Financial Enterprise Risk Management
Second Edition

This comprehensive, yet accessible, guide to enterprise risk management for financial institutions contains all the tools needed to build and maintain an ERM framework. It discusses the internal and external contexts within which risk management must be carried out, and it covers a range of qualitative and quantitative techniques that can be used to identify, model and measure risks.

This new edition has been thoroughly updated to reflect new legislation and the creation of the Financial Conduct Authority and the Prudential Regulation Authority. It includes new content on Bayesian networks, expanded coverage of Basel III, a revised treatment of operational risk, a fully revised index and more than 150 end-of-chapter exercises. Over 100 diagrams are used to illustrate the range of approaches available and risk management issues are highlighted with numerous case studies. This book also forms part of the core reading for the UK Actuarial Profession’s specialist technical examination in enterprise risk management, ST9.

PAUL SWEETING is Professor of Actuarial Science at the University of Kent, where he teaches enterprise risk management. His research covers areas as diverse as longevity, pensions accounting and investment strategy. Prior to joining the University of Kent, Professor Sweeting was Head of Research at Legal and General Investment Management and Managing Director at J.P. Morgan Asset Management. Professor Sweeting is a Fellow of the Institute of Actuaries, the Royal Statistical Society and the Chartered Institute for Securities and Investment. He is also a CFA Charterholder and a Chartered Enterprise Risk Actuary. He has written a number of articles on financial issues and is a regular contributor to the written and broadcast media.
INTERNATIONAL SERIES ON ACTUARIAL SCIENCE

Editorial Board
Christopher Daykin (Independent Consultant and Actuary)
Angus Macdonald (Heriot-Watt University)

The International Series on Actuarial Science, published by Cambridge University Press in conjunction with the Institute and Faculty of Actuaries, contains textbooks for students taking courses in or related to actuarial science, as well as more advanced works designed for continuing professional development or for describing and synthesizing research. The series is a vehicle for publishing books that reflect changes and developments in the curriculum, that encourage the introduction of courses on actuarial science in universities, and that show how actuarial science can be used in all areas where there is long-term financial risk.

A complete list of books in the series can be found at www.cambridge.org/statistics. Recent titles include the following:

Insurance Risk and Ruin (2nd Edition)
David C.M. Dickson

Computation and Modelling in Insurance and Finance
Erik Bølviken

Predictive Modeling Applications in Actuarial Science, Volume 1: Predictive Modeling Techniques
Edited by Edward W. Frees, Richard A. Derrig & Glenn Meyers

Actuarial Mathematics for Life Contingent Risks (2nd Edition)
David C.M. Dickson, Mary R. Hardy & Howard R. Waters

David C.M. Dickson, Mary R. Hardy & Howard R. Waters

Risk Modelling in General Insurance
Roger J. Gray & Susan M. Pitts

Regression Modeling with Actuarial and Financial Applications
Edward W. Frees
FINANCIAL ENTERPRISE RISK MANAGEMENT

Second Edition

PAUL SWEETING

University of Kent
Contents

Preface

1 An Introduction to Enterprise Risk Management

1.1 Definitions and Concepts of Risk 1
1.2 Why Manage Risk? 3
1.3 Enterprise Risk Management Frameworks 5
1.4 Corporate Governance 6
1.5 Models of Risk Management 8
1.6 The Risk Management Time Horizon 9
1.7 Further Reading 10

2 Types of Financial Institution

2.1 Introduction 11
2.2 Banks 12
2.3 Insurance Companies 14
2.4 Pension Schemes 16
2.5 Foundations and Endowments 18
2.6 Further Reading 19

3 Stakeholders

3.1 Introduction 20
3.2 Principals 20
3.3 Agents 31
3.4 Controlling 42
3.5 Advisory 48
3.6 Incidental 51
3.7 Further Reading 53

4 The Internal Environment

4.1 Introduction 54
4.2 Internal Stakeholders 54
Contents

4.3 Culture 55
4.4 Structure 57
4.5 Capabilities 60
4.6 Further Reading 60

5 The External Environment 62
5.1 Introduction 62
5.2 External Stakeholders 62
5.3 Political Environment 63
5.4 Economic Environment 63
5.5 Social and Cultural Environment 65
5.6 Competitive Environment 66
5.7 Regulatory Environment 67
5.8 Professional Environment 88
5.9 Industry Environment 92
5.10 Further Reading 99

6 Process Overview 101

7 Definitions of Risk 103
7.1 Introduction 103
7.2 Market and Economic Risk 103
7.3 Interest Rate Risk 104
7.4 Foreign Exchange Risk 104
7.5 Credit Risk 105
7.6 Liquidity Risk 106
7.7 Systemic Risk 107
7.8 Demographic Risk 109
7.9 Non-life Insurance Risk 111
7.10 Environmental Risk 112
7.11 Operational Risks 113
7.12 Different Definitions of Operational Risk 117
7.13 Residual Risks 124
7.14 Basis Risk 125
7.15 Further Reading 125

8 Risk Identification 126
8.1 Introduction 126
8.2 Risk Identification Tools 126
8.3 Risk Identification Techniques 129
8.4 Assessment of Risk Nature 132
8.5 Risk Register 133
8.6 Further Reading 133
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Some Useful Statistics</td>
<td>134</td>
</tr>
<tr>
<td>9.1</td>
<td>Location</td>
<td>134</td>
</tr>
<tr>
<td>9.2</td>
<td>Spread</td>
<td>135</td>
</tr>
<tr>
<td>9.3</td>
<td>Skew</td>
<td>137</td>
</tr>
<tr>
<td>9.4</td>
<td>Kurtosis</td>
<td>137</td>
</tr>
<tr>
<td>9.5</td>
<td>Correlation</td>
<td>139</td>
</tr>
<tr>
<td>9.6</td>
<td>Further Reading</td>
<td>145</td>
</tr>
<tr>
<td>10</td>
<td>Statistical Distributions</td>
<td>146</td>
</tr>
<tr>
<td>10.1</td>
<td>Univariate Discrete Distributions</td>
<td>146</td>
</tr>
<tr>
<td>10.2</td>
<td>Univariate Continuous Distributions</td>
<td>149</td>
</tr>
<tr>
<td>10.3</td>
<td>Multivariate Distributions</td>
<td>180</td>
</tr>
<tr>
<td>10.4</td>
<td>Copulas</td>
<td>204</td>
</tr>
<tr>
<td>10.5</td>
<td>Further Reading</td>
<td>225</td>
</tr>
<tr>
<td>11</td>
<td>Modelling Techniques</td>
<td>228</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>228</td>
</tr>
<tr>
<td>11.2</td>
<td>Fitting Data to a Distribution</td>
<td>230</td>
</tr>
<tr>
<td>11.3</td>
<td>Fitting Data to a Model</td>
<td>235</td>
</tr>
<tr>
<td>11.4</td>
<td>Smoothing Data</td>
<td>243</td>
</tr>
<tr>
<td>11.5</td>
<td>Using Models to Classify Data</td>
<td>249</td>
</tr>
<tr>
<td>11.6</td>
<td>Uncertainty</td>
<td>264</td>
</tr>
<tr>
<td>11.7</td>
<td>Credibility</td>
<td>267</td>
</tr>
<tr>
<td>11.8</td>
<td>Bayesian Networks</td>
<td>275</td>
</tr>
<tr>
<td>11.9</td>
<td>Model Validation</td>
<td>280</td>
</tr>
<tr>
<td>11.10</td>
<td>Further Reading</td>
<td>281</td>
</tr>
<tr>
<td>12</td>
<td>Extreme Value Theory</td>
<td>286</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>286</td>
</tr>
<tr>
<td>12.2</td>
<td>The Generalised Extreme Value Distribution</td>
<td>286</td>
</tr>
<tr>
<td>12.3</td>
<td>Generalised Pareto Distribution</td>
<td>290</td>
</tr>
<tr>
<td>12.4</td>
<td>Further Reading</td>
<td>292</td>
</tr>
<tr>
<td>13</td>
<td>Modelling Time Series</td>
<td>294</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>294</td>
</tr>
<tr>
<td>13.2</td>
<td>Deterministic Modelling</td>
<td>294</td>
</tr>
<tr>
<td>13.3</td>
<td>Stochastic Modelling</td>
<td>295</td>
</tr>
<tr>
<td>13.4</td>
<td>Time Series Processes</td>
<td>298</td>
</tr>
<tr>
<td>13.5</td>
<td>Data Frequency</td>
<td>318</td>
</tr>
<tr>
<td>13.6</td>
<td>Discounting</td>
<td>319</td>
</tr>
<tr>
<td>13.7</td>
<td>Further Reading</td>
<td>322</td>
</tr>
</tbody>
</table>
Contents

14 Quantifying Particular Risks

14.1 Introduction 326
14.2 Market and Economic Risk 326
14.3 Interest Rate Risk 339
14.4 Foreign Exchange Risk 351
14.5 Credit Risk 351
14.6 Liquidity Risk 372
14.7 Systemic Risks 374
14.8 Demographic Risk 375
14.9 Non-life Insurance Risk 384
14.10 Environmental Risk 391
14.11 Operational Risks 391
14.12 Further Reading 392

15 Risk Assessment

15.1 Introduction 397
15.2 Risk Appetite 398
15.3 Upside and Downside Risk 401
15.4 Risk Measures 402
15.5 Unquantifiable Risks 415
15.6 Return Measures 417
15.7 Optimisation 418
15.8 Further Reading 425

16 Responses to Risk

16.1 Introduction 429
16.2 Market and Economic Risk 432
16.3 Interest Rate Risk 446
16.4 Foreign Exchange Risk 450
16.5 Credit Risk 450
16.6 Liquidity Risk 457
16.7 Systemic Risk 457
16.8 Demographic Risk 459
16.9 Non-life Insurance Risk 461
16.10 Environmental Risk 463
16.11 Operational Risks 463
16.12 Different Definitions of Operational Risk 465
16.13 Further Reading 473

17 Continuous Considerations

17.1 Introduction 476
17.2 Documentation 476
Contents

ix

17.3 Communication 477
17.4 Audit 479
17.5 Further Reading 480

18 Economic Capital 481
 18.1 Introduction 481
 18.2 Definition of Economic Capital 481
 18.3 Economic Capital Models 482
 18.4 Designing an Economic Capital Model 483
 18.5 Running an Economic Capital Model 484
 18.6 Calculating Economic Capital 485
 18.7 Economic Capital and Risk Optimisation 486
 18.8 Capital Allocation 487
 18.9 Further Reading 490

19 Risk Frameworks 491
 19.1 Mandatory Risk Frameworks 491
 19.2 Advisory Risk Frameworks 507
 19.3 Proprietary Risk Frameworks 521
 19.4 Further Reading 526

20 Case Studies 528
 20.1 Introduction 528
 20.2 The 2008 Global Financial Crisis 528
 20.3 Barings Bank 534
 20.4 Equitable Life 537
 20.5 Korean Air 540
 20.6 Long Term Capital Management 542
 20.7 Bernard Madoff 544
 20.8 Robert Maxwell 545
 20.9 Space Shuttle Challenger 546
 20.10 Heartland Payment Systems 548
 20.11 Kim Philby 549
 20.12 Conclusion 550
 20.13 Further Reading 550

21 Solutions to Questions 552

References 573
Index 586
Preface

I found myself writing the first edition of this book during a time of crisis for financial institutions around the world. The global financial crisis was under way, and it was clear that poor risk management had played a part – both within firms and on a macro-economic scale. As a result, regulations were strengthened. For banks, Basel III was introduced. This brought capital requirements that were stronger yet more flexible, and a new focus on liquidity. For insurance companies, planning for a new regulatory regime was already well underway. However, the financial crisis meant that Solvency II included measures to provide some protection for insurance companies from capital market volatility.

In the years since the crisis, the stability of financial institutions has largely been maintained. However, we are still in a time of enormous uncertainty. With interest rates reaching new lows around the world, the efficacy of monetary policy is now being questioned. And from a local perspective, the decision of the United Kingdom to leave the European Union could have global implications, both economic and political, even if the nature of these implications remains to be seen.

On a smaller scale, the issue of cyber risk is of growing importance. Hackers seem regularly able to gain access to supposedly secure account information through attacks on firms’ IT systems. Individuals are also at risk from phishing emails, which can lead them to infect their computers with malware, or even to hand over personal data explicitly. These and other forms of cyber risk are causing ever growing losses for individuals and for financial institutions.

But risk management techniques are also developing. For example, Bayesian approaches are being used increasingly to model complex networks of risks, even extending to the calculation of capital requirements.

In this second edition, I have tried to address these changes as well as updating the book more generally. I have also added questions at the end of each chapter, to try to help understanding of the various topics covered. More questions can be
Preface

found at http://www.paulsweeting.com; a QR code for this site is given at the end of this preface.

Despite these changes, the principle behind the way in which these risks should be approached remains the same – in particular, all risks should be considered together. Whilst identifying the extent – or even the existence – of individual risks is important, it is even more important to look at the bigger picture. Such an approach can highlight both concentration and diversification. And, of course, risk is bad only if the outcome is adverse. Upside risks exist, and without them, there would be no point in taking risks at all.

This second edition has benefited greatly from the views of those kind enough to comment on the first edition, particularly Patrick Kelliher. I am also grateful to the team of reviewers for the Japanese translation to the first edition, led by Professor Naoki Matsuyama. Finally, I must mention again those whose work was so helpful with the development of the first edition, namely Andrew Cairns and Lindsay Smitherman.