

Probability Theory and Statistical Inference

Doubt over the trustworthiness of published empirical results is not unwarranted and is often a result of statistical misspecification: invalid probabilistic assumptions imposed on data. Now in its second edition, this bestselling textbook offers a comprehensive course in empirical research methods, teaching the probabilistic and statistical foundations that enable the specification and validation of statistical models, providing the basis for an informed implementation of statistical procedure to secure the trustworthiness of evidence. Each chapter has been thoroughly updated, accounting for developments in the field and the author's own research. The comprehensive scope of the textbook has been expanded by the addition of a new chapter on the Linear Regression and related statistical models. This new edition is now more accessible to students of disciplines beyond economics and includes more pedagogical features, with an increased number of examples as well as review questions and exercises at the end of each chapter.

ARIS SPANOS is Wilson E. Schmidt Professor of Economics at Virginia Polytechnic Institute and State University. He is the author of *Statistical Foundations of Econometric Modelling* (Cambridge, 1986) and, with D. G. Mayo, *Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability, and the Objectivity and Rationality of Science* (Cambridge, 2010).

Probability Theory and Statistical Inference

Empirical Modeling with Observational Data

Second Edition

Aris Spanos

Virginia Tech (Virginia Polytechnic Institute & State University)

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107185142

DOI: 10.1017/9781316882825

© Aris Spanos 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 1999 Third printing 2007 Second edition 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Spanos, Aris, 1952- author.

Title: Probability theory and statistical inference: empirical modelling with observational data / Aris Spanos (Virginia College of Technology).

Description: Cambridge; New York, NY: Cambridge University Press, 2019.

Includes bibliographical references and index.

 $Identifiers: LCCN\ 2019008498\ (print)\ |\ LCCN\ 2019016182\ (ebook)\ |\ ISBN\ 9781107185142\ |\ ISB$

 $Subjects:\ LCSH:\ Probabilities-Textbooks.\ |\ Mathematical$

statistics - Textbooks.

Classification: LCC QA273 (ebook) | LCC QA273 . S6875 2019 (print) | DDC 519.5–dc23

LC record available at https://lccn.loc.gov/2019008498

ISBN 978-1-107-18514-2 Hardback ISBN 978-1-316-63637-4 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my grandchildren Nicholas, Jason, and Evie, my daughters Stella, Marina, and Alexia, and my wife Evie for their unconditional love and support

Contents

I	Preface	to the Sec	cond Edition po	<i>ige</i> xix
1	An Ir	ntroducti	ion to Empirical Modeling	1
	1.1	Introdu	-	1
	1.2	Stocha	astic Phenomena: A Preliminary View	3
		1.2.1	Chance Regularity Patterns	3
		1.2.2	From Chance Regularities to Probabilities	7
		1.2.3	Chance Regularity Patterns and Real-World Phenomena	ı 11
	1.3	Chanc	e Regularities and Statistical Models	12
	1.4	Observed Data and Empirical Modeling		14
		1.4.1	Experimental vs. Observational Data	14
		1.4.2	Observed Data and the Nature of a Statistical Model	15
		1.4.3	Measurement Scales and Data	16
		1.4.4	Measurement Scale and Statistical Analysis	18
		1.4.5	Cross-Section vs. Time Series, is that the Question?	20
		1.4.6	Limitations of Economic Data	22
	1.5	Statist	ical Adequacy	23
	1.6 Statistical vs. Substantive Information*			25
	1.7	Lookii	ng Ahead	27
	1.8	Questi	ons and Exercises	28
2	Prob	ability T	heory as a Modeling Framework	30
	2.1	Introdu	uction	30
		2.1.1	Primary Objective	30
		2.1.2	Descriptive vs. Inferential Statistics	30
	2.2	Simple	e Statistical Model: A Preliminary View	32
		2.2.1	The Basic Structure of a Simple Statistical Model	33
		2.2.2	The Notion of a Random Variable: A Naive View	34
		2.2.3	Density Functions	35
		2.2.4	A Random Sample: A Preliminary View	36
	2.3	Probab	pility Theory: An Introduction	40
		2.3.1	Outlining the Early Milestones of Probability Theory	40
		2.3.2	Probability Theory: A Modeling Perspective	42
	2.4	A Sim	ple Generic Stochastic Mechanism	42
		2.4.1	The Notion of a Random Experiment	42
		2.4.2	A Bird's-Eye View of the Unfolding Story	44
				vii

viii Contents

	2.5	Forma	lizing Condition [a]: The Outcomes Set	45
	2.5	2.5.1	The Concept of a Set in Set Theory	45
		2.5.2	The Outcomes Set	45
		2.5.3	Special Types of Sets	46
	2.6		lizing Condition [b]: Events and Probabilities	48
		2.6.1	Set-Theoretic Operations	48
		2.6.2	Events vs. Outcomes	51
		2.6.3	Event Space	51
		2.6.4	A Digression: What is a Function?	58
		2.6.5	The Mathematical Notion of Probability	59
		2.6.6	Probability Space (\mathbf{S} , \mathbb{P} (.))	63
		2.6.7	Mathematical Deduction	64
	2.7	Condit	tional Probability and Independence	65
		2.7.1	Conditional Probability and its Properties	65
		2.7.2	The Concept of Independence Among Events	69
	2.8	Forma	lizing Condition [c]: Sampling Space	70
		2.8.1	The Concept of Random Trials	70
		2.8.2	The Concept of a Statistical Space	72
		2.8.3	The Unfolding Story Ahead	74
	2.9	Questi	ons and Exercises	75
3	The C	Concept o	of a Probability Model	78
	3.1	Introdu	-	78
		3.1.1	The Story So Far and What Comes Next	78
	3.2	The Co	oncept of a Random Variable	79
		3.2.1	The Case of a Finite Outcomes Set: $S = \{s_1, s_2, \dots, s_n\}$	80
		3.2.2	Key Features of a Random Variable	81
		3.2.3	The Case of a Countable Outcomes Set:	
			$S = \{s_1, s_2, \dots, s_n, \dots\}$	85
	3.3	The G	eneral Concept of a Random Variable	86
		3.3.1	The Case of an Uncountable Outcomes Set S	86
	3.4	Cumul	lative Distribution and Density Functions	89
		3.4.1	The Concept of a Cumulative Distribution Function	89
		3.4.2	The Concept of a Density Function	91
	3.5	From a	a Probability Space to a Probability Model	95
		3.5.1	Parameters and Moments	97
		3.5.2	Functions of a Random Variable	97
		3.5.3	Numerical Characteristics of Random Variables	99
		3.5.4	Higher Moments	102
		3.5.5	The Problem of Moments*	110
		3.5.6	Other Numerical Characteristics	112
	3.6	Summ	ary	118
	3.7	Questi	ons and Exercises	119
		Appen	ndix 3.A: Univariate Distributions	121

			Contents	ix
		3.A.1	Discrete Univariate Distributions	121
		3.A.2	Continuous Univariate Distributions	123
4	A Sim	ple Stati	istical Model	130
	4.1	Introdu	action	130
		4.1.1	The Story So Far, a Summary	130
		4.1.2	From Random Trials to a Random Sample: A First View	130
	4.2	Joint D	Pistributions of Random Variables	131
		4.2.1	Joint Distributions of Discrete Random Variables	131
		4.2.2	Joint Distributions of Continuous Random Variables	133
		4.2.3	Joint Moments of Random Variables	136
		4.2.4	The <i>n</i> Random Variables Joint Distribution	138
	4.3	Margin	al Distributions	139
	4.4	Condit	ional Distributions	142
		4.4.1	Conditional Probability	142
		4.4.2	Conditional Density Functions	143
		4.4.3	Continuous/Discrete Random Variables*	146
		4.4.4	Conditional Moments	146
		4.4.5	A Digression: Other Forms of Conditioning	148
		4.4.6	Marginalization vs. Conditioning	150
		4.4.7	Conditioning on Events vs. Random Variables	151
	4.5	Indepe	-	155
		4.5.1	Independence in the Two Random Variable Case	155
		4.5.2	Independence in the <i>n</i> Random Variable Case	156
	4.6	Identic	al Distributions and Random Samples	158
		4.6.1	Identically Distributed Random Variables	158
		4.6.2	A Random Sample of Random Variables	160
	4.7	Functio	ons of Random Variables	161
		4.7.1	Functions of One Random Variable	161
		4.7.2	Functions of Several Random Variables	162
		4.7.3	Ordered Sample and its Distributions*	165
	4.8	A Sim	ble Statistical Model	166
		4.8.1	From a Random Experiment to a Simple Statistical Model	166
	4.9	The Sta	atistical Model in Empirical Modeling	167
		4.9.1	The Concept of a Statistical Model: A Preliminary View	167
		4.9.2	Statistical Identification of Parameters	168
		4.9.3	The Unfolding Story Ahead	169
	4.10		ons and Exercises	170
		_	dix 4.A: Bivariate Distributions	171
		4.A.1	Discrete Bivariate Distributions	171
		4.A.2	Continuous Bivariate Distributions	172
5	Chanc	e Regul	arities and Probabilistic Concepts	176
	5.1			176

x Contents

		5.1.1	Early Developments in Graphical Techniques	176
		5.1.1	Why Do We Care About Graphical Techniques?	177
	5.2		Plot and Independence	178
	5.3		Plot and Homogeneity	184
	5.4		ing Distribution Assumptions	189
	J. T	5.4.1	Data that Exhibit Dependence/Heterogeneity	189
		5.4.2	Data that Exhibit Normal IID Chance Regularities	195
		5.4.3	Data that Exhibit Non-Normal IID Regularities	196
		5.4.4	The Histogram, the Density Function, and Smoothing	201
		5.4.5	Smoothed Histograms and Non-Random Samples	206
	5.5		npirical CDF and Related Graphs*	206
	5.5	5.5.1	The Concept of the Empirical cdf (ecdf)	207
		5.5.2	Probability Plots	208
		5.5.3	Empirical Example: Exchange Rate Data	215
	5.6	Summ		218
	5.7		ons and Exercises	219
	3.7	-	idix 5.A: Data – Log-Returns	220
		пррсп	an San Data - Log-Acturns	22(
6	Statis	tical Mo	dels and Dependence	222
	6.1	Introdu	action	222
		6.1.1	Extending a Simple Statistical Model	222
	6.2	Non-R	andom Sample: A Preliminary View	224
		6.2.1	Sequential Conditioning: Reducing the Dimensionality	225
		6.2.2	Keeping an Eye on the Forest!	227
	6.3	Depen	dence and Joint Distributions	228
		6.3.1	Dependence Between Two Random Variables	228
	6.4	Depen	dence and Moments	229
		6.4.1	Joint Moments and Dependence	229
		6.4.2	Conditional Moments and Dependence	232
	6.5	Joint D	Distributions and Modeling Dependence	233
		6.5.1	Dependence and the Normal Distribution	234
		6.5.2	A Graphical Display: The Scatterplot	236
		6.5.3	Dependence and the Elliptically Symmetric Family	240
		6.5.4	Dependence and Skewed Distributions	245
		6.5.5	Dependence in the Presence of Heterogeneity	257
	6.6	Model	ing Dependence and Copulas*	258
	6.7	Depen	dence for Categorical Variables	262
		6.7.1	Measurement Scales and Dependence	262
		6.7.2	Dependence and Ordinal Variables	263
		6.7.3	Dependence and Nominal Variables	266
	6.8	Condit	ional Independence	268
		6.8.1	The Multivariate Normal Distribution	269
		6.8.2	The Multivariate Bernoulli Distribution	271
		6.8.3	Dependence in Mixed (Discrete/Continuous) Variables	272

			Contents	x
	6.9	What (Comes Next?	273
	6.10	Questi	ons and Exercises	274
7	Regre	ssion M	odels	277
	7.1	Introdu	uction	277
	7.2	Condit	tioning and Regression	279
		7.2.1	Reduction and Conditional Moment Functions	279
		7.2.2	Regression and Skedastic Functions	281
		7.2.3	Selecting an Appropriate Regression Model	288
	7.3	Weak 1	Exogeneity and Stochastic Conditioning	292
		7.3.1	The Concept of Weak Exogeneity	292
		7.3.2	Conditioning on a σ -Field	295
		7.3.3	Stochastic Conditional Expectation and its Properties	297
	7.4	A Stati	istical Interpretation of Regression	301
		7.4.1	The Statistical Generating Mechanism	301
		7.4.2	Statistical vs. Substantive Models, Once Again	304
	7.5	Regres	ssion Models and Heterogeneity	308
	7.6	Summ	ary and Conclusions	310
	7.7	Questi	ons and Exercises	312
8	Intro	duction t	to Stochastic Processes	315
	8.1	Introdu	uction	315
		8.1.1	Random Variables and Orderings	316
	8.2	The Co	oncept of a Stochastic Process	318
		8.2.1	Defining a Stochastic Process	318
		8.2.2	Classifying Stochastic Processes; What a Mess!	320
		8.2.3	Characterizing a Stochastic Process	322
		8.2.4	Partial Sums and Associated Stochastic Processes	324
		8.2.5	Gaussian (Normal) Process: A First View	328
	8.3	Depen	dence Restrictions (Assumptions)	329
		8.3.1	Distribution-Based Concepts of Dependence	329
		8.3.2	Moment-Based Concepts of Dependence	330
	8.4	Hetero	egeneity Restrictions (Assumptions)	331
		8.4.1	Distribution-Based Heterogeneity Assumptions	331
		8.4.2	Moment-Based Heterogeneity Assumptions	333
	8.5	Buildi	ng Block Stochastic Processes	335
		8.5.1	IID Stochastic Processes	335
		8.5.2	White-Noise Process	336
	8.6	Marko	v and Related Stochastic Processes	336
		8.6.1	Markov Process	336
		8.6.2	Random Walk Processes	338
		8.6.3	Martingale Processes	340
		8.6.4	Martingale Difference Process	342
	8.7	Gaussi	ian Processes	345

xii Contents

		8.7.1	AR(p) Process: Probabilistic Reduction Perspective	345
		8.7.2	A Wiener Process and a Unit Root [UR(1)] Model	349
		8.7.3	Moving Average $[MA(q)]$ Process	352
		8.7.4	Autoregressive vs. Moving Average Processes	353
		8.7.5	The Brownian Motion Process*	354
	8.8	Counti	ng Processes*	360
		8.8.1	The Poisson Process	361
		8.8.2	Duration (Hazard-Based) Models	363
	8.9	Summa	ary and Conclusions	364
	8.10	Questio	ons and Exercises	367
		-	dix 8.A: Asymptotic Dependence and Heterogeneity	
			uptions*	369
		8.A.1	Mixing Conditions	369
		8.A.2	Ergodicity	370
9	Limit	Theorer	ns in Probability	373
	9.1	Introdu	action	373
		9.1.1	Why Do We Care About Limit Theorems?	374
		9.1.2	Terminology and Taxonomy	375
		9.1.3	Popular Misconceptions About Limit Theorems	376
	9.2	Tracing	g the Roots of Limit Theorems	377
		9.2.1	Bernoulli's Law of Large Numbers: A First View	377
		9.2.2	Early Steps Toward the Central Limit Theorem	378
		9.2.3	The First SLLN	381
		9.2.4	Probabilistic Convergence Modes: A First View	381
	9.3	The W	eak Law of Large Numbers	383
		9.3.1	Bernoulli's WLLN	383
		9.3.2	Poisson's WLLN	385
		9.3.3	Chebyshev's WLLN	386
		9.3.4	Markov's WLLN	387
		9.3.5	Bernstein's WLLN	388
		9.3.6	Khinchin's WLLN	389
	9.4	The St	rong Law of Large Numbers	390
		9.4.1	Borel's (1909) SLLN	390
		9.4.2	Kolmogorov's SLLN	391
		9.4.3	SLLN for a Martingale	392
		9.4.4	SLLN for a Stationary Process	394
		9.4.5	The Law of Iterated Logarithm*	395
	9.5	The Ce	entral Limit Theorem	396
		9.5.1	De Moivre-Laplace CLT	397
		9.5.2	Lyapunov's CLT	399
		9.5.3	Lindeberg–Feller's CLT	399
		9.5.4	Chebyshev's CLT	401
		9.5.5	Hajek–Sidak CLT	401

			Contents	xiii
		9.5.6	CLT for a Martingale	402
		9.5.7	CLT for a Stationary Process	402
		9.5.8	The Accuracy of the Normal Approximation	403
		9.5.9	Stable and Other Limit Distributions*	404
	9.6	Extendi	ing the Limit Theorems*	406
		9.6.1	A Uniform SLLN*	409
	9.7	Summa	ary and Conclusions	409
	9.8	Questic	ons and Exercises	410
		Appen	dix 9.A: Probabilistic Inequalities	412
		9.A.1	Probability	412
		9.A.2	Expectation	413
		Appen	dix 9.B: Functional Central Limit Theorem	414
10	From 1	Probabil	lity Theory to Statistical Inference	421
	10.1	Introdu	ction	421
	10.2	Mathen	natical Probability: A Brief Summary	422
		10.2.1	Kolmogorov's Axiomatic Approach	422
		10.2.2	Random Variables and Statistical Models	422
	10.3	Freque	ntist Interpretation(s) of Probability	423
		10.3.1	"Randomness" (Stochasticity) is a Feature of the Real	
			World	423
		10.3.2	Model-Based Frequentist Interpretation of Probability	424
		10.3.3	Von Mises' Frequentist Interpretation of Probability	426
		10.3.4	Criticisms Leveled Against the Frequentist Interpretation	427
		10.3.5	Kolmogorov Complexity: An Algorithmic Perspective	430
		10.3.6	The Propensity Interpretation of Probability	431
	10.4	Degree	of Belief Interpretation(s) of Probability	432
		10.4.1	"Randomness" is in the Mind of the Beholder	432
		10.4.2	Degrees of Subjective Belief	432
		10.4.3	Degrees of "Objective Belief": Logical Probability	435
		10.4.4	Which Interpretation of Probability?	436
	10.5	Freque	ntist vs. Bayesian Statistical Inference	436
		10.5.1	The Frequentist Approach to Statistical Inference	436
		10.5.2	The Bayesian Approach to Statistical Inference	440
		10.5.3	Cautionary Notes on Misleading Bayesian Claims	443
	10.6	An Intr	oduction to Frequentist Inference	444
		10.6.1	Fisher and Neglected Aspects of Frequentist Statistics	444
		10.6.2	Basic Frequentist Concepts and Distinctions	446
		10.6.3	Estimation: Point and Interval	447
		10.6.4	Hypothesis Testing: A First View	449
		10.6.5	Prediction (Forecasting)	450
		10.6.6	Probability vs. Frequencies: The Empirical CDF	450
	10.7	Non-Pa	rametric Inference	453
		10.7.1	Parametric vs. Non-Parametric Inference	453

xiv Contents

		10.7.0		4.5.4
			Are Weaker Assumptions Preferable to Stronger Ones?	454
		10.7.3	Induction vs. Deduction	457
		10.7.4	Revisiting Generic Robustness Claims	458
		10.7.5	Inference Based on Asymptotic Bounds	458
	10.0	10.7.6	Whither Non-Parametric Modeling?	460
	10.8		sic Bootstrap Method	461
	10.0	10.8.1	Bootstrapping and Statistical Adequacy	462
	10.9		ry and Conclusions	464
	10.10	Questio	ns and Exercises	466
11	Estima	ation I: P	Properties of Estimators	469
	11.1	Introduc	ction	469
	11.2	What is	an Estimator?	469
	11.3	Samplin	ng Distributions of Estimators	472
	11.4	Finite S	ample Properties of Estimators	474
		11.4.1	Unbiasedness	474
		11.4.2	Efficiency: Relative vs. Full Efficiency	475
		11.4.3	Sufficiency	480
		11.4.4	Minimum MSE Estimators and Admissibility	485
	11.5	Asympt	otic Properties of Estimators	488
		11.5.1	Consistency (Weak)	488
		11.5.2	Consistency (Strong)	490
		11.5.3	Asymptotic Normality	490
		11.5.4	Asymptotic Efficiency	491
		11.5.5	Properties of Estimators Beyond the First Two Moments	492
	11.6	The Sin	nple Normal Model: Estimation	493
	11.7	Confide	nce Intervals (Interval Estimation)	498
		11.7.1	Long-Run "Interpretation" of CIs	499
		11.7.2	Constructing a Confidence Interval	499
		11.7.3	Optimality of Confidence Intervals	501
	11.8	Bayesia	n Estimation	502
		11.8.1	Optimal Bayesian Rules	503
		11.8.2	Bayesian Credible Intervals	504
	11.9	Summa	ry and Conclusions	505
	11.10	Questio	ns and Exercises	507
12	Fetime	ntion II. l	Methods of Estimation	510
14	12.1	Introduc		510
	12.1		ximum Likelihood Method	511
	12.2	12.2.1	The Likelihood Function	511
		12.2.1	Maximum Likelihood Estimators	514
		12.2.2		517
		12.2.3		519
		12.2.4		524
		12.2.3	Froperites of Maximum Likelinood Estimators	J24

		Contents	χv
		12.2.6 The Maximum Likelihood Method and its Critics	532
	12.3	The Least-Squares Method	534
		12.3.1 The Mathematical Principle of Least Squares	534
		12.3.2 Least Squares as a Statistical Method	535
	12.4	Moment Matching Principle	536
		12.4.1 Sample Moments and their Properties	539
	12.5	The Method of Moments	543
		12.5.1 Karl Pearson's Method of Moments	543
		12.5.2 The Parametric Method of Moments	544
		12.5.3 Properties of PMM Estimators	546
	12.6	Summary and Conclusions	547
	12.7	Questions and Exercises	549
		Appendix 12.A: Karl Pearson's Approach	551
13	Hypot	thesis Testing	553
	13.1	Introduction	553
		13.1.1 Difficulties in Mastering Statistical Testing	553
	13.2	Statistical Testing Before R. A. Fisher	555
		13.2.1 Francis Edgeworth's Testing	555
		13.2.2 Karl Pearson's Testing	556
	13.3	Fisher's Significance Testing	558
		13.3.1 A Closer Look at the <i>p</i> -value	561
		13.3.2 R. A. Fisher and Experimental Design	563
		13.3.3 Significance Testing: Empirical Examples	565
		13.3.4 Summary of Fisher's Significance Testing	568
	13.4	Neyman–Pearson Testing	569
		13.4.1 N-P Objective: Improving Fisher's Significance Testing	569
		13.4.2 Modifying Fisher's Testing Framing: A First View	570
		13.4.3 A Historical Excursion	574
		13.4.4 The Archetypal N-P Testing Framing	575
		13.4.5 Significance Level α vs. the p -value	578
		13.4.6 Optimality of a Neyman–Pearson Test	580
		13.4.7 Constructing Optimal Tests: The N-P Lemma	586
		13.4.8 Extending the Neyman–Pearson Lemma	588
		13.4.9 Constructing Optimal Tests: Likelihood Ratio	591
		13.4.10 Bayesian Testing Using the Bayes Factor	594
	13.5	Error-Statistical Framing of Statistical Testing	596
		13.5.1 N-P Testing Driven by Substantively Relevant Values	596
		13.5.2 Foundational Issues Pertaining to Statistical Testing	598
		13.5.3 Post-Data Severity Evaluation: An Evidential Account	600
		13.5.4 Revisiting Issues Bedeviling Frequentist Testing	603
		13.5.5 The Replication Crises and Severity	609
	13.6	Confidence Intervals and their Optimality	610
		13.6.1 Mathematical Duality Between Testing and CIs	610

xvi Contents

		13.6.2	Uniformly Most Accurate CIs	612
			Confidence Intervals vs. Hypothesis Testing	613
		13.6.4	• • • • • • • • • • • • • • • • • • • •	614
		13.6.5	•	614
	13.7		ary and Conclusions	615
	13.8		ons and Exercises	617
		-	dix 13.A: Testing Differences Between Means	620
			Testing the Difference Between Two Means	620
			What Happens when $Var(X_{1t}) \neq Var(X_{2t})$?	621
			Bivariate Normal Model: Paired Sample Tests	622
		13.A.4	Testing the Difference Between Two Proportions	623
		13.A.5	One-Way Analysis of Variance	624
14	Linea	r Regress	sion and Related Models	625
	14.1	Introdu		625
		14.1.1	What is a Statistical Model?	625
	14.2	Normal	l, Linear Regression Model	626
		14.2.1	-	626
		14.2.2	Estimation	628
		14.2.3	Fitted Values and Residuals	633
		14.2.4	Goodness-of-Fit Measures	635
		14.2.5	Confidence Intervals and Hypothesis Testing	635
		14.2.6	Normality and the LR Model	642
		14.2.7	Testing a Substantive Model Against the Data	643
	14.3	Linear	Regression and Least Squares	648
		14.3.1	Mathematical Approximation and Statistical	
			Curve-Fitting	648
		14.3.2	Gauss-Markov Theorem	651
		14.3.3	Asymptotic Properties of OLS Estimators	653
	14.4	Regress	sion-Like Statistical Models	655
		14.4.1	Gauss Linear Model	655
		14.4.2	The Logit and Probit Models	655
		14.4.3	The Poisson Regression-Like Model	657
		14.4.4	Generalized Linear Models	657
		14.4.5	The Gamma Regression-Like Model	658
	14.5	Multipl	e Linear Regression Model	658
		14.5.1	Estimation	660
		14.5.2	Linear Regression: Matrix Formulation	661
		14.5.3	Fitted Values and Residuals	662
		14.5.4	OLS Estimators and their Sampling Distributions	665
	14.6	The LR	Model: Numerical Issues and Problems	666
		14.6.1	The Problem of Near-Collinearity	666
		14.6.2	The Hat Matrix and Influential Observations	673
		14.6.3	Individual Observation Influence Measures	674

			Contents	xvii
	14.7	Conclus	sions	675
	14.8	Questio	ns and Exercises	677
		Append	lix 14.A: Generalized Linear Models	680
		14.A.1	Exponential Family of Distributions	680
		14.A.2	Common Features of Generalized Linear Models	681
		14.A.3	MLE and the Exponential Family	682
		Append	lix 14.B: Data	683
15	Misspe	ecificatio	n (M-S) Testing	685
	15.1	Introduc	ction	685
	15.2	Misspec	cification and Inference: A First View	688
		15.2.1	Actual vs. Nominal Error Probabilities	688
		15.2.2	Reluctance to Test the Validity of Model Assumptions	691
	15.3	Non-Pa	rametric (Omnibus) M-S Tests	694
		15.3.1	The Runs M-S Test for the IID Assumptions [2]–[4]	694
		15.3.2	Kolmogorov's M-S Test for Normality ([1])	695
	15.4		tric (Directional) M-S Testing	697
		15.4.1	A Parametric M-S Test for Independence ([4])	697
		15.4.2	Testing Independence and Mean Constancy ([2] and [4])	698
		15.4.3	Testing Independence and Variance Constancy ([2]	
			and [4])	700
		15.4.4	The Skewness–Kurtosis Test of Normality	700
		15.4.5	Simple Normal Model: A Summary of M-S Testing	701
	15.5	-	cification Testing: A Formalization	703
		15.5.1	Placing M-S Testing in a Proper Context	703
		15.5.2	Securing the Effectiveness/Reliability of M-S Testing	704
		15.5.3	M-S Testing and the Linear Regression Model	705
		15.5.4	The Multiple Testing (Comparisons) Issue	706
		15.5.5	Testing for <i>t</i> -Invariance of the Parameters	707
		15.5.6	Where do Auxiliary Regressions Come From?	707
		15.5.7	M-S Testing for Logit/Probit Models	710
		15.5.8	Revisiting Yule's "Nonsense Correlations"	710
	15.6	15.5.9	Respecification	713
	15.6		stration of Empirical Modeling	716
		15.6.1	The Traditional Curve-Fitting Perspective	716
		15.6.2	Traditional ad hoc M-S Testing and Respecification	718
	157	15.6.3	The Probabilistic Reduction Approach	721
	15.7		ry and Conclusions	729
	15.8	_	ns and Exercises	731 734
		Append	lix 15.A: Data	134
R	eference	?S		736
Ir	ıdex			752

Preface to the Second Edition

The original book, published 20 years ago, has been thoroughly revised with two objectives in mind. First, to make the discussion more compact and coherent by avoiding repetition and many digressions. Second, to improve the methodological coherence of the proposed empirical modeling framework by including material pertaining to foundational issues that has been published by the author over the last 20 years or so in journals on econometrics, statistics, and philosophy of science. In particular, this revised edition brings out more clearly several crucial distinctions that elucidate empirical modeling, including (a) the statistical vs. the substantive information/model, (b) the modeling vs. the inference facet of statistical analysis, (c) testing within and testing outside the boundary of a statistical model, and (d) pre-data vs. post-data error probabilities. These distinctions shed light on several foundational issues and suggest solutions. In addition, the comprehensiveness of the book has been improved by adding Chapter 14 on the linear regression and related models.

The current debates on the "replication crises" render the methodological framework articulated in this book especially relevant for today's practitioner. A closer look at the debates (Mayo, 2018) reveals that the non-replicability of empirical evidence problem is, first and foremost, a problem of untrustworthy evidence routinely published in prestigious journals. The current focus of that literature on the abuse of significance testing is rather misplaced, because it is only a part of a much broader problem relating to the mechanical application of statistical methods without a real understanding of their assumptions, limitations, proper implementation, and interpretation of their results. The abuse and misinterpretation of the p-value is just symptomatic of the same uninformed implementation that contributes majorly to the problem of untrustworthy evidence. Indeed, the same uninformed implementation often ensures that untrustworthy evidence is routinely replicated, when the same mistakes are repeated by equally uninformed practitioners! In contrast to the current conventional wisdom, it is argued that a major contributor to the untrustworthy evidence problem is statistical misspecification: invalid probabilistic assumptions imposed on one's data, another symptom of the same uninformed implementation. The primary objective of this book is to provide the necessary probabilistic foundation and the overarching modeling framework for an informed and thoughtful application of statistical methods, as well as the proper interpretation of their inferential results. The emphasis is placed less on the mechanics of the application of statistical methods, and more on understanding their assumptions, limitations, and proper interpretation.

xix

Preface to the Second Edition

Key Features of the Book

- It offers a seamless integration of probability theory and statistical inference with a view
 to elucidating the interplay between deduction and induction in "learning from data"
 about observable phenomena of interest using statistical procedures.
- It develops frequentist modeling and inference from first principles by emphasizing the
 notion of a statistical model and its adequacy (the validity of its probabilistic assumptions vis-à-vis the particular data) as the cornerstone for reliable inductive inference and
 trustworthy evidence.
- It presents frequentist inference as well-grounded procedures whose optimality is assessed by their capacity to achieve genuine "learning from data."
- It focuses primarily on the skills and the technical knowledge one needs to be able to begin with substantive questions of interest, select the relevant data carefully, and proceed to establish trustworthy evidence for or against hypotheses or claims relating to the questions of interest. These skills include understanding the statistical information conveyed by data plots, selecting appropriate statistical models, as well as validating them using misspecification testing before any inferences are drawn.
- It articulates reasoned responses to several charges leveled against several aspects of frequentist inference by addressing the underlying foundational issues, including the use and abuse of *p*-values and confidence intervals, Neyman–Pearson vs. Fisher testing, and inference results vs. evidence that have bedeviled frequentist inference since the 1930s. The book discusses several such foundational issues/problems and proposes ways to address them using an error statistical perspective grounded in the concept of severity. Methodological issues discussed in this book include rebuttals to widely used, ill-thought-out arguments for ignoring statistical misspecification, as well as principled responses to certain Bayesian criticisms of the frequentist approach.
- Its methodological perspective differs from the traditional textbook perspective by bringing out the perils of curve-fitting and focusing on the key question: How can empirical modeling lead to "learning from data" about phenomena of interest by giving rise to trustworthy evidence?

NOTE: All sections marked with an asterisk (*) can be skipped at first reading without any serious interruption in the flow of the discussion.

Acknowledgments

More than any other person, Deborah G. Mayo, my colleague and collaborator on many foundational issues in statistical inference, has helped to shape my views on several methodological issues addressed in this book; for that and the constant encouragement, I'm most grateful to her. I'm also thankful to Clark Glymour, the other philosopher of science with whom I had numerous elucidating and creative discussions on many philosophical issues discoursed in the book. Thanks are also due to Sir David Cox for many discussions that helped me appreciate the different perspectives on frequentist inference. Special thanks are also due to my longtime collaborator, Anya McGuirk, who contributed majorly in puzzling out several thorny issues discussed in this book. I owe a special thanks to Julio Lopez for

Preface to the Second Edition

xxi

his insightful comments, as well as his unwavering faith in the coherence and value of the proposed approach to empirical modeling. I'm also thankful to Jesse Bledsoe for helpful comments on chapter 13 and Mariusz Kamienski for invaluable help on the front cover design.

I owe special thanks to several of my former and current students over the last 20 years, who helped to improve the discussion in this book by commenting on earlier drafts and finding mistakes and typos. They include Elena Andreou, Andros Kourtellos, Carlos Elias, Maria Heracleous, Jason Bergtold, Ebere Akobundu, Andreas Koutris, Alfredo Romero, Niraj Pouydal, Michael Michaelides, Karo Solat, and Mohammad Banasaz.

Symbols

 \mathbb{N} – set of natural numbers $\mathbb{N}:=\{1,2,...,n,...\}$

 \mathbb{R} – the set of real numbers; the real line $(-\infty, \infty)$

 $\mathbb{R}^n \quad := \overbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}^{n \text{ times}}$

 $\mathbb{R}_+\,$ – the set of positive real numbers; the half real line $(0,\infty)$

 $f(x; \boldsymbol{\theta})$ – density function of X with parameters $\boldsymbol{\theta}$

 $F(x; \theta)$ – cumulative distribution function of X with parameters θ

 $N(\mu, \sigma^2)$ – Normal distribution with mean μ and variance σ^2

E – Random Experiment (RE)

S – outcomes set (sample space)

 \Im – event space (a σ – field)

 $\mathbb{P}(.)$ – probability set function

 $\sigma(X)$ – minimal sigma-field generated by X

Acronyms

AR(p) – Autoregressive model with p lags

CAN - Consistent, Asymptotically Normal

cdf - cumulative distribution function

CLT - Central Limit Theorem

ecdf - empirical cumulative distributrion function

GM - Generating Mechanism

IID - Indepedent and Identically Distributed

LS - Least-Squares

ML - Maximum Likelihood

M-S - Mis-Specification

N-P - Neyman-Pearson

PMM - Parametric Method of Moments

SLLN - Strong Law Large Numbers

WLLN - Weak Law Large Numbers

UMP - Uniformly Most Powerful