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Introduction

What is the problem that General Relativity (GR) is trying to solve? Section 1.1

introduces the principle of general covariance, the relativity principle, and the

equivalence principle, which between them provide the physical underpinnings

of Einstein’s theory of gravitation.

We can examine some of these points a second time, at the risk of a little

repetition, in Section 1.2, through a sequence of three thought experiments,

which additionally bring out some immediate consequences of the ideas.

It’s rather a matter of taste, whether you regard the thought experiments as

motivation for the principles, or as illustrations of them.

The remaining sections in this chapter are other prefatory remarks, about

‘natural units’ (in which the speed of light c and the gravitational constant G

are both set to 1), and pointers to a selection of the many textbooks you may

wish to consult for further details.

1.1 Three Principles

Newton’s second law is

F =
dp

dt
, (1.1)

which has the special case, when the force F is zero, of dp/dt = 0: The

momentum is a conserved quantity in any force-free motion. We can take

this as a statement of Newton’s first law. In the standard example of first-year

physics, of a puck moving across an ice rink or an idealised car moving along

an idealised road, we can start to calculate with this by attaching a rectilinear

coordinate system S to the rink or to the road, and discovering that

F = ma = m
d2r

dt2
, (1.2)
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2 1 Introduction

from which we can deduce the constant-acceleration equations and, from that,

all the fun and games of Applied Maths 1.

Alternatively, we could describe a coordinate system S′ rotating about the

origin of our rectilinear one with angular velocity �, in which

F′
= ma′

= −m� × (� × r′) − 2m� ×
dr′

dt
, (1.3)

and then derive the equations of constant acceleration from that. Doing so

would not be wrong, but it would be perverse, because the underlying physical

statement is the same in both cases, but the expression of it is more complicated

in one frame than in the other. Put another way, Eq. (1.1) is physics, but the

distinction between Eqs. (1.2) and (1.3) is merely mathematics.

This is a more profound statement than it may at first appear, and it can be

dignified as

The principle of general covariance: All physical laws must be invariant under

all coordinate transformations.

A putative physical law that depends on the details of a particular frame –

which is to say, a particular coordinate system – is one that depends on a

mathematical detail that has no physical significance; we must rule it out of

consideration as a physical law. Instead, Eq. (1.1) is a relation between two

geometrical objects, namely a momentum vector and a force vector, and this

illustrates the geometrical approach that we follow in this text: a physical law

must depend only on geometrical objects, independent of the frame in which

we realise them. In order to do calculations with it, we need to pick a particular

frame, but that is incidental to the physical insight that the equation represents.

The geometrical objects that we use to model physical quantities are vectors,

one-forms, and tensors, which we learn about in Chapter 2.

It is necessary that the differentiation operation in Eq. (1.1) is also frame-

independent. Right now, this may seem too obvious to be worth drawing

attention to, but in fact a large part of the rest of this text is about defining

differentiation in a way that satisfies this constraint. You may already have

come across this puzzle, if you have studied the convective derivative in fluid

mechanics or the tensor derivative in continuum mechanics, and you will have

had hints of it in learning about the various forms of the Laplacian in different

coordinate systems. See Section 1.3 for a preview.

It is also fairly obvious that Eq. (1.2) is a simpler expression than Eq. (1.3).

This observation is not of merely aesthetic significance, but it prompts us to

discover that there is a large class of frames where the expression of Newton’s

second law takes the same simple form as Eq. (1.2); these frames are the frames

www.cambridge.org/9781107183469
www.cambridge.org


Cambridge University Press
978-1-107-18346-9 — A Student's Guide to General Relativity
Norman Gray
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Three Principles 3

that are moving with respect to S with a constant velocity v, and we call each

of the members of this class an inertial frame. In each inertial frame, motion

is simple and, moreover, each inertial frame is related to another in a simple

way: namely the galilean transformation in the case of pre-relativistic physics,

and the Lorentz transformation in the case of Special Relativity (SR).

The fact that the observational effects of Newton’s laws are the same in each

inertial frame means that we cannot tell, from observation only of dynamical

phenomena within the frame, which frame we are in. Put less abstractly, you

can’t tell whether you’re moving or stationary, without looking outside the

window and detecting movement relative to some other frame. Inertial frames

thus have, or at least can be taken to have, a special status. This special status

turns out, as a matter of observational fact, to be true not only of dynamical

phenomena dependent on Newton’s laws, but of all physical laws, and this

also can be elevated to a principle.

The principle of relativity (RP): (a) All true equations in physics (i.e., all ‘laws

of nature’, and not only Newton’s first law) assume the same mathematical form

relative to all local inertial frames. Equivalently, (b) no experiment performed

wholly within one local inertial frame can detect its motion relative to any other

local inertial frame.

If we add to this principle the axiom that the speed of light is infinite, we

deduce the galilean transformation; if we instead add the axiom that the speed

of light is a frame-independent constant (an axiom that turns out to be amply

confirmed by observation), we deduce the Lorentz transformation and Special

Relativity. In SR, remember, we are obliged to talk of a four-dimensional

coordinate frame, with one time and three space dimensions.

General Relativity – Einstein’s theory of gravitation – adds further signif-

icance to the idea of the inertial frame. Here, an inertial frame is a frame

in which SR applies, and thus the frame in which the laws of nature take

their corresponding simple form. This definition, crucially, applies even in the

presence of large masses where (in newtonian terms) we would expect to find

a gravitational force. The frames thus picked out are those which are in free

fall, either because they are in deep space far from any masses, or because they

are (attached to something that is) moving under the influence of ‘gravitation’

alone. I put ‘gravitation’ in scare quotes because it is part of the point of GR

to demote gravitation from its newtonian status as a distinct physical force to a

status as a mathematical fiction – a conceptual convenience – which is no more

real than centrifugal force.

The first step of that demotion is to observe that the force of gravitation

(I’ll omit the scare quotes from now on) is strangely independent of the
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4 1 Introduction

nature of the things that it acts upon. Imagine a frame sitting on the surface

of the Earth, and in it a person, a bowl of petunias, and a radio, at some

height above the ground: we discover that, when they are released, each of

them will accelerate at the same rate towards the floor (Galileo is supposed

to have demonstrated this same thing using the Tower of Pisa, careless of

the health and safety of passers-by). Newton explains this by saying that the

force of gravitation on each object is proportional to its gravitational mass

(the gravitational ‘charge’, if you like); and the acceleration of each object, in

response to that force, is proportional to its inertia, which is proportional to its

inertial mass. Newton doesn’t put it in those terms, of course, but he also fails to

explain why the gravitational and inertial masses, which a priori have nothing

to do with each other, turn out experimentally to be exactly proportional

to each other, even though the person, the plant, the plantpot, and the

radio broadcasting electromagnetic waves all exhibit very different physical

properties.

Now imagine this same frame – or, for the sake of concreteness and the

containment of a breathable atmosphere, a spacecraft – floating in space. Since

spacecraft, observer, petunias, and radio are all equally floating in space, none

will move with respect to another (or, if they are initially moving, they will

continue to move with constant relative velocity). That is, Newton’s laws work

in their simple form in this frame, which we can therefore identify as an inertial

frame.

If, now, we turn on the spacecraft’s engines, then the spacecraft will

accelerate, but the objects within it will not, until the spacecraft collides with

them, and starts to accelerate them by pushing them with what we will at

that point decide to call the cabin floor. Crucially – and, from this point of

view, obviously – the sequence of events here is independent of the details

of the structure of the ceramic plantpot, the biology of the observer and the

petunias, and the electronic intricacies of the radio. If the spacecraft continues

to accelerate at, say, 9.81 m s−2, then the objects now firmly on the cabin floor

will experience a continuous force of one standard Earth gravity, and observers

within the cabin will find it difficult to tell whether they are in an accelerating

spacecraft or in a uniform gravitational field.

In fact we can make the stronger statement – and this is another physical

statement which has been verified to considerable precision in, for example,

the Eötvös experiments – that the observers will find it impossible to tell the

difference between acceleration and uniform gravitation; and this is a third

remark that we can elevate to a physical principle.

The Equivalence Principle (EP): Uniform gravitational fields are equivalent to

frames that accelerate uniformly relative to inertial frames.
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1.1 Three Principles 5

The EP is closely related to the observation that gravitational and inertial mass

are strictly proportional; Rindler, for example, refers to this as the ‘weak’

equivalence principle (see Section 4.2.2).

We can summarise where we have got to as follows: (i) the principle of

general covariance thus constrains the possible forms of statements of physical

law, (ii) the EP and RP point to a privileged status of inertial frames in our

search for further such laws, (iii) the RP gives us a link to the physics that we

already know at this stage, and (iv) the EP gives us a link to the ‘gravitational

fields’ that we want to learn more about.

These three principles make a variety of physical and mathematical points.

• The principle of general covariance restricts the category of mathematical

statements that we are prepared to countenance as possible descriptions of

nature. It says something about the relationship between physics and

mathematics.

• The RP is either, in version (b) above, a straightforwardly physical

statement or, in version (a), a physical statement in mathematical form. It

picks out inertial frames as having a special status, and by saying that all

inertial frames have equal status, it restricts the transformation between any

pair of frames.

• The EP is also a physical statement. As we will examine further in

Chapter 4, it further constrains the set of ‘special’ inertial frames, while

retaining the idea that these inertial frames are physically indistinguishable,

and exploring the constraints that that equivalence imposes.

By a ‘physical statement’ I mean a statement that picks out one of multiple

mathematically consistent possibilities, and says that this one is the one that

matches our universe. Mathematically, we could have a universe in which the

galilean transformation works for all speeds, and the speed of light is infinite;

but we don’t.

Most of the statements in this section can be quibbled with, some-

times with great sophistication. The statement of the RP is quoted

with minor adaptation from Barton (1999), who discusses the principle at

book length in the context of SR. The wording of the EP is from Schutz

(2009, §5.1), but Rindler (2006) discusses this with characteristic precision

in his early chapters (distinguishing weak, strong, and semistrong variants

of the EP), and Misner, Thorne and Wheeler (1973, §§7.2–7.3) discuss it

with characteristic vividness. There is a minor industry devoted to the precise

physical content of the EP and the principle of general covariance, and to their

logical relationship to Einstein’s theory of gravity. This industry is discussed

at substantial length by Norton (1993), and subsequent texts quoting it, but it

www.cambridge.org/9781107183469
www.cambridge.org


Cambridge University Press
978-1-107-18346-9 — A Student's Guide to General Relativity
Norman Gray
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Introduction

does not seem to contribute usefully to an elementary discussion such as this

one, and I have thought it best to keep the account in this section as compact

and as straightforward as possible, while noting that there is much more one

can go on to think about.

1.2 Some Thought Experiments on Gravitation

At the risk of some repetition, we can make the same points again, and

make some further interesting deductions, through a sequence of thought

experiments.

1.2.1 The Falling Lift

Recall from SR that we may define an inertial frame to be one in which

Newton’s laws hold, so that particles that are not acted on by an external force

move in straight lines at a constant velocity. In Misner, Thorne, and Wheeler’s

words, inertial frames and their time coordinates are defined so that motion

looks simple. This is also the case if we are in a box far away from any

gravitational forces, we may identify that as a local inertial frame (we will

see the significance of the word ‘local’ later in the chapter). Another way of

removing gravitational forces – less extreme than going into deep space – is to

put ourselves in free fall. Einstein asserted that these two situations are indeed

fully equivalent, and defined an inertial frame as one in free fall.

Objects at rest in an inertial frame – in either of the equivalent situations

of being far away from gravitating matter or freely falling in a gravitational

field – will stay at rest. If we accelerate the box-cum-inertial-frame, perhaps

by attaching rockets to its ‘floor’, then the box will accelerate but its contents

won’t; they will therefore move towards the floor at an increasing speed, from

the point of view of someone in the box.1 This will happen irrespective of the

mass or composition of the objects in the box; they will all appear to increase

their speed at the same rate.

Note that I am carefully not using the word ‘accelerate’ for the change in

speed of the objects in the box with respect to that frame. We reserve that word

for the physical phenomenon measured by an accelerometer, and the result of

a real force, and try to avoid using it (not, I fear, always successfully) to refer

1 By ‘point of view’ I mean ‘as measured with respect to a reference frame fixed to the box’, but
such circumlocution can distract from the point that this is an observation we’re talking about –
we can see this happening.
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1.2 Some Thought Experiments on Gravitation 7

Figure 1.1 A floating box.

Figure 1.2 A free-fall box.

to the second derivative of a position. Depending on the coordinate system, the

one does not always imply the other, as we shall see later.

This is very similar to Galileo’s observation that all objects fall under

gravity at the same rate, irrespective of their mass or composition. Einstein

supposed that this was not a coincidence, and that there was a deep equivalence

between acceleration and gravity (we shall see later, in Chapter 4, that the force

of gravity that we feel while standing in one place is the result of us being

accelerated away from the path we would have if we were in free fall). He

raised this to the status of a postulate: the Equivalence Principle.

Imagine being in a box floating freely in space, and imagine shining a torch

horizontally across it from one wall to the other (Figure 1.1). Where will the

beam end up? Obviously, it will end up at a point on the wall directly opposite

the torch. There’s nothing exotic about this. The EP tells us that the same must

happen for a box in free fall. That is, a person inside a falling lift would observe

the torch beam to end up level with the point at which it was emitted, in the

(inertial) frame of the lift. This is a straightforward and unsurprising use of the

EP. How would this appear to someone watching the lift fall?

Since the light takes a finite time to cross the lift cabin, the spot on the wall

where it strikes will have dropped some finite (though small) distance, and so

will be lower than the point of emission, in the frame of someone watching

this from a position of safety (Figure 1.2). That is, this non-free-fall observer

will measure the light’s path as being curved in the gravitational field. Even

massless light is affected by gravity. [Exercise 1.1]
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Figure 1.3 The Pound-Rebka experiment.

1.2.2 Gravitational Redshift

Imagine dropping a particle of mass m through a distance h. The particle starts

off with energy m (E = mc2, with c = 1; see Section 1.4.1), and ends up

with energy E = m + mgh (see Figure 1.3). Now imagine converting all of

this energy into a single photon of energy E, and sending it up towards the

original position. It reaches there with energy E′, which we convert back into

a particle.2 Now, either we have invented a perpetual motion machine, or else

E′
= m:

E′
= m =

E

1 + gh
, (1.4)

and we discover that a photon loses energy as a necessary consequence of

climbing through a gravitational field, and as a consequence of our demand

that energy be conserved.

This energy loss is termed gravitational redshift, and it (or rather, some-

thing very like it) has been confirmed experimentally, in the ‘Pound-Rebka

experiment’. It’s also sometimes referred to as ‘gravitational doppler shift’,

but inaccurately, since it is not a consequence of relative motion, and so has

nothing to do with the doppler shift that you are familiar with.

Light, it seems, can tell us about the gravitational field it moves through.

1.2.3 Schild’s Photons

Imagine firing a photon, of frequency f , from an event A to an event B spatially

located directly above it in a gravitational field (see Figure 1.4). As we discov-

ered in the previous section, the photon will be redshifted to a new frequency f ′.

After some number of periods n, we repeat this, and send up another photon

(between the points marked A′ and B′ on the space-time diagram).

2 As described, this is kinematically impossible, since we cannot do this and conserve
momentum, but we can imagine sending distinct particles back and forth, conserving just
energy; this would have an equivalent effect, but be more intricate to describe precisely.
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Figure 1.4 Schild’s photons.

Photons are a kind of clock, in that the interval between ‘wavecrests’, 1/f ,

forms a kind of ‘tick’. The length of this tick will be measured to have different

numerical values in different frames, but the start and end of the interval

nonetheless constitute two frame-independent events.

Presuming that the source and receiver are not in relative motion, the

intervals AB and A′B′ will be the same (I’ve drawn these as straight lines on the

diagram, but the argument doesn’t depend on that). However, the intervals AA′

and BB′ comprise the same number n of periods, which means that the intervals

in time, n/f and n/f ′, as measured by local clocks, are different. That is, we

have not constructed the parallelogram we might have expected, and have

therefore discovered that the geometry of this space-time is not flat geometry

we might have expected, and that this is purely as a result of the presence of

the gravitational field through which we are sending the photons.

Finding out more about this geometry is what we aim to do in this text.

The ‘Schild’s photons’ argument, and a version of the gravitational

redshift argument, first appeared in Schild (1962), where both are

presented in careful and precise detail. The subtleties are important, but the

arguments in the sections earlier in this chapter, though slightly schematic,

contain the essential intuition. Schild’s paper also includes a thoughtful

discussion of what parts of GR are and are not addressed by experiment.

1.2.4 Tides and Geodesic Deviation (and Local Frames)

Consider two particles, A and B, both falling towards the earth, with their

height from the centre of the earth given by z(t) (Figure 1.5). They start off

level with each other and separated by a horizontal distance ξ(t).

From the diagram, the separation ξ(t) is proportional to z(t), so that

ξ(t) = kz(t), for some constant k. The gravitational force on a particle of

mass m at altitude z is F = GMm/z2, thus
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ξ(t)

z(t)

A B

Figure 1.5 Two falling particles.

d2ξ

dt2
= k

d2z

dt2
= −k

F

m
= −k

GM

z2
= −ξ

GM

z3
.

This tells us that the inertial frames attached to these freely falling particles

approach each other at an increasing speed (that is, they ‘accelerate’ towards

each other in the sense that the second derivative of their separation is non-

zero, but since they are in free fall, there is no physical acceleration that an

observer in the frame would feel as a push).

If A and B are two observers in inertial frames (or inertial spacecraft), then

we have said that they cannot distinguish between being in space far from any

gravitating masses, and being in free fall near a large mass. If instead they

found themselves at opposite ends of a giant free-falling spacecraft, then they

would find themselves drifting closer to each other as the spacecraft fell, in

apparent violation of Newton’s laws. Is there a contradiction here?

No. The EP as quoted in Section 1.1 talked of uniform gravitational fields,

which this is not. Also, both the RP of that section, and the discussion in

Section 1.2.1, talked of local inertial frames. A lot of SR depends on inertial

frames having infinite extent: if I am an inertial observer, then any other

inertial observer must be moving at a constant velocity with respect to me.

In GR, in contrast, an inertial frame is a local approximation (indeed it is fully

accurate only at a point, an important issue we will return to later), and if your

measurement or experiment is sufficiently extended in space or time, or if your

instruments are sufficiently accurate, then you will be able to detect tidal forces

in the way that A and B have done in this thought experiment.

If A and B are plummeting down lift shafts, in free fall, on opposite sides

of the earth, then they are inertial observers, but they are ‘accelerating’ with

respect to one another. This means that, if I am one of these inertial observers,

then (presuming I do not have more pressing things to worry about) I cannot

use SR to calculate what the other inertial observer would measure in their

frame, nor calculate what I would measure if I observed a bit of physics that

I understand, which is happening in the other inertial observer’s frame.
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