

Introduction to Seismology

Third Edition

The Third Edition provides a concise yet approachable introduction to seismic theory, designed as a first course for graduate students or advanced undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations, and outlines the different types of seismic waves and how they can be used to resolve Earth structure and understand earthquakes.

New material and updates have been added throughout, including ambient noise methods, shear-wave splitting, back-projection, migration and velocity analysis in reflection seismology, earthquake rupture directivity, and fault weakening mechanisms. A wealth of both reworked and new examples, review questions and computer-based exercises in MATLAB/Python gives students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate Earth's seismic properties. More advanced sections, which are not needed to understand the other material, are flagged so that instructors or students pressed for time can skip them.

Peter M. Shearer is Professor of Geophysics at Scripps Institution of Oceanography, University of California, San Diego. He has written more than 200 scientific papers on various aspects of seismology, is a member of the National Academy of Sciences, and is currently president of the Seismological Society of America. He has taught the Introductory Seismology course at Scripps for over 25 years.

Endorsements for the previous edition

"... a concise and practical survey text that does a fine job of covering the basics ... it is ideally suited for an intermediate to advanced undergraduate class ... "

Seismological Research Letters

"Shearer has a knack for clear explanations and for making otherwise difficult concepts easy to understand."

EOS

"As an introductory course textbook for upper-level undergraduate students, it may be the best textbook available now."

Physics Today

"The fundamental concepts are clearly explained, emphasizing intuitive understanding ... "

Applied Mechanics Reviews

"... an excellent introduction for non-seismologists to grasp concepts behind seismological techniques."

Episodes

Introduction to Seismology

THIRD EDITION

Peter M. Shearer

University of California, San Diego

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107184473

DOI: 10.1017/9781316877111

First edition © Cambridge University Press 1999

Second edition © P. Shearer 2009

Third edition © Peter M. Shearer 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published 1999 Second edition published 2009 6th printing 2014 Third edition published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall, 2019

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Shearer, Peter M., 1956- author

Title: Introduction to seismology / Peter M. Shearer (University of

California, San Diego).

Description: Third edition. | Cambridge; New York, NY: Cambridge University Press, [2019] | Includes bibliographical references and index.

Identifiers: LCCN 2018053753 | ISBN 9781107184473 Subjects: LCSH: Seismology. | Seismology – Textbooks. Classification: LCC QE534.2 .S455 2019 | DDC 551.22–dc23 LC record available at https://lccn.loc.gov/2018053753

ISBN 978-1-107-18447-3 Hardback ISBN 978-1-316-63574-2 Paperback

Additional resources for this publication at www.cambridge.org/Shearer3ed

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Brief Contents

	Pre	face	page xv
	Ack	cnowledgments	xvii
1	Intr	oduction	1
	1.1	A Brief History of Seismology	2
	1.2	Exercises	16
2	Stre	19	
	2.1	The Stress Tensor	19
	2.2	The Strain Tensor	26
	2.3	The Linear Stress-Strain Relationship	30
	2.4	Exercises	33
3	The	Seismic Wave Equation	39
	3.1	Introduction: The Wave Equation	39
	3.2	The Momentum Equation	40
	3.3	The Seismic Wave Equation	42
	3.4	Plane Waves	45
	3.5	Polarizations of <i>P</i> - and <i>S</i> -Waves	47
	3.6	Spherical Waves	50
	3.7	Methods for Computing Synthetic Seismograms [†]	50
	3.8	Exercises	60
4	Ray	Theory: Travel Times	63
	4.1	Snell's Law	63
	4.2	Ray Paths for Laterally Homogeneous Models	65
	4.3	Travel Time Curves and Delay Times	69
	4.4	Summary of 1-D Ray Tracing Equations	75
	4.5	Spherical Earth Ray Tracing	77
	4.6	Three-Dimensional Ray Tracing [†]	80
	4.7	Ray Nomenclature	82
	4.8	Global Body Wave Observations	85
	4.9	Exercises	94
5	Inve	ersion of Travel Time Data	99
	5.1	One-Dimensional Velocity Inversion Theory	99

Vİ	Briet	Contents

	5.2	Straight-Line Fitting	101
	5.3		101
		Summary: One-Dimensional Velocity Inversion	110
		Three-Dimensional Velocity Inversion	110
		Earthquake Location	122
		Exercises	131
6	-	Theory: Amplitude and Phase	137
	6.1	Energy in Seismic Waves	137
	6.2	Geometrical Spreading in 1-D Velocity Models	140
	6.3	Reflection and Transmission Coefficients	142
	6.4	Turning Points and Hilbert Transforms	153
		Propagator Matrix Methods for Modeling Plane Waves [†]	155
		Attenuation	160
	6.7	Exercises	172
7	Ref	lection Seismology and Related Topics	175
	7.1	Background	175
	7.2	Zero-Offset Sections	176
	7.3	Common Midpoint Stacking	178
	7.4	Sources and Deconvolution	182
	7.5	Migration	185
	7.6	Velocity Analysis	192
	7.7	Back-projection	197
	7.8	Receiver Functions	200
	7.9	The Language of Reflection Seismology	205
	7.10	Exercises	205
8	Sur	face Waves and Normal Modes	209
	8.1	Love Waves	209
	8.2	Rayleigh Waves	213
	8.3	Dispersion	218
	8.4	Global Surface Waves	219
	8.5	Observing Surface Waves	222
	8.6	Normal Modes	226
	8.7	Exercises	232
9	Eart	thquakes and Source Theory	237
_	9.1	Green's Functions and the Moment Tensor	237
	9.2	Earthquake Faults	241
	9.3		246

	Brief Contents	vii
9.4 Far-Field Pulse Shapes	255	
9.5 Stress Drop	264	
9.6 Radiated Seismic Energy	270	
9.7 Earthquake Magnitude	276	
9.8 Finite Slip Modeling	287	
9.9 The Heat Flow Paradox	290	
9.10 Exercises	293	
10 Earthquake Prediction	299	
10.1 The Earthquake Cycle	299	
10.2 Earthquake Triggering	306	
10.3 Searching for Precursors	311	
10.4 Are Earthquakes Unpredictable?	313	
10.5 Exercises	314	
11 Seismometers and Seismographs	319	
11.1 Seismometer as Damped Harmonic Oscillator	319	
11.2 Short-Period and Long-Period Seismograms	324	
11.3 Modern Seismographs	326	
11.4 Exercises	329	
12 Earth Noise	331	
12.1 Earth's Background Noise	331	
12.2 Cross-Correlation Analysis of Ambient Noise	333	
12.3 Exercises	338	
13 Anisotropy	341	
13.1 Rays and Wavefronts for Anisotropy	341	
13.2 Eigenvalue Equation for Anisotropic Media	342	
13.3 Weak Anisotropy	346	
13.4 Hexagonal Anisotropy	347	
13.5 Shear-Wave Splitting	349	
13.6 Mechanisms for Anisotropy	358	
13.7 Earth's Anisotropy	361	
13.8 Exercises	363	
Appendix A The PREM Model	365	
Appendix B Math Review	369	
Appendix C The Eikonal Equation	377	

viii Brief Contents

Appendix D	Python Functions	381
Appendix E	Time Series and Fourier Transforms	387
Appendix F	Kirchhoff Theory	393
Bibliog	raphy	403
Index		419

Contents

	Pre	page xv		
	Ack	nowle	dgments	xvii
1	Intr	oducti	on	1
	1.1	A Brie	ef History of Seismology	2
		1.1.1	Recent Advances	14
	1.2	Exerc	ises	16
2	Stre	19		
	2.1	The S	tress Tensor	19
		2.1.1	Example: Computing the Traction Vector	21
		2.1.2	Principal Axes of Stress	22
		2.1.3	Example: Computing the Principal Axes	23
		2.1.4	Deviatoric Stress	24
		2.1.5	Values for Stress	25
	2.2	The S	train Tensor	26
		2.2.1	Values for Strain	29
		2.2.2	Example: Computing Strain for a Seismic Wave	29
	2.3	The L	inear Stress-Strain Relationship	30
		2.3.1	Units for Elastic Moduli	33
	2.4	Exerc	ises	33
3	The	Seism	ic Wave Equation	39
	3.1	Introd	luction: The Wave Equation	39
	3.2	The M	Momentum Equation	40
	3.3	The S	eismic Wave Equation	42
		3.3.1	Potentials	45
	3.4	Plane	Waves	45
		3.4.1	Example: Harmonic Plane Wave Equation	46
	3.5	Polari	izations of P- and S-Waves	47
	3.6	Spher	rical Waves	50
	3.7	Metho	ods for Computing Synthetic Seismograms [†]	50
		3.7.1	Discrete Modeling Methods [†]	53
		3.7.2	Equations for 2-D Isotropic Finite Differences [†]	56
	3.8	Exerc	rises	60

x Contents

4	Ray	Theor	y: Travel Times	63
	4.1	Snell'	's Law	63
	4.2	Ray F	Paths for Laterally Homogeneous Models	65
		4.2.1	Example: Computing $X(p)$ and $T(p)$	68
		4.2.2	Ray Tracing through Velocity Gradients	68
	4.3	Trave	el Time Curves and Delay Times	69
		4.3.1	Reduced Velocity	70
		4.3.2	The $\tau(p)$ Function	70
		4.3.3	Example: Computing $\tau(p)$	73
		4.3.4	Low-Velocity Zones	73
	4.4	Sumn	nary of 1-D Ray Tracing Equations	7 5
	4.5	Spher	rical Earth Ray Tracing	77
		4.5.1	The Earth-Flattening Transformation	78
	4.6	Three	-Dimensional Ray Tracing [†]	80
	4.7	Ray N	Vomenclature	82
		4.7.1	Crustal Phases	82
		4.7.2	Whole Earth Phases	83
		4.7.3	PKJKP: The Holy Grail of Body Wave Seismology	85
	4.8	Globa	al Body Wave Observations	85
		4.8.1	Uses of Global Body-Wave Phases	90
	4.9	Exerc	ises	94
5	Inve	ersion	of Travel Time Data	99
	5.1	One-I	Dimensional Velocity Inversion Theory	99
	5.2	Straig	ght-Line Fitting	101
		5.2.1	Example: Solving for a Layer Cake Model	102
		5.2.2	Other Ways to Fit the $T(X)$ Curve	103
	5.3	$\tau(p)$ I	nversion	104
		5.3.1	Example: The Layer Cake Model Revisited	106
		5.3.2	Resolving $\tau(p)$ and the Slant-Stack Method	106
		5.3.3	Linear Programming and Regularization Methods	109
	5.4	Summary: One-Dimensional Velocity Inversion		110
	5.5	Three	-Dimensional Velocity Inversion	111
		5.5.1	Setting Up the Tomography Problem	112
		5.5.2	Example: Toy Tomography Problem	116
		5.5.3	Solving the Tomography Problem	117
		5.5.4	Tomography Complications	119
		5.5.5	Finite Frequency Tomography and Full Waveform	
			Inversion	121
	5.6	Earth	quake Location	122
		5.6.1	Iterative Location Methods	128

			Contents	x
		5.6.2 Relative Event Location Methods	128	
	5.7	Exercises	131	
6	Rav	Theory: Amplitude and Phase	137	
Ü	-	Energy in Seismic Waves	137	
		Geometrical Spreading in 1-D Velocity Models	140	
		Reflection and Transmission Coefficients	142	
		6.3.1 <i>SH</i> -Wave Reflection and Transmission		
		Coefficients	143	
		6.3.2 Example: Computing <i>SH</i> Coefficients	146	
		6.3.3 Vertical Incidence Coefficients	146	
		6.3.4 Energy-Normalized Coefficients	147	
		6.3.5 Dependence on Ray Angle	149	
	6.4	Turning Points and Hilbert Transforms	153	
		Propagator Matrix Methods for Modeling Plane		
		Waves [†]	155	
	6.6	Attenuation	160	
		6.6.1 Example: Computing Intrinsic Attenuation	161	
		6.6.2 t^* and Velocity Dispersion	161	
		6.6.3 The Absorption Band Model [†]	164	
		6.6.4 The Standard Linear Solid [†]	166	
		6.6.5 Earth's Attenuation	168	
		6.6.6 Observing <i>Q</i>	170	
		6.6.7 Nonlinear Attenuation	171	
		6.6.8 Seismic Attenuation and Global Politics	172	
	6.7	Exercises	172	
7	Ref	ection Seismology and Related Topics	175	
	7.1	Background	175	
	7.2	Zero-Offset Sections	176	
	7.3	Common Midpoint Stacking	178	
		7.3.1 Example: Computing Normal Moveout	180	
	7.4	Sources and Deconvolution	182	
	7.5	Migration	185	
		7.5.1 Huygens's Principle	186	
		7.5.2 Diffraction Hyperbolas	186	
		7.5.3 Example: Computing Diffraction Hyperbolas	188	
		7.5.4 Migration Methods	188	
	7.6	Velocity Analysis	192	
		7.6.1 Example: Estimating Layer Velocity and		
		Thickness	195	

xii Contents

		7.6.2 Statics Corrections	196
	7.7		197
	, . ,	7.7.1 The Adjoint Operator as an Inversion Method [†]	199
	7.8	Receiver Functions	200
		The Language of Reflection Seismology	205
		Exercises	205
8	Sur	ace Waves and Normal Modes	209
U	8.1		209
	0.1	8.1.1 Solution for a Single Layer	212
		8.1.2 Example: Computing Love Wave Dispersion	213
	8.2	Rayleigh Waves	213
		Dispersion	218
		Global Surface Waves	219
		Observing Surface Waves	222
	0.5	8.5.1 Example: Measuring Group and Phase Velocity	223
	8.6	Normal Modes	226
		Exercises	232
_			227
9		hquakes and Source Theory	237
		Green's Functions and the Moment Tensor	237
	9.2	Earthquake Faults	241
		9.2.1 Non-Double-Couple Sources	244
	9.3	Radiation Patterns and Beach Balls	246
		9.3.1 Example: Plotting a Focal Mechanism	253
	9.4	Far-Field Pulse Shapes	255
		9.4.1 Directivity	257
		9.4.2 Example: 2004 Sumatra Earthquake Directivity	259
		9.4.3 Source Spectra	260
		9.4.4 Empirical Green's Functions	263
	9.5	Stress Drop	264
		9.5.1 Example: Estimating Stress Drop	267
		9.5.2 Self-Similar Earthquake Scaling	268
	9.6	Radiated Seismic Energy	270
		9.6.1 Earthquake Energy Partitioning [†]	273
	9.7	Earthquake Magnitude	276
		9.7.1 The <i>b</i> -Value	282
		9.7.2 Example: Use of <i>b</i> -Value	284
		9.7.3 The Intensity Scale	285
	9.8	Finite Slip Modeling	287
	9.9	The Heat Flow Paradox	290

		Contents	xiii
	9.9.1 Why Are Faults Weak?	292	
	9.10 Exercises	293	
10	Earthquake Prediction	299	
	10.1 The Earthquake Cycle	299	
	10.2 Earthquake Triggering	306	
	10.3 Searching for Precursors	311	
	10.4 Are Earthquakes Unpredictable?	313	
	10.5 Exercises	314	
11	Seismometers and Seismographs	319	
•	11.1 Seismometer as Damped Harmonic Oscillator	319	
	11.2 Short-Period and Long-Period Seismograms	324	
	11.3 Modern Seismographs	326	
	11.4 Exercises	329	
12	Earth Noise	331	
12	12.1 Earth's Background Noise	331	
	12.2 Cross-Correlation Analysis of Ambient Noise	333	
	12.3 Exercises	338	
13	Anisotropy	341	
.,	13.1 Rays and Wavefronts for Anisotropy	341	
	13.2 Eigenvalue Equation for Anisotropic Media	342	
	13.2.1 Slowness Surfaces	344	
	13.2.2 Snell's Law at an Interface	345	
	13.3 Weak Anisotropy	346	
	13.4 Hexagonal Anisotropy	347	
	13.5 Shear-Wave Splitting	349	
	13.5.1 Linear Polarization Analysis	350	
	13.5.2 Estimating Shear-Wave Splitting Parameters	351	
	13.5.3 Example: Shear-Wave Splitting Observed at	331	
	RSON	353	
	13.5.4 SKS Splitting	354	
	13.5.5 Example: SKS Splitting Analysis for	331	
	RSON	356	
	13.5.6 Shear-Wave Splitting Observations	356	
	13.6 Mechanisms for Anisotropy	358	
	13.7 Earth's Anisotropy	361	
	13.8 Exercises	363	

xiv Contents

Append	lix A	The PREM Model	365
Append	lix B	Math Review	369
B. 1	l Ved	ctor Calculus	369
B.2	2 Coi	mplex Numbers	373
Append	lix C	The Eikonal Equation	377
Append	lix D	Python Functions	381
Append	lix E	Time Series and Fourier Transforms	387
E.1	l Coi	nvolution	387
E.2	2 Fou	urier Transform	388
E.3	B Hil	bert Transform	389
Append	lix F	Kirchhoff Theory	393
F.1	Kir	chhoff Applications	398
F.2	. Ho	w to Write a Kirchhoff Program	399
F.3	Kir	chhoff Migration	400
Bi	bliogr	raphy	403
In	dex		419

Preface

Since the first edition of *Introduction to Seismology* appeared in 1999, there have been many advances in the field, and a number of other seismology texts have been published. However, there remains a need for a readable, concise introduction to the quantitative aspects of seismology that is designed specifically for classroom instruction, and I hope my book continues to fill this niche.

Over the last 10 years, I have continued teaching the beginning seismology class at University of California, San Diego and have received feedback from my students, as well as other instructors who have been using the book. The third edition is my attempt to expand on some subjects, clarify parts of the book that have proven confusing, and update the discussion of current research results. Major changes and additions from the second edition include the following:

- section describing waveform cross-correlation of ambient noise
- expanded discussion of seismic migration, including its relation to backprojection and adjoint inversion
- reworked and expanded anisotropy section, including shear-wave splitting analysis methods
- updates to the source chapter, including greater discussion of directivity and fault weakening mechanisms
- more worked examples throughout the text
- computer code examples now in Python rather than Fortran

To quicken the pace, many results are described without detailed proofs or derivations of equations. In these cases, the reader is usually referred to other sources for more complete explanations. Generally, I have attempted to provide practical descriptions of the main concepts and how they are used to study Earth structure. Some knowledge of physics and vector calculus is assumed, but in an effort to make the book self-contained, most of the key concepts are reviewed in the appendices. Although some current research results are presented, I have concentrated more on fundamental principles and key data sets in an effort to avoid rapid obsolescence after this book goes to press.

The emphasis in the student exercises is not on deriving equations (which few seismologists spend much time doing anyway) but on using techniques explained in the text to compute results of interest and to illustrate some of Earth's seismic properties. Since computer programming skills are often a necessity for performing seismology research, I have included a number of computer-based assignments. These are designed to give a taste of real research problems, while requiring only

xvi Preface

a moderate level of programming ability. Subroutines to assist in the exercises are listed in Appendix D.

As in the second edition, sections flagged with a † are suggestions for possible areas to skip without much compromise in understanding of the remaining subjects. Supplemental web material and computer code examples continue to be available at www.cambridge.org/Shearer3e, which also contains a link to a website with a list of known typos and other errors.

Acknowledgments

This book began as a series of lecture notes that I developed while teaching the beginning seismology class to first-year graduate students in geophysics at U.C. San Diego. Some of the material in Chapters 4–5 and the section on the eikonal equation is derived from notes that John Orcutt wrote for a similar class. The stacked images in Chapter 4 were produced in collaboration with Janine Buehler. I am grateful to Steve Day, Dick Hilt, Youshun Sun, and Ruedi Widmer-Schnidrig for alerting me to some mistakes in the first edition; to Heidi Houston, Cliff Thurber, Bob Nowack, and Arthur Snoke for their suggestions for the second edition; to Emily Brodsky, Heidi Houston, Heiner Igel, and John Vidale for their comments on drafts of the second edition; and to Ian Bastow, Robin Matoza, and Daniel Trugman for their suggestions and comments for the third edition.

Most of all, I thank my wife, Susan, for her many years of steadfast support and specifically for her encouragement in writing the first edition of this book during our 1996 sabbatical at ANU in Canberra. I owe her everything!

