
Cambridge University Press
978-1-107-18454-1 — Hardy Spaces
Nikolaï Nikolski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

The Origins of the Subject

Prehistory. Cauchy – Fourier – Poisson – Weierstrass – Stieltjes – Fatou –

Lebesgue – Hilbert – Parseval – Jensen.

History. Lebesgue – Hardy – Luzin – Privalov – Schur – the Riesz brothers –

Szegő – Nevanlinna – Smirnov – Littlewood – Kolmogorov – Paley – Wiener

– Zygmund.

Legacy/Continuation. Stein – Fefferman – de Branges – Helson – Kahane –

Garnett – Gamelin – Carleson – Sarason – Havin – Douglas – Arveson – Sz.-

Nagy – Foias – Fuhrmann – Lax – Phillips – Lacey, etc.

The birth of Hardy spaces dates back to the year 1915, at Cambridge Univer-

sity. At the time, it went virtually unnoticed. Admittedly, the year 1915 can be

considered as “unremarkable” only for their creator, the British mathematician

G. H. Hardy (1877–1947). Sure enough, as usual, he had published a dozen (!)

articles and research notes, but apparently no salient result emerged from his

efforts that year, with one exception – if we equate a definition with a result.
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2 The Origins of the Subject

Godfrey Harold (G. H.)

Hardy (1877–1947) was one of

the founding fathers of modern

“hard” analysis, and the

author of several fundamental

ideas that transformed such

disciplines as Diophantine

analysis, Tauberian theory, the

summation of divergent

series, Fourier series,

the distribution of prime

numbers, and the theory of

the Euler ζ function. David

Hilbert called him “the best

mathematician in England.”

Several theorems and mathematical creations are named after Hardy.

His book A Mathematician’s Apology (1940) is a masterpiece on the

philosophy and psychology of a mathematician. His remarkable essay

“Orders of infinity: The ‘Infinitärcalcül’ of Paul Du Bois-Reymond”

(1910) inspired a chapter in Bourbaki’s treatise. He was a friend of

the novelist and scientist C. P. Snow and a co-author with Littlewood,

Ramanujan, Titchmarsh, Ingham, Landau, and Marcel Riesz.

Trinity College, Cambridge.

Specifically, in part of a short nine-page article published in the 1915

Proceedings of the London Mathematical Society, Hardy defined a family

of spaces (“function classes”) of holomorphic functions. At the time, the

event was barely noticed: either by the general public (preoccupied by the
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The Origins of the Subject 3

The first page of Hardy’s nine-page paper of 1915 defining “Hardy classes.”
Who could have prophesied that this acorn would grow into such a mighty oak?

First World War), or by the scientific world (1915 was above all the year of

Einstein’s General Relativity, as well as Wegener’s theory of Pangaea), or even

by mathematicians. Nevertheless, it was a turning point for a number of dis-

ciplines linked to mathematical analysis: complex analysis (then flourishing),

harmonic analysis, signal processing, and in particular several theories non-

existent at the time, but crucial today – the theory of operators, optimal control,

diffusion theory, random processes.

Later on in his career, Hardy himself returned several times to the theory

of the spaces he had defined in 1915, which, at first glance, seemed to be

merely an auxiliary tool. However, for its transformation into an indispensable,

extremely powerful technique of analysis and for the majority of its applica-

tions, we are highly indebted to the efforts of the “Golden Team” of analysts

of that time (such as Schur, Marcel Riesz, Frigyes Riesz, Szegő, Nevanlinna,

Luzin, Privalov, Smirnov, Kolmogorov, Paley, Wiener, Zygmund), and to their

equally brilliant successors (such as Beurling, Stein, Fefferman, de Branges,

Helson, Carleson, Kahane, Garnett, Gamelin, Sarason, Havin, Douglas, Sz.-

Nagy, Foias, Fuhrmann, Lax, Phillips).
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4 The Origins of the Subject

The explanation for its success can perhaps be summed up in just a few

points: (1) the dynamics of the Hardy space einxH2, n ∈ Z, generates an

orthonormal basis einx ∈ einxH2 ⊖ ei(n+1)xH2 in the Lebesgue space L2(−π, π);

(2) the space H2 is the “analytic half” of L2(−π, π); (3) in H2, there is a property

of factorization into elementary factors, similar to that of polynomials (in a

sense, H2 is a “factorial ring”). First of course come the definition and the

basic properties.

A remark for the experts: the current dominant approach to Hardy spaces

is via real harmonic analysis (maximal functions, Hilbert transforms, etc.);

thus it is unnecessary to differentiate between H2 and Hp, p � 2, or between

the groups where the space is defined (T, Tn, R, Rn, etc., and even without

any group structure). In this book, I follow a combination of the “genetic”

approach based on analysis of a single complex variable, and the spectral

analysis of a unitary representation of Z. Why this choice? It is indeed the

most elementary and direct route to obtain all the results of the theory needed

for applications. Let us add that, so far, the true value of the powerful methods

of real variables remains purely theoretical. As soon as we are faced with

practical applications of Hardy spaces, we use the complex presentation and

its techniques – beginning with signal processing and operator theory, and then

H∞ optimal control and diffusion theory, or even stochastic processes or the

Euler ζ function. Our work is especially concerned with the spaces H2, H1,

and H∞.

The memorable events of 1915

• Einstein’s theory of General Relativity.

• Wegener’s theory of Pangaea.

• The use of chemical weapons by Germany on a massive scale (Second

Battle of Ypres).

• The Mexican Revolution.

• The birth of Paul Tibbets (future pilot in the US Air Force, to be

assigned the task of dropping the first atomic bomb on Hiroshima on

August 6, 1945).

• The thesis of Nikolai Luzin (future founder of the Moscow school of

analysis), written in Paris and defended in Moscow.

• G. H. Hardy’s definition of Hp spaces.

www.cambridge.org/9781107184541
www.cambridge.org


Cambridge University Press
978-1-107-18454-1 — Hardy Spaces
Nikolaï Nikolski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

The space H2(T): An Archetypal Invariant

Subspace

Topics. Lebesgue spaces Lp(T, µ), Hardy spaces Hp(T), lattice of invariant

subspaces, the shift operator (reducing subspaces – Wiener’s theorem – and

invariant subspaces – Helson’s theorem), uniqueness theorem, and inner and

outer functions.

In this chapter we mainly work in the context of the Hilbert spaces L2(T, µ),

L2(T), H2(T); the other Hp appear occasionally.

1.1 Notation and Terminology of Operators

Let H be a Hilbert space (always over the field of complex numbers C) and

let T : H → H be a bounded linear operator on H. The space (the algebra) of

operators on H is denoted L(H). Let E ⊂ H be a subspace of H (= closed linear

subspace). E is said to be invariant for T ∈ L(H) if

x ∈ E ⇒ T x ∈ E

(in short, T E ⊂ E). The set

Lat(T )

of invariant subspaces is a lattice with respect to the operations ∩ and span

(= closed linear hull). If T is a family of operators on H, we set Lat(T ) =
⋂

T∈T Lat(T ).

In the particular case of T = {T,T ∗}, where T ∈ L(H) and T ∗ is the

adjoint operator of T (see Appendix E), a subspace E ∈ Lat(T,T ∗) is said

to be reducing.

The goal of this section is to describe the lattice Lat(Mz) where Mz is the

operator of multiplication by an “independent variable” in the space L2(T, µ),
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6 The space H2(T): An Archetypal Invariant Subspace

with µ a finite Borel measure on the circle T = {ζ ∈ C : |ζ | = 1},

Mz f = z f (z), z ∈ T.

The operator Mz is called the bilateral shift operator.

1.2 Reducing Subspaces of the Bilateral Shift Mz

In the years 1920–1930, Norbert Wiener developed the mathematical theory of

stationary filters. Since the tools he needed could not be found in the Analysis

of the time, he created them himself, thus profoundly enriching harmonic

analysis and spectral theory.

Norbert Wiener (1894–1964)

was an American mathemati-

cian (MIT: Massachusetts In-

stitute of Technology), creator

of cybernetics (1948) and com-

munication theory (co-founded

with Kotelnikov and Shannon).

He also created the theories of

stochastic processes and gener-

alized harmonic analysis (1930,

the Wiener measure and Brownian motion), Tauberian theory, and also,

independently of Stefan Banach, invented Banach spaces (1923). He

authored innovative works in mathematical physics, in potential theory

and the optimal prediction of random processes (with applications to

the automatic correction of the firing of anti-aircraft guns, shared with

Kolmogorov). An admirer of Leibniz, Lebesgue, and Hadamard, Norbert

Wiener was one of the geniuses of the twentieth century, who revo-

lutionized mathematics and science. The reader can find a remarkable

overview of Wiener’s scientific impact (as well as a biographical article

by Norman Levinson) in vol. 72, issue 1-ii (1966) of the Bulletin of the

American Mathematical Society. Having received his Bachelor’s degree

at the age of 14, Wiener followed a Master’s program in zoology at

Harvard, in philosophy at Cornell, and then in mathematics at Harvard.

After submitting his thesis in 1912 (at the age of 17), he came to

Europe for post-doctoral studies. Upon his return to the USA, Wiener
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1.2 Reducing Subspaces of the Bilateral Shift Mz 7

Massachusetts Institute of Technology.

was denied a position at

Harvard because of the

anti-Semitic atmosphere of

the establishment (George

Birkhoff is often cited as one of

his principal opponents, behind

the scenes). Unlike other

top-level scientists, Wiener

was not invited to participate

in the Manhattan Project. A

confirmed pacifist, he systematically refused all government financing of

his research after the Second World War and never participated in military

projects.

In particular, for filtering theory, Wiener needed to solve the problem of the

recognition (identification) of filters (see the details below in Chapter 5). As

a first step, he proved the following theorem (in the case where µ = m, the

normalized Lebesgue measure on the circle T; 80 years later, we prove it in a

somewhat more general form).

Theorem 1.2.1 (Wiener, 1932) Let µ be a positive Borel measure in C with

compact support and E a (closed) subspace of L2(µ). The following assertions

are equivalent.

(1) E ∈ Lat(Mz,M
∗
z ).

(2) There exists a Borel set A ⊂ C such that

E = χAL2(µ) = { f ∈ L2(µ) : f = 0 µ-a.e. on the complement A′ = C \ A}.

The set A in (2) is unique modulo µ: χAL2(µ) = χBL2(µ) if and only if χA = χB

µ-a.e., i.e. if and only if µ(A △ B) = 0, where A △ B = (A \ B) ∪ (B \ A) is the

symmetric difference.

Proof First observe that M∗z = Mz and 1
2
(z + z) = X, 1

2i
(z − z) = Y imply that a

subspace E is reducing for Mz if and only if, for every polynomial p = p(X,Y),

we have p · E ⊂ E. Let P denote the set of polynomials in X and Y .

Let us show (1) ⇒ (2). Let f ∈ E and g ∈ E⊥ = {g ∈ L2(µ) : (h, g) =

0, ∀h ∈ E} (orthogonal complement of E). Then

0 = (p f , g) =

∫

p f g dµ, ∀p ∈ P.
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8 The space H2(T): An Archetypal Invariant Subspace

Since P is dense in the space C(supp(µ)) of continuous functions on a compact

set supp(µ) (Weierstrass’s theorem), we obtain f g dµ = 0 (the null measure),

hence f g = 0 µ-a.e. Then, as L2(µ) is separable, so is E⊥. By taking a sequence

(gn) dense in E⊥, we set

A =
⋂

n

Z(gn), Z(gn) = {z : gn(z) = 0}.

(More rigorously, we define Z(gn) by choosing a measurable representative in

the equivalence class gn of L2(µ); another choice of representative would lead

to a set A′ differing from A only by a negligible set, hence χA = χA′ in the

space L2(µ).) We obtain, for any f ∈ E and every n, f gn = 0 µ-a.e., and thus

f = 0 a.e. on the set
⋃

n Z(gn)c
= Ac. This means that f ∈ χAL2(µ), and hence

E ⊂ χAL2(µ).

Conversely, if f ∈ χAL2(µ), then (clearly) f = 0 µ-a.e. on Ac. Since gn = 0

on A, we have f gn = 0 µ-a.e., thus ( f , gn) = 0, ∀n. By the density of (gn) in

E⊥, we obtain f ⊥ E⊥, hence f ∈ E. The two inclusions give E = χAL2(µ).

The implication (2)⇒ (1) is evident.

For the uniqueness, the equality χAL2(µ) = χBL2(µ) implies χA ∈ χBL2(µ),

thus χA = 0 a.e. on Bc, meaning that A ⊂ B up to a µ-negligible set (i.e.,

µ(A \ B) = 0). Similarly, µ(B \ A) = 0, which completes the proof. �

1.3 Non-reducing Subspaces of the Bilateral Shift Mz

In order to catalog the non-reducing subspaces of Mz, we use two related (but

not coincident) orthogonal decompositions. The first is given by Lemma 1.3.1

below and concerns an invariant subspace of an arbitrary operator. The second

is the Radon–Nikodym decomposition (see Appendix A)

L2(µ) = L2(µa) ⊕ L2(µs),

where µ is a Borel measure on the circle T, and µa, µs denote, respectively,

the absolutely continuous and singular components of µ with respect to the

normalized Lebesgue measure m, m{eit : θ1 ≤ t ≤ θ2} = (θ2 − θ1)/2π ≤ 1.

Lemma 1.3.1 Let T : H → H be a bounded linear operator on a Hilbert space

H and let E ⊂ H be a closed subspace.

(1) E ∈ Lat(T )⇔ E⊥ ∈ Lat(T ∗).

(2) E ∈ Lat(T,T ∗)⇔ E ∈ Lat(T ), E⊥ ∈ Lat(T ).

(3) For every E ∈ Lat(T ),

E = ER ⊕ EN ,
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1.3 Non-reducing Subspaces of the Bilateral Shift Mz 9

where ER ∈ Lat(T,T ∗) (a reducing subspace of T) and EN ∈ Lat(T ) is a

completely non-reducing subspace, i.e. such that E′ ⊂ EN , E′ ∈ Lat(T,T ∗) ⇒

E′ = {0}. This representation is unique.

Proof (1) We first show the implication “⇒”. Let y ∈ E⊥. Then, (T ∗y, x) =

(y,T x) = 0 for every x ∈ E, and hence T ∗y ∈ E⊥. It ensues that

T ∗E⊥ ⊂ E⊥.

The implication “⇐” is immediate since T = (T ∗)∗.

(2) It is immediate by (1) since T = (T ∗)∗.

(3) Clearly the “span” (closed linear hull) of a family of reducing subspaces

is still in Lat(T,T ∗). Set

ER = span
(

E′ : E′ ⊂ E, E′ ∈ Lat(T,T ∗)
)

, EN = E ⊖ ER.

Then E = ER ⊕ EN and ER ∈ Lat(T,T ∗). Moreover, EN = E ∩ (ER)⊥

and hence, by (1), EN ∈ Lat(T ). If E′ ⊂ EN and E′ ∈ Lat(T,T ∗), then

E′ ⊂ ER by the definition of the latter. Thus E′ = {0}. The uniqueness is also

immediate. �

Lemma 1.3.2 Let µ be a finite Borel measure on T, with µ = µa+µs = w·m+µs

its Radon–Nikodym decomposition (see Appendix A), and let E ⊂ L2(µ) be a

NON-reducing invariant subspace of Mz : L2(µ)→ L2(µ). Then:

(1) There exists a function q ∈ E such that |q|2w = 1 m-a.e.

(2) ER ⊂ L2(µs), where ER is the reducing part of E according to

Lemma 1.3.1.

Proof (1) Our subspace E satisfies the properties MzE ⊂ E, MzE � E; indeed,

if we had MzE = E, then M∗z E = MzMzE = E, hence E ∈ Lat(Mz,M
∗
z )

which is not the case. Moreover, Mz is an isometric (and even unitary)

operator, and thus the image MzE is closed. Let

q ∈ E ⊖ MzE = E ∩ (MzE)⊥, ‖q‖ = 1.

Since q ∈ E and Mn
z q ∈ MzE for all n ≥ 1, we obtain

0 = (znq, q) =

∫

T

znqq dµ =

∫

T

zn|q|2 dµ, n ≥ 1.

We conclude, by complex conjugation, that all the Fourier coefficients

of the measure |q|2 dµ, except for one, are zero, and hence there exists a

constant c such that ( ̂|q|2 dµ)(n) = cm̂(n) for all n, n ∈ Z. By the theorem

of uniqueness (see Appendix A), |q|2 dµ = m (c = 1 by the normalization
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10 The space H2(T): An Archetypal Invariant Subspace

‖q‖ = 1). Thus, |q|2 dµa+|q|
2 dµs = m, and by the uniqueness of the Radon–

Nikodym decomposition m = |q|2 dµa = |q|
2wm, which is equivalent to

|q|2w = 1 m-a.e.

(2) Let f ∈ ER. Given that ER is reducing and M∗z = Mz = M−1
z , we have

zn f ∈ ER ⊂ E for all n ∈ Z. Then zn f = z(zn−1 f ) ∈ MzE, and by the

definition of q we obtain

0 = (zn f , q) =

∫

T

zn f q dµ, ∀n ∈ Z.

Therefore, f q = 0 µ-a.e., hence µa-a.e., and thus (given that m = |q|2 dµa)

f q = 0 m-a.e. However q � 0 m-a.e., hence f = 0 m-a.e., which means

f ∈ L2(µs). We thus obtain ER ⊂ L2(µs). �

Corollary 1.3.3 Every invariant subspace of L2(µ) contained in L2(µs) is

reducing and can be written E = χAL2(µs) with A a Borel set.

Indeed, if E were not reducing, it would contain a function q satisfying

|q|2 � 0 m-a.e., which is impossible. �

Definition 1.3.4 (the space H2(T), the generic non-reducing subspace) Let

L2(T) = L2(T,m) (normalized Lebesgue measure ). The Hardy space H2(T) is

defined as the following subspace of L2(T):

H2(T) =
{

f ∈ L2(T) : f̂ (n) = 0 for all integers n < 0
}

.

Reminder The exponentials (zn)n∈Z = (eint)n∈Z form an orthonormal basis of

the space L2(T), and hence every function f ∈ L2(T) is the sum of its Fourier

series

f =
∑

n∈Z

f̂ (n)zn,

norm-L2(T) convergent for the symmetric partial sums
∑N

n=−N f̂ (n)zn (for N →

∞), or even for “disordered” sums
∑

n∈σ(N) f̂ (n)zn where σ(N) ⊂ Z, σ(N)ր Z

for N → ∞:

lim
N

∥

∥

∥

∥

∥

f −
∑

n∈σ(N)

f̂ (n)zn

∥

∥

∥

∥

∥

L2(T)

= 0.

With this reminder, we can say

H2(T) =

{

f ∈ L2(T) : f =
∑

n≥0

f̂ (n)zn
}

=

{

∑

n≥0

anzn :
∑

n≥0

|an|
2 < ∞

}

.

Moreover, the use of properties of orthogonal bases leads to

H2(T) = spanL2(T)

(

zn : n = 0, 1, . . .
)

.
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