Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A Brief History of Seismology</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Recent Advances</td>
<td>14</td>
</tr>
<tr>
<td>1.2 Exercises</td>
<td>16</td>
</tr>
<tr>
<td>2 Stress and Strain</td>
<td>19</td>
</tr>
<tr>
<td>2.1 The Stress Tensor</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1 Example: Computing the Traction Vector</td>
<td>21</td>
</tr>
<tr>
<td>2.1.2 Principal Axes of Stress</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3 Example: Computing the Principal Axes</td>
<td>23</td>
</tr>
<tr>
<td>2.1.4 Deviatoric Stress</td>
<td>24</td>
</tr>
<tr>
<td>2.1.5 Values for Stress</td>
<td>25</td>
</tr>
<tr>
<td>2.2 The Strain Tensor</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1 Values for Strain</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2 Example: Computing Strain for a Seismic Wave</td>
<td>29</td>
</tr>
<tr>
<td>2.3 The Linear Stress–Strain Relationship</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 Units for Elastic Moduli</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Exercises</td>
<td>33</td>
</tr>
<tr>
<td>3 The Seismic Wave Equation</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Introduction: The Wave Equation</td>
<td>39</td>
</tr>
<tr>
<td>3.2 The Momentum Equation</td>
<td>40</td>
</tr>
<tr>
<td>3.3 The Seismic Wave Equation</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1 Potentials</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Plane Waves</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1 Example: Harmonic Plane Wave Equation</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Polarizations of P- and S-Waves</td>
<td>47</td>
</tr>
<tr>
<td>3.6 Spherical Waves</td>
<td>50</td>
</tr>
<tr>
<td>3.7 Methods for Computing Synthetic Seismograms†</td>
<td>50</td>
</tr>
<tr>
<td>3.7.1 Discrete Modeling Methods‡</td>
<td>53</td>
</tr>
<tr>
<td>3.7.2 Equations for 2-D Isotropic Finite Differences‡</td>
<td>56</td>
</tr>
<tr>
<td>3.8 Exercises</td>
<td>60</td>
</tr>
</tbody>
</table>
Contents

4 Ray Theory: Travel Times

4.1 Snell’s Law

4.2 Ray Paths for Laterally Homogeneous Models

4.2.1 Example: Computing $X(p)$ and $T(p)$

4.2.2 Ray Tracing through Velocity Gradients

4.3 Travel Time Curves and Delay Times

4.3.1 Reduced Velocity

4.3.2 The $\tau(p)$ Function

4.3.3 Example: Computing $\tau(p)$

4.3.4 Low-Velocity Zones

4.4 Summary of 1-D Ray Tracing Equations

4.5 Spherical Earth Ray Tracing

4.5.1 The Earth-Flattening Transformation

4.6 Three-Dimensional Ray Tracing

4.7 Ray Nomenclature

4.7.1 Crustal Phases

4.7.2 Whole Earth Phases

4.7.3 $PKJKP$: The Holy Grail of Body Wave Seismology

4.8 Global Body Wave Observations

4.8.1 Uses of Global Body-Wave Phases

4.9 Exercises

5 Inversion of Travel Time Data

5.1 One-Dimensional Velocity Inversion Theory

5.2 Straight-Line Fitting

5.2.1 Example: Solving for a Layer Cake Model

5.2.2 Other Ways to Fit the $T(X)$ Curve

5.3 $\tau(p)$ Inversion

5.3.1 Example: The Layer Cake Model Revisited

5.3.2 Resolving $\tau(p)$ and the Slant-Stack Method

5.3.3 Linear Programming and Regularization Methods

5.4 Summary: One-Dimensional Velocity Inversion

5.5 Three-Dimensional Velocity Inversion

5.5.1 Setting Up the Tomography Problem

5.5.2 Example: Toy Tomography Problem

5.5.3 Solving the Tomography Problem

5.5.4 Tomography Complications

5.5.5 Finite Frequency Tomography and Full Waveform Inversion

5.6 Earthquake Location

5.6.1 Iterative Location Methods
5.6.2 Relative Event Location Methods 128
5.7 Exercises 131

6 Ray Theory: Amplitude and Phase 137
6.1 Energy in Seismic Waves 137
6.2 Geometrical Spreading in 1-D Velocity Models 140
6.3 Reflection and Transmission Coefficients 142
 6.3.1 SH-Wave Reflection and Transmission Coefficients 143
 6.3.2 Example: Computing SH Coefficients 146
 6.3.3 Vertical Incidence Coefficients 146
 6.3.4 Energy-Normalized Coefficients 147
 6.3.5 Dependence on Ray Angle 149
6.4 Turning Points and Hilbert Transforms 153
6.5 Propagator Matrix Methods for Modeling Plane Waves† 155
6.6 Attenuation 160
 6.6.1 Example: Computing Intrinsic Attenuation 161
 6.6.2 t^\ast and Velocity Dispersion 161
 6.6.3 The Absorption Band Model† 164
 6.6.4 The Standard Linear Solid† 166
 6.6.5 Earth’s Attenuation 168
 6.6.6 Observing Q 170
 6.6.7 Nonlinear Attenuation 171
 6.6.8 Seismic Attenuation and Global Politics 172
6.7 Exercises 172

7 Reflection Seismology and Related Topics 175
7.1 Background 175
7.2 Zero-Offset Sections 176
7.3 Common Midpoint Stacking 178
 7.3.1 Example: Computing Normal Moveout 180
7.4 Sources and Deconvolution 182
7.5 Migration 185
 7.5.1 Huygens’s Principle 186
 7.5.2 Diffraction Hyperbolas 186
 7.5.3 Example: Computing Diffraction Hyperbolas 188
 7.5.4 Migration Methods 188
7.6 Velocity Analysis 192
 7.6.1 Example: Estimating Layer Velocity and Thickness 195
Contents

7.6.2 Statics Corrections 196
7.7 Back-projection 197
7.7.1 The Adjoint Operator as an Inversion Method† 199
7.8 Receiver Functions 200
7.9 The Language of Reflection Seismology 205
7.10 Exercises 205

8 Surface Waves and Normal Modes 209

8.1 Love Waves 209
8.1.1 Solution for a Single Layer 212
8.1.2 Example: Computing Love Wave Dispersion 213
8.2 Rayleigh Waves 213
8.3 Dispersion 218
8.4 Global Surface Waves 219
8.5 Observing Surface Waves 222
8.5.1 Example: Measuring Group and Phase Velocity 223
8.6 Normal Modes 226
8.7 Exercises 232

9 Earthquakes and Source Theory 237

9.1 Green’s Functions and the Moment Tensor 237
9.2 Earthquake Faults 241
9.2.1 Non-Double-Couple Sources 244
9.3 Radiation Patterns and Beach Balls 246
9.3.1 Example: Plotting a Focal Mechanism 253
9.4 Far-Field Pulse Shapes 255
9.4.1 Directivity 257
9.4.2 Example: 2004 Sumatra Earthquake Directivity 259
9.4.3 Source Spectra 260
9.4.4 Empirical Green’s Functions 263
9.5 Stress Drop 264
9.5.1 Example: Estimating Stress Drop 267
9.5.2 Self-Similar Earthquake Scaling 268
9.6 Radiated Seismic Energy 270
9.6.1 Earthquake Energy Partitioning† 273
9.7 Earthquake Magnitude 276
9.7.1 The b-Value 282
9.7.2 Example: Use of b-Value 284
9.7.3 The Intensity Scale 285
9.8 Finite Slip Modeling 287
9.9 The Heat Flow Paradox 290
Table of Contents

9.9.1 Why Are Faults Weak? 292
9.10 Exercises 293

10 Earthquake Prediction 299
 10.1 The Earthquake Cycle 299
 10.2 Earthquake Triggering 306
 10.3 Searching for Precursors 311
 10.4 Are Earthquakes Unpredictable? 313
 10.5 Exercises 314

11 Seismometers and Seismographs 319
 11.1 Seismometer as Damped Harmonic Oscillator 319
 11.2 Short-Period and Long-Period Seismograms 324
 11.3 Modern Seismographs 326
 11.4 Exercises 329

12 Earth Noise 331
 12.1 Earth’s Background Noise 331
 12.2 Cross-Correlation Analysis of Ambient Noise 333
 12.3 Exercises 338

13 Anisotropy 341
 13.1 Rays and Wavefronts for Anisotropy 341
 13.2 Eigenvalue Equation for Anisotropic Media 342
 13.2.1 Slowness Surfaces 344
 13.2.2 Snell’s Law at an Interface 345
 13.3 Weak Anisotropy 346
 13.4 Hexagonal Anisotropy 347
 13.5 Shear-Wave Splitting 349
 13.5.1 Linear Polarization Analysis 350
 13.5.2 Estimating Shear-Wave Splitting Parameters 351
 13.5.3 Example: Shear-Wave Splitting Observed at
 RSON 353
 13.5.4 SKS Splitting 354
 13.5.5 Example: SKS Splitting Analysis for
 RSON 356
 13.5.6 Shear-Wave Splitting Observations 356
 13.6 Mechanisms for Anisotropy 358
 13.7 Earth’s Anisotropy 361
 13.8 Exercises 363
Contents

Appendix A The PREM Model 365

Appendix B Math Review 369
 B.1 Vector Calculus 369
 B.2 Complex Numbers 373

Appendix C The Eikonal Equation 377

Appendix D Python Functions 381

Appendix E Time Series and Fourier Transforms 387
 E.1 Convolution 387
 E.2 Fourier Transform 388
 E.3 Hilbert Transform 389

Appendix F Kirchhoff Theory 393
 F.1 Kirchhoff Applications 398
 F.2 How to Write a Kirchhoff Program 399
 F.3 Kirchhoff Migration 400

Bibliography 403
Index 419