due to VER 324
Tables

1.1 Multiples in SI units
5.1 The energy schedule of Example 5.1
5.2 Scheduled effective energy and imbalances of Example 5.1
5.3 The settlement of Example 5.1
6.1 Typical transmission costs
6.2 Different forms of natural monopoly regulation
11.1 Impact on welfare of imbalances. All cases
11.2 Example of double settlement – 1
11.3 Example of double settlement – 2
11.4 Example of double settlement – 3
11.5 Example of double settlement – 4
11.6 Example of double settlement – 5
12.1 Comparison of auction formats under perfect competition
12.2 Comparison of auction formats under imperfect competition
16.1 Transmission pricing in the United States
18.1 Hedging portfolio of CFDs and FTRs
25.1 Estimated LCOE for new generation resources in the United States
27.1 Comparison of the electrical system under the traditional grid and the SG
Acknowledgments

Several people have contributed directly or indirectly to this project. Clearly, none of them is responsible for what is written here. We would like to thank Carlos Battle Lopez, Côme Billard, Silvia Blasi, Severin Borenstein, Silvia Concettini, Nicolas Gruyer, Cristian Lanfranconi, Salvatore Lanza, Katrin Millock, Paolo Mastropietro, Michele Moretto, and Dimtrios Zompas.

Fulvio Fontini wishes to thank the University of Paris Dauphine PSL (LEDA CGEMP) for financial support and kind hospitality during his visiting period.

Let us finally thank those without whom this work would not make sense: our students at Barcelona Graduate School, Bocconi University, Climate Economics Chair, École des Mines, École Polytechnique, European Electricity Markets Chair, Natural Gas Chair, Padova University, Paris Dauphine University, Toulouse School of Economics. Their enthusiasms, questions, doubts and remarks have helped to inspire this textbook.