
Cambridge University Press
978-1-107-18486-2 — Brain Network Analysis
Moo K. Chung 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Statistical Preliminary

This chapter covers the basic statistical methods that are mostly used in univari-

ate voxel-level approaches. However, these basic methods are equally useful

in brain network analysis as well. Most of network modeling techniques are

based on the voxel-level methods. Readers familiar with univariate statistical

methods can skip this chapter.

1.1 General Linear Models

General linear models (GLM) have been widely used in brain imaging and

network studies. The GLM is a very flexible and general statistical framework

encompassing a wide variety of fixed-effect models such as multiple regres-

sions, the analysis of variance (ANOVA), the multivariate analysis of variance

(MANOVA), the analysis of covariance (ANCOVA), and the multivariate

analysis of covariance (MANCOVA) (Timm and Mieczkowski, 1997). More

complex multilevel or hierarchical models such as the mixed-effects models

and structural equation models (SEM) are also viewed as special cases of

general linear models.

GLM provides a framework for testing various associations and hypotheses

while accounting for nuisance covariates in the model in a straightforward

fashion. The effect of age, sex, brain size, and possibly IQ may have severe

confounding effects on the final outcome of many brain network studies.

Older populations’ reduced functional activation could be the consequence of

age-related atrophy of neural systems (Mather et al., 2004). Brain volumes

are significantly larger for children with autism 12 years old and younger

compared with normally developing children (Aylward et al., 1999). Therefore,

it is desirable to account for various confounding factors such as age and

sex. This can be done using GLM automatically. The parameters of GLM are
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2 Statistical Preliminary

mainly estimated by the least squares estimation and have been implemented

in many statistical packages such as R1 (Pinehiro and Bates, 2002), statistical

parametric mapping (SPM)2 and fMRI-STAT.3

We assume there are n subjects. Let yi be the response variable at a node

or edge, which is mainly coming from images and xi = (xi1, · · · ,xip) to

be the variables of interest and zi = (zi1, · · · ,zik) to be nuisance variables

corresponding to the ith subject. Then we have GLM

yi = ziλ + xiβ + ǫi,

where λ = (λ1, · · · ,λk)
⊤ and β = (β1, · · · ,βp)⊤ are unknown parameter

vectors to be estimated. We assume ǫ to be the usual zero mean Gaussian

noise.

The significance of the variable of interests xi is determined by testing the

null hypothesis

H0 : β = 0 vs. H1 : β �= 0.

The fit of the reduced model corresponding to β = 0, i.e.,

yi = ziλ, (1.1)

is measured by the sum of the squared errors (SSE):

SSE0 =

n∑

i=1

(yi − zi λ̂0)
2,

where λ̂0 is the least squares estimation obtained from the reduced model. The

reduced model (1.1) can be written in a matrix form
⎛
⎜⎝

y1

...

yn

⎞
⎟⎠

︸ ︷︷ ︸
y

=

⎛
⎜⎝

z11 · · · z1k

...
. . .

...

zn1 · · · znk

⎞
⎟⎠

︸ ︷︷ ︸
Z

⎛
⎜⎝

λ1

...

λn

⎞
⎟⎠

︸ ︷︷ ︸
λ

.

By multiplying Z⊤ on the both sides, we obtain

Z⊤y = Z⊤Zλ.

Now the matrix Z⊤Z is a full rank and can be invertible if n ≥ k, i.e., there are

more subjects than the number of parameters. The matrix equation then can be

solved by performing a matrix inversion

λ̂0 = (Z⊤Z)−1Z⊤y.

1 www.r-project.org
2 www.fil.ion.ucl.ac.uk/spm
3 www.math.mcgill.ca/keith/fmristat
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1.1 General Linear Models 3

Similarly the fit of the full model corresponding to β �= 0, i.e.,

yi = ziλ + xiβ

is measured by

SSE1 =

n∑

i=1

(yi − zi λ̂1 − xi β̂1)
2,

where λ̂1 and β̂1 are the least squares estimation from the full model. The full

model can be written in a matrix form by concatenating the row vectors zi and

xi into a larger row vector (zi,xi), and the column vectors λ and β into a larger

column vector (λ⊤,β⊤)⊤, i.e.,

yi = (zi,xi)

(
λ

β

)
.

Then the parameters of the full model can be estimated in the least squares

fashion. Note that

SSE1 = min
λ1,β1

n∑

i=1

(yi − ziλ1 − xiβ1)
2

≤ min
λ0

n∑

i=1

(yi − ziλ0)
2 = SSE0.

So the larger the value of SSE0 − SSE1, more significant the contribution of

the coefficients β is. Under the assumption of the null hypothesis H0, the test

statistic is the ratio

F =
(SSE0 − SSE1)/p

SSE0/(n − p − k)
∼ Fp,n−p−k . (1.2)

The larger the F value, it is more unlikely to accept H0.

1.1.1 T-Statistic

When p = 1, the test statistic F is distributed as F1,n−1−k , which is the square

of the student t-distribution with n − 1 − k degrees of freedom, i.e., t2
n−1−k . In

this case, it is better to use t-statistic. The advantage of using the t-statistic is

that the test statistic can provide the direction of the group difference that the

F -statistic cannot provide.

Let

c = (0, · · · ,0︸ ︷︷ ︸
k

,1, 0, · · · ,0︸ ︷︷ ︸
p−1

)⊤
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4 Statistical Preliminary

be the contrast vector of size k + p. The incorporation of the contrast vector

makes the algebraic derivation straightforward. Consider testing the signifi-

cance of H0 : β1 = 0. The least squares estimation of β1 can be written as

β̂1 = c

(
λ̂

β̂

)
.

Under the assumption ǫi ∼ N(0,σ 2),

Eβ̂1 = β1.

Further, the variance

Vβ̂1 = cV

(
λ̂

β̂

)
c⊤ = σ 2c⊤

(
[ZX]⊤ZX

)−1
c.

Thus, the unbiased estimator of σ 2 is given by

SSE1/(n − 1 − k).

We plug this estimator into σ 2. Then the test statistic under the null

hypothesis is

T =
β̂1√
Vβ̂1

∼ tn−1−k .

1.1.2 R-Square

The R-square of a model explains the proportion of variability in measurement

that is accounted by the model. Sometime R-square is called the coefficient

of determination and it is given as the square of a correlation coefficient for a

very simple model. For a linear model involving the response variable yi , the

total sum of squares (SST) measures total total variation in response yi and is

defined as

SST =

n∑

i=1

(yi − ȳ)2,

where ȳ is the sample mean of yi .

On the other hand, SSE measures the amount of variability in yi that is not

explained by the model. Note that SSE is the minimum of the sum of squared

residual of any linear model, SSE is always smaller than SST. Therefore, the

amount of variability explained by the model is SST-SSE. The proportion of

variability explained by the model is then

R2 =
SST − SSE

SST
,
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1.1 General Linear Models 5

which is the coefficient of determination. The R-square ranges between 0 and

1 and the value larger than 0.5 is usually considered significant.

1.1.3 Sum of T-Statistics

Often there is a situation such as a meta-analysis, where we have to sum the

t-statistic images or networks (Chung et al., 2017b). Note that a t-statistic for

large degrees of freedom (above 30) is very close to standard normal, i.e.,

N(0,1). For n identically distributed possibly dependent t-statistics t1, · · · ,tn,

the variance of sum
∑n

j=1 tj is approximately given by (Billingsley, 1995)

V

⎛
⎝

n∑

j=1

tj

⎞
⎠ ≈ n +

∑

i �=j

E(t i tj ),

Figure 1.1 (a)–(c) t-statistic results of group difference between maltreated

children and normal controls for three different connectivity methods (Chung

et al., 2017b). Only the connections at the p-value less than 0.01 (uncorrected) are

shown. (d) The three t-statistic maps are aggregated to form a single t-statistic.

www.cambridge.org/9781107184862
www.cambridge.org


Cambridge University Press
978-1-107-18486-2 — Brain Network Analysis
Moo K. Chung 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Statistical Preliminary

where E(t i tj ) is the correlation between t i and tj . We used the fact Etj = 0.

Then, we have the aggregated t-statistic given by

T =

∑n
j=1 tj

√
n +

∑
i �=j E(t i tj )

∼ N(0,1).

If the statistics tj are all independent, since tj are close to standard normal,

E(t i tj ) ≈ 0. The dependency increases the variance estimate and reduces

the aggregated t-statistic value. Unfortunately, it is difficult to estimate the

correlations directly since only one t-statistic map is available for each tj .

E(t i tj ) can be empirically estimated by computing correlations over the entries

of t-statistic maps t i and tj (see Figure 1.1).

1.2 Logistic Regression

Logistic regression is useful for setting up a probabilistic model on the strength

of connectivity and performing classification (Subasi and Ercelebi, 2005).

Suppose k regressors X1, · · · ,Xk are given. These are both imaging and

nonimaging biomarkers such as gender, age, education level, and memory test

score. Let xi1, · · · ,xik denote the measurements for the ith subject. Let the

response variable Yi be the probability of connection modeled as a Bernoulli

random variable with parameter πi , i.e.,

Yi ∼ Bernoulli(πi).

Yi = 0,1 indicates the edge connected (assigned number 1) or disconnected

(assigned number 0) respectively. πi is then the likelihood (probability) of the

edge connected, i.e., πi = P(Yi = 1).

Now consider linear model

Yi = x⊤
i β + ǫi, (1.3)

where x⊤
i = (1,xi1, · · · ,xik) and β⊤ = (β0, · · · ,βk). We may assume

Eǫi = 0, Vǫj = σ 2.

However, linear model (1.3) is no longer appropriate since

EYj = πi = x⊤
i β

but x⊤
i β may not be in the range [0,1]. The inconsistency is caused by trying

to match continuous variables xij to categorical variable Yi directly. To address

this problem, we introduce the logistic regression function g:
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1.2 Logistic Regression 7

πi = g(xi) =
exp(x⊤

i βi)

1 + exp(x⊤
i βi)

. (1.4)

Using the logit function, we can write (1.4) as

logit(πi) = log
πi

1 − πi

= x⊤
i βi .

1.2.1 Maximum Likelihood Estimation

The unknown parameters β are estimated via the maximum likelihood estima-

tion (MLE) over n subjects at each edge. The likelihood function is

L(β|y1, · · · ,yn) =

n∏

i=1

π
yi

i (1 − πi)
1−yi

=

n∏

i=1

[
exp(x⊤

i βi)

1 + exp(x⊤
i βi)

]yi n∏

i=1

[
1

1 + exp(x⊤
i β)

]1−yi

.

The loglikelihood function is given by

log L(β) = const. +

n∑

i=1

yi log πi + (1 − yi) log(1 − πi)

= const. +

n∑

i=1

yix
⊤
i β + log(1 − πi)

and its maximum is obtained when

∂ log L(β)

∂β
=

n∑

i=1

xi(yi − πi) = 0.

In simplifying the expression, we used the following identities

∂πi

∂β0
= πi(1 − πi)

and

∂πi

∂β1
= xiπi(1 − πi).

Since the logistic regression function π is in complicated form, the maximum

is obtained numerically. Define the information matrix I (β) to be

I (β) = −
∂2 log L(β)

∂β ′∂β
−

n∑

i=1

πi(1 − πi)xix
⊤
i .
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8 Statistical Preliminary

Then the Newton–Raphson algorithm is used to find the MLE in an iterative

fashion. Starting with an arbitrary initial vector β0, we estimate iteratively

βj+1 = βj + I (βj )−1 ∂ log L(β)

∂β
(βj ).

Many computational packages such as R and MATLAB have the logistic

regression model fitting procedure.

Although we do not have the explicit formulas for the MLE, using the

asymptotic normality of the MLE, the distributions of the estimators can be

approximately determined. For large sample size n, the distribution of β̂ is

approximately multivariate normal with means β with the covariance matrix

I (β̂)−1.

1.2.2 Best Model Selection

Consider following full model:

logit(πi) = β0 + β1x1 + β2x2 + · · · + βpxp.

Let β(1) = (β0, · · · ,βq)⊤ and β(2) = (βq+1, · · · ,βp)⊤. The parameter β(1)

corresponds to the parameters of the reduced model. Then we are interested in

testing

H0 : β(2) = 0.

Define the deviance D of a model as D = −2 log L(π̂), which is distributed

asymptotically as χ2
n−p−1. Let π̂ (p) and π̂ (q) be the estimated success proba-

bilities for the full and reduced models, and let Dp and Dq be the associated

deviances. Then the log-likelihood ratio statistic for testing β(2) = 0 is

2[log L(π̂ (p)) − log L(π̂ (q))] = Dq − Dp ∼ χ2
p−q .

1.2.3 Logistic Discriminant Analysis

Discriminant analysis resulting from the estimated logistic model is called the

logistic discrimination. We classify the ith subject according to a classification

rule. The simplest rule is to assign the ith subject as group 1:

P(Yi = 1) > P (Yi = 0).

This statement is equivalent to πi > 1/2. Depending on the bias and the error

of the estimation, the value 1/2 can be adjusted. For the fitted logistic model,

we classify the ith subject as group 1 if x⊤
i βi > 0 and as 0 if x⊤

i βi < 0.

The plane x⊤
i β = 0 is the classification boundary that separates two groups.
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1.3 Random Fields 9

The performance of classification technique is measured by the error rate γ ,

the overall probability of misclassification. The cross-validation is used to

estimate the error rate. This is done by randomly partitioning the data into

the training and the testing sets. In the leave-one-out scheme, the training set

consists of n−1 subjects, while the testing set consists of one subject. Suppose

the ith subject is taken as the test set. Then using the training set, we determine

the logistic model. Using the predicted model, we test if the ith subject is

correctly classified. The error rate obtained in this fashion is denoted as e−i .

Note that e−i = 0 if the subject is classified correctly while e−i = 1 if the

subject is misclassified. The leave-one-out error rate is then given by

γ̂ =
1

n

n∑

i=1

e−i .

To formally test the statistical significance of the discriminant power, we

use Press’s Q statistic (Hair et al., 1998), which is given by

n(2γ − 1)2 ∼ χ2
1 .

Press’s Q statistic is asymptotically distributed as χ2 with one degree of

freedom.

1.3 Random Fields

At the voxel level, it is often necessary to model measurements at each voxel as

a random field. For instance, the deformation field of warping a brain to another

brain is often modeled as a continuous random field (Chung et al., 2001b).

The generalization of a continuous stochastic process defined in R to a higher

dimensional abstract space is called a random field. For an introduction to

random fields, see (Yaglom, 1987; Dougherty, 1999; Adler and Taylor, 2007).

In the random field theory as introduced in (Worsley, 1994; Worsley et al.,

1996b), measurement Y at voxel position x ∈ M is modeled as

Y (x) = μ(x) + ǫ(x),

where μ is the unknown functional signal to be estimated and ǫ is the

measurement error, which is modeled as a random variable at each fixed x.

Then the collection of random variables {ǫ(x) : x ∈ M} is called a stochastic

process or random field. The more precise measure-theoretic definition can

be found in (Adler and Taylor, 2007). Random field modeling can be done

beyond the usual Euclidean space to curved cortical and subcortical manifolds

(Joshi, 1998; Chung et al., 2003a). Most of concepts in random fields are the

continuous generalization of random vectors.
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10 Statistical Preliminary

Definition 1.1 Given a probability space, a random field T (x) defined in R
n

is a function such that for every fixed x ∈ R
n, T (x) is a random variable on

the probability space.

Definition 1.2 The covariance function R(x,y) of a random field T is

defined as

R(x,y) = E
[
T (x) − ET (x)

][
T (y) − ET (y)

]
.

If the joint distribution of T at points x1, · · · ,xm

P
(
T (x1) ≤ z1, · · · ,T (xm) ≤ zm

)

is invariant under the translation

(x1, · · · ,xm) → (x1 + τ, · · · ,xm + τ),

T is said to be stationary or homogeneous.

For a stationary random field T , its covariance function is

R(x,y) = f (x − y)

for some function f . A special case of stationary fields is an isotropic field,

which requires the covariance function to be rotation invariant, i.e.,

R(x,y) = f (|x − y|)

for some function f (Yaglom, 1987).

1.3.1 Gaussian Fields

The most important class of random fields is Gaussian fields. A more rigorous

treatment can be found in Adler and Taylor (2007). Let us start defining a

multivariate normal distribution from a Gaussian random variable.

Definition 1.3 A random vector T = (T1, · · · ,Tm) is multivariate normal if∑m
i=1 ciTi is Gaussian for every possible ci ∈ R.

Then a Gaussian random field can be defined from a multivariate normal

distribution.

Definition 1.4 A random field T is a Gaussian random field if T (x1), · · · ,

T (xm) are multivariate normal for every (x1, · · · ,xm) ∈ R
m.

An equivalent definition to Definition 1.4 is as follows. T is a Gaussian random

field if the finite joint distribution

P(T (x1) ≤ z1, · · · ,T (xm) ≤ zm)

is a multivariate normal for every (x1, · · · ,xm).
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