Theory and Practice in Policy Analysis

Many books instruct readers on how to use the tools of policy analysis. This book is different. Its primary focus is on helping readers to look critically at the strengths, limitations, and the underlying assumptions analysts make when they use standard tools or problem framings. Using examples, many of which involve issues in science and technology, the book exposes readers to some of the critical issues of taste, professional responsibility, ethics, and values that are associated with policy analysis and research. Topics covered include policy problems formulated in terms of utility maximization such as benefit-cost, decision, and multi-attribute analysis, issues in the valuation of intangibles, uncertainty in policy analysis, selected topics in risk analysis and communication, limitations and alternatives to the paradigm of utility maximization, issues in behavioral decision theory, issues related to organizations and multiple agents, and selected topics in policy advice and policy analysis for government.

M. Granger Morgan is the Hamerschlag University Professor of Engineering at Carnegie Mellon University where he was the founding Head of the Department of Engineering and Public Policy. He also holds appointments in Electrical and Computer Engineering and in the H. John Heinz III College of Public Policy and Management. He has worked extensively on policy problems that involve issues in science and technology. Much of his work has focused on the characterization and treatment of uncertainty, especially as applied to environmental issues, that involve energy and electric power, and many aspects of the problem of climate change. Morgan’s formal academic training is in applied physics. He is a member of the U.S. National Academy of Sciences and of the American Academy of Arts and Sciences. He is the author of many papers and five books, including two with Cambridge University Press: Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis and Risk Communication: A Mental Models Approach.
Theory and Practice in Policy Analysis

Including Applications in Science and Technology

M. GRANGER MORGAN

Carnegie Mellon University
Contents

Preface xiii

Acknowledgments xv

1. Policy Analysis: An Overview 1
 1.1 What Is Public Policy? 1
 1.2 What Is Policy Analysis? 3
 1.4 How Is Doing Policy Analysis Different from Doing Science? 8
 1.5 What Role Does Analysis Play in Making and Implementing Policy? 11

Part I: Making Decisions that Maximize Utility 15

2. Preferences and the Idea of Utility 17
 2.1 Historical Development of the Idea of Utility 18
 2.2 Utility in Modern Microeconomics 19
 2.3 Is Utility the Same Thing as Happiness? 24
 2.4 Measurement Scales for Utility (and Other Things) 30
 2.5 The Utility of Chance Outcomes 35
 2.6 Can Different People’s Utilities Be Compared? 40
 2.7 Combining Individual Utilities and the Concept of a Social Welfare Function 42
 2.8 Preferences that Are Not Well Defined, Change over Time, or Are Inconsistent 44
 2.9 Back to the Basic Question: “What Is Utility?” 46
 2.10 Limits to the Strategy of Utility Maximization 47

3. Benefit–Cost Analysis 51
 3.1 B–C Basics 52
Contents

3.2 Pareto Optimality 58
3.3 B–C versus B/C 60
3.4 Simple in Theory, but Often Complicated in Practice 60
3.5 The Rise of B–C Analysis in Government Decision Making 61
3.6 Examples of B–C Analysis Applied to Public Decision Making 67
3.7 Limitations of B–C 73
3.8 Efficiency versus Equity 76
3.9 Going off the Deep End with B–C Analysis 77
3.10 B–C versus Precaution 86
3.11 Final Thoughts on B–C 88

4. Decision Analysis 93
 4.1 DA Basics 93
 4.2 A Simple Worked Example 96
 4.3 Stages in a Decision Analysis 96
 4.4 The Axioms of Decision Analysis 98
 4.5 A More Detailed Worked Example 100
 4.6 Other Examples of Decision Analysis 108
 4.7 Influence Diagrams and Decision Trees 111
 4.8 Strengths and Limitations of Decision Analysis 112
 4.9 A Note on the History of Decision Analysis 114

5. Valuing Intangibles and Other Non-Market Outcomes 118
 5.1 Inferring People’s Values from the Choices They Make 119
 5.2 The “Value of a Statistical Life” or VSL 120
 5.3 A Decision-Analytic Approach to Valuing One’s Own Life 122
 5.4 Evolution of Approaches to the Economic Valuation of Lost Lives 124
 5.5 Use of VSL and Similar Measures in Public Policy 126
 5.6 Contingent Valuation (CV) 131
 5.7 Computing the Costs of Externalities 134
 5.8 Ecosystem Services 135
 5.9 What If People Don’t Have Well-Articulated Utility Functions for Everything? 141
 5.10 Variations in Basic Values across Different Cultures 143
 5.11 Are There Some Values that Should Not Be Quantified? 145

 With Jared L. Cohon
 6.1 MAUT Basics 156
 6.2 Constructing MAU Functions Using Independence Assumptions 158
 6.3 Do People Have Multi-Attribute Utility Functions in Their Heads? 160
 6.4 Other Multiple Criteria Decision Making (MCDM) Methods 162
 6.5 Figuring out What You Care About 165
Contents

6.6 Example Applications of MAUT and MCDM 167
6.7 Limitations to the Use of MAUT and MCDM 171
6.8 Multiobjective Programming 173

7. Preferences over Time and across Space 185
 7.1 A Simple Example of When Time Differences Do and Do Not Matter 185
 7.2 Exponential Discounting in the Evaluation of Projects and Investment Opportunities 189
 7.3 The Orthodoxy of Exponential Discounting 192
 7.4 The Use of Real Options as an Alternative to Net Present Value 192
 7.5 The Pure Rate of Time Preference (PRTP) and the Consumption Discount Rate (CDR) 194
 7.6 Discount Rates that Decline over Time 195
 7.7 Empirical Studies of the Time Preferences that People Display: A Look Ahead to Part III 198
 7.8 Hyperbolic Discounting 200
 7.9 Preferences that Change over Time 201
 7.10 How Different Are Space and Time? 202

PART II: SOME WIDELY USED ANALYSIS TOOLS AND TOPICS 207

8. Characterizing, Analyzing, and Communicating Uncertainty 209
 8.1 Describing Uncertainty 210
 8.2 The Importance of Quantifying Uncertainty 217
 8.3 Cognitive Challenges in Estimating Uncertainty 222
 8.4 Methods and Tools for Propagating and Analyzing Uncertainty 222
 8.5 Making Decisions in the Face of Uncertainty 224
 8.6 Scenario Analysis 228
 8.7 Precaution 230
 8.8 Communicating Uncertainty 231
 8.9 Some Simple Guidance on Characterizing and Dealing with Uncertainty 235

9. Expert Elicitation 244
 9.1 Are There Any Experts? 245
 9.2 The Interpretation of Probability 245
 9.3 Qualitative Uncertainty Words Are Not Sufficient 246
 9.4 Cognitive Heuristics and Bias 247
 9.5 Ubiquitous Overconfidence 248
 9.6 Developing a Protocol 251
 9.7 Computer Tools to Support or Perform Elicitation 254
 9.8 Uncertainty about Model Functional Form 255
 9.9 Confidence, Second-Order Uncertainty, and Pedigree 256
 9.10 Diversity in Expert Opinion 257
9.11 Combining Expert Judgments
9.12 Concluding Thoughts and Advice
10. Risk Analysis
 10.1 A Framework for Thinking about Risk
 10.2 Risk Is Inherently Uncertain
 10.3 Risk Is a Multi-Attribute Concept
 10.4 Models of Exposure and Effects Process
 10.5 Causes of Death
 10.6 Managing Risk
 10.7 The Risk of Worrying (Too Much) about Risk
11. The Use of Models in Policy Analysis
 11.1 Types of Models Commonly Used in Technically Focused Policy Analysis
 11.2 Simple Engineering, Economic, and Policy Models
 11.3 Models for Environmental Impact Assessment
 11.4 Life Cycle Methods
 11.5 Models of the Economy
 11.6 Models of Energy Supply and Use
 11.7 Integrated Assessment Models
 11.8 Limits of Standard Analytical Tools
 11.9 Using Large Research and Scientific Models in Policy Applications
 11.10 Some Thoughts on “Large” and “Complex” Models
 11.11 Model Complexity Should Match the Analyst’s Level of Understanding

PART III: HOW INDIVIDUALS AND ORGANIZATIONS ACTUALLY MAKE DECISIONS
12. Human Mental Processes for Perception, Memory, and Decision Making
 12.1 Two Kinds of Thinking
 12.2 Framing Effects and Prospect Theory
 12.3 Ubiquitous Overconfidence
 12.4 Cognitive Heuristics and Biases
 12.5 Hindsight Bias
 12.6 Scenarios and Scenario Thinking
 12.7 (Not) Honoring Sunk Costs
 12.8 Order Effects in Search
 12.9 The Power of Simple Linear Models
 12.10 Individual and Social Dilemmas
 12.11 Wrapping Up
13. Risk Perception and Risk Ranking
 13.1 Starr on Acceptable Risk
 13.2 Public Assessment of Causes of Death
Contents

13.3 Factors that Shape Risk Judgments 377
13.4 Comparing and Ranking Risks 383
13.5 Recent Summaries of Work on Risk Perception 386

14. Risk Communication 389
14.1 What Information Do People Need to Know about a Risk? 391
14.2 Mental Models Interviews 394
14.3 Structured Interviews Followed by Closed-Form Surveys 400
14.4 Development and Evaluation of Communication Materials 401
14.5 Are the Results Any Better? 402
14.6 Communication to What End? 405

15. Organizational Behavior and Decision Making 409
15.1 Different Views through Different Windows 411
15.2 The Carnegie School of Organizational Decision Making 416
15.3 Garbage Can Models of Organizational Decision Making 422
15.4 The Importance of Negotiation 424
15.5 Exit, Voice, and Loyalty 424
15.6 Normal Accidents versus High-Reliability Organizations 428
15.7 Agent-Based Models of Social Processes and Organizations 430
15.8 Studies of the Behavior of Individuals within Commercial Organizations 433
15.9 Wrapping Up 437

PART IV: THE POLICY PROCESS AND S&T POLICY (MAINLY) IN THE UNITED STATES 441
16. Analysis and the Policy Process 443
16.1 Policy Windows 443
16.2 Policy Making as a Process of Punctured Equilibrium 446
16.3 Adaptive Policy and Learning 450
16.4 Diversification as a Policy Strategy 451
16.5 Social Control through Norms, Legal Prohibitions, Command, and Markets 453
16.6 The Science of “Muddling Through” 457
16.7 We Can’t Always Just Muddle Through 460
16.8 The Technology of Foolishness 461
16.9 Implementation 462

17. The Period Prior to World War II 469
17.1 Thomas Jefferson and the Lewis and Clark Expedition 472
17.2 Creation of the Coastal Survey 474
17.3 The Smithson Will and the Creation of the Smithsonian Institution 476
17.4 Appropriation of Federal Funds for Technology Demonstration 478
17.5 The Extended Saga of Regulations to Prevent Steam Boiler Explosions 479
17.6 The United States Exploring Expedition, 1838–1842 482
Contents

17.7 The Establishment of the U.S. National Academy of Sciences 483
17.8 The Great Western Exploring Expeditions 486
17.9 The Creation of the U.S. Geological Survey 488
17.10 World War I and the Creation of the National Research Council 489
17.11 Herbert Hoover as Secretary of Commerce 491

18. U.S. Science and Technology Policy from World War II to 1960 497
 18.1 Vannevar Bush and U.S. Defense Research and Development during World War II 498
 18.2 Science the Endless Frontier and the Creation of the National Science Foundation 508
 18.3 The Office of Naval Research: Filling the Gap between OSRD and NSF 514
 18.4 Civilian Control of Atomic Energy and Weapons 516
 18.5 IGY, Sputnik, the Space Race, and the (Phantom) Missile Gap 517

19. Science and Technology Advice to Government 521
 19.1 Science and Technology Advice to the President 521
 19.2 The Administrative Procedure Act 526
 19.3 Examples of Science and Technology Advice to Executive Branch Agencies 529
 19.4 The NRC and the National Academies 532
 19.5 Think Tanks and Consulting Firms 535
 19.6 The Congressional Office of Technology Assessment 536
 19.7 Science and Technology Advice to the Judiciary 543
 19.8 Science and Technology Advice in the U.S. States and Regional Governments 545
 19.9 Science and Technology Advice to European Governments and to the European Union, with Inês Azevedo 547
 19.10 Science and Technology Advice to Government in Japan Jun Suzuki 556
 19.11 Science and Technology Advice to Government in China Xue Lan 559
 19.12 Science and Technology Advice to Government in India Anshu Bharadwaj and V.S. Arunachalam 562

Appendices 567
 A1. A Few Key Ideas from the History and Philosophy of Science 567
 A1.1 Francis Bacon and the Empirical or Scientific Method 567
 A1.2 Karl Popper: “Falsifiability,” and Deduction versus Induction 569
Contents

A1.3 Hypothesis 571
A1.4 Thomas Kuhn: Paradigms and Scientific Revolutions 572
A2. Some Readings in Technology and Innovation 577
A3. Some Readings in Science and Technology Studies 579

Index 581
Preface

As the title indicates, this is a book about the theory and practice of policy analysis. It is not a book designed to make readers expert in the use of specific analytical tools. That is something that can be gained through more specialized books, courses, and practice. Rather, this is a book designed to help readers to develop their own independent understanding and critical assessment of the strengths, limitations, and underlying assumptions of key policy research and analysis tools and problem framings. Hence my focus is on:

• the underlying assumptions and implications of various analytical techniques;
• the strengths and limitations of these techniques;
• the role and objective of policy-related studies, especially those that involve technology and public policy;
• the behavioral, institutional, organizational, political, and historical contexts in which issues of technology and public policy play out and the role of analysis in the broader process of policy development and implementation.

The book grew out of a course that I have taught for many years as one of the core courses in the Ph.D. program in the Department of Engineering and Public Policy at Carnegie Mellon University. That course has revolved around intensive classroom discussion of a large number of readings. In writing this book I have faced the problem of trying to figure out how to preserve at least some elements of the process of self-discovery and learning that has occurred through those classroom discussions.

Because I believe it is important for readers to be exposed to some of the more important writings in the primary literature, I have used more direct quotations from the literature than are found in many books, and in many sections I have included recommended readings and a number of discussion questions. I have tried to limit my summary of many of the readings, since the point of this book is not to supply Granger Morgan’s “CliffsNotes” but rather to help
readers to develop and refine their own views. This is of course an explicitly normative process.

While I have not been reluctant to express my views about specific methods or literatures, I have tried to do so in a way that encourages readers to consider, and perhaps disagree with, those views. When I have taught the course at Carnegie Mellon, it has always been most successful when students in the class were prepared to disagree vigorously with some of the views I expressed.

In order to avoid the awkward use of “his or her” in sentences such as “the decision maker must consider his or her preferences,” I have sometimes adopted the (grammatically incorrect) phrasing, “the decision maker must consider their preferences.” In discussing decision making, I have also sometimes adopted the convention, widely used in the decision analysis literature, of referring to “your” decision.

While the book should be accessible to readers from a wide variety of backgrounds, most of the examples I have used involve issues in science and technology. A significant number are drawn from the domain of climate change because policy analysis in this domain often stretches the boundaries of conventional tools and analysis strategies – and because I have been fortunate to help lead three large NSF-supported centers that have focused on a variety of decision-making issues related to climate change. However, in most cases, the issues being illustrated with these climate examples generalize to a variety of other problems in technology and public policy.

During the first week of the course from which this book has grown, I include a brief discussion of some topics in the philosophy of science. Our faculty in Engineering and Public Policy asked me to add this material when it became apparent that a number of our Ph.D. students could not state a “falsifiable proposition.” Because I think it is valuable for practitioners in science, technology, and public policy to have some familiarity with the ideas of philosophers such as Popper and Kuhn, I have included a brief discussion in Appendix 1.

There are many important topics related to science, technology, and public policy that this book does not address. Two especially important excluded topics are issues related to technological innovation and R&D policy, and issues that are often termed science and technology studies. A few suggested readings on these topics can be found in Appendix 2 and Appendix 3.
Acknowledgments

Carnegie Mellon and the Department of Engineering and Public Policy (EPP) have provided me, and my graduate students, with a uniquely supportive interdisciplinary environment in which to tackle problems in science, technology, and public policy. Indeed, there is no other more attractive academic setting anywhere in the world in which to address such problems. Many people have been responsible for creating the environment that has made EPP possible. Especially notable among them have been Dick Cyert, Herb Simon, Herb Toor, and Bob Dunlap, all of whom are sadly now gone.

Over the course of more than forty years of teaching, doing research, and making practical applications of the ideas that are the focus of this book, I have benefited from associations with many wonderful graduate students and colleagues. None have been more important to my intellectual development than Baruch Fischhoff, Max Henrion, and Lester Lave. I have also benefited greatly from years of collaboration with Jay Apt, Inês Azevedo, Ann Bostrom, Liz Casman, Hadi Dowlatabadi, Greg Fischer, Keith Florig, David Keith, Sam Morris, Indira Nair, Ed Rubin, and Henry Willis. Jerry Cohon made valuable suggestions on my treatment of utility in Chapter 2 and then kindly co-authored Chapter 6 on multiobjective methods.

Additional thanks for assistance, collaboration, critiques, and ideas go to Ahmed Abdulla, Peter Adams, Myles Allen, Deborah Amaral, V.S. Arunachalam, Cindy Atman, Jesse Ausubel, Barbara Barkovich, João Barros, Anshu Bharadwaj, Wändi Bruine de Bruin, Bill Clark, Aimee Curtright, Mike DeKay, Michael Dworkin, Kerry Emanuel, Scott Farrow, Paul Fischbeck, Lauren Fleishman, Marie-Valentine Florin, David Frame, Erica Fuchs, John Graham, Mike Griffin, Iris Grossmann, Ümit Güvenc, Bob Hahn, Manuel Heitor, Gordon Hester, Alex Hills, Paul Hines, David Hounshell, Harald Ibrekk, Paulina Jaramillo, Karen Jenni, Milind Kandlikar, Doug King, Kelly Klima, David Lincoln, Ragnar Löfstedt, Scott Matthews, Sean McCoy, Tim McDaniels,
xvi

Acknowledgments

Fran McMichael, Alan Meier, Kara Morgan, Anu Narayanan, Bob Nordhaus, Warner North, Claire Palmgren, Paul Parfomak, Elisabeth Paté-Cornell, Dalia Patiño-Echeverri, Jon Peha, Lou Pitelka, Stefan Rahmstorf, Anand Rao, Daniel Read, Ortwin Renn, Kate Ricke, Bill Rish, Emilie Roth, Costa Samaras, Steve Schneider, Vanessa Schweizer, Debra Shenk, Elena Shevtiakova, Kyle Siler-Evans, Marvin Sirbu, Paul Slovic, Bill Strauss, Jun Suzuki, Sarosh Talukdar, Parth Vaishnav, Francisco Veloso, David Victor, Charlie Wiecha, Elizabeth Wilson, Xue Lan, Kirsten Zickfeld, and many others. Debbie Scappatura assisted in securing figure approvals and helping with the index. Jenni Miller, a remarkably careful proofreader, provided valuable editorial assistance.

My views on many of the topics discussed in this book have been shaped by the research I have done with my students and colleagues with support from many agencies and foundations. I am especially thankful for many years of generous support from the National Science Foundation. Thanks, too, for support from Carnegie Mellon University, the Doris Duke Charitable Foundation, the Department of Energy, the Electric Power Research Institute, the Exxon Education Foundation, the International Risk Governance Council, the MacArthur Foundation, the R.K. Mellon Foundation, the Sloan Foundation, and others.

My original training was in experimental applied physics. Ken Bowles, Henry Booker, and my father, Millett Morgan, imbued me with a set of perspectives on research and professional activity that have been central to all of my subsequent work.

Much of this book was written during stays in the family home in which I grew up, located on 120 acres of New Hampshire countryside five miles east of Hanover, New Hampshire. Interspersing work on the book with work on the house and the land has been an enjoyable way to pass many days.

In my professional life, I have been fortunate to have 37 years of outstanding support from my assistant and very good friend, Patti Steranchak.

In my private life, my best friend, biggest critic, and the love of my life for over fifty years has been my wife, Betty. To her go my greatest thanks of all.