Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Edition</td>
<td>viii</td>
</tr>
<tr>
<td>Preface to the First Edition</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>Timeline</td>
<td>xxiv</td>
</tr>
<tr>
<td>1 A Brief History of “Ethernet” (from a Car Manufacturer's Perspective)</td>
<td></td>
</tr>
<tr>
<td>1.1 From the Beginning</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Meaning of “Ethernet”</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Ethernet in IEEE</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Ethernet in Industrial Automation</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Ethernet in Aviation</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4 Ethernet in Telecommunications</td>
<td>14</td>
</tr>
<tr>
<td>1.2.5 “Automotive Ethernet”</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Comparison of Markets</td>
<td>18</td>
</tr>
<tr>
<td>Notes</td>
<td>21</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>2 A Brief History of In-Vehicle Networking</td>
<td>30</td>
</tr>
<tr>
<td>2.1 Role of In-Vehicle Networking</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Traditional In-Vehicle Networking</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1 The Early Days of In-Vehicle Networking</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2 Controller Area Network (CAN)</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3 Local Interconnect Network (LIN)</td>
<td>39</td>
</tr>
<tr>
<td>2.2.4 Media Oriented Systems Transport (MOST)</td>
<td>42</td>
</tr>
<tr>
<td>2.2.5 FlexRay</td>
<td>46</td>
</tr>
<tr>
<td>2.2.6 Pixel Links</td>
<td>50</td>
</tr>
<tr>
<td>2.2.7 Consumer Links</td>
<td>53</td>
</tr>
<tr>
<td>2.2.8 Trends and Consequences</td>
<td>54</td>
</tr>
<tr>
<td>2.3 Responsibilities in In-Vehicle Networking</td>
<td>56</td>
</tr>
<tr>
<td>2.3.1 Role of the Relationship between Car Manufacturer and Suppliers</td>
<td>56</td>
</tr>
<tr>
<td>2.3.2 Role of the Relationships among Car Manufacturers</td>
<td>59</td>
</tr>
<tr>
<td>Notes</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
</tbody>
</table>
3 A Brief History of Automotive Ethernet 69

3.1 The First Use Case: Programming and Software Updates 69
 3.1.1 Architectural Challenges 69
 3.1.2 Potential Car Interface Technologies 70
 3.1.3 The Solution: 100BASE-TX Ethernet 72

3.2 The Second Use Case: A “Private” Application Link 77

3.3 The Breakthrough: UTSP Ethernet for Automotive 79

3.4 BMW Internal Acceptance of UTSP Ethernet 80
 3.4.1 Yet Another In-Vehicle Networking Technology 80
 3.4.2 A Suitable Pilot Application 82
 3.4.3 The Future of Automotive Ethernet at BMW 84

3.5 The Industry Framework for a New Technology 86
 3.5.1 From a Proprietary Solution to an Open Standard 86
 3.5.2 Shaping the Future at IEEE 88
 3.5.3 Supportive Structures and Organizations 90

3.6 Industry-Wide Acceptance of Ethernet 92

Notes 94

References 96

4 The Physical Transmission of Automotive Ethernet 102

4.1 ElectroMagnetic Compatibility (EMC) 102
 4.1.1 Coupling Mechanisms of Electromagnetic Interference 104
 4.1.2 Standards for EMC 106
 4.1.3 Measuring EMC 106
 4.1.4 ElectroStatic Discharge (ESD) 113

4.2 The Automotive Communication Channel 115
 4.2.1 Channel Framework 116
 4.2.2 Channel Parameters 117
 4.2.3 The 100BASE-T1/OABR Channel 119
 4.2.4 The 1000BASE-T1/RTPGE Channel 120

4.3 The Physical Layer (PHY) Technologies 123
 4.3.1 100 Mbps Ethernet 124
 4.3.2 1 Gbps Ethernet 151
 4.3.3 Other Data Rates 162

4.4 Automotive Ethernet and Power Supply 165
 4.4.1 Elements of the Power Supply Network 166
 4.4.2 The Interconnection between Power Supply and Communication Technologies 168
 4.4.3 Power over Data Line (PoDL) 169
 4.4.4 Data over the Power Supply Network 170
 4.4.5 Using Energy-Efficient Ethernet (EEE) in Cars 171
 4.4.6 Wake-Up 172
4.5 The Quality Strain
4.5.1 Automotive Semiconductor Quality Standards
4.5.2 The CMC (Quality) for Automotive Ethernet
Notes
References

5 Protocols for Automotive Ethernet
5.1 Quality of Service (QoS), Audio Video Bridging (AVB), and Time-Sensitive Networking (TSN)
5.1.1 How Audio Video Bridging (AVB) Came to Ethernet
5.1.2 The Audio Video Bridging (AVB) Use Cases
5.1.3 The AVB Protocols and Their Use in Automotive
5.1.4 Time-Sensitive Networking (TSN) for Safety Critical Control Data
5.2 Security and Virtual LANs (VLANs)
5.2.1 Security in Automotive
5.2.2 Ethernet-Specific Security Aspects
5.3 The Internet Protocol (IP)
5.3.1 Dynamic versus Static Addressing
5.3.2 IPv4 versus IPv6
5.4 Middleware and SOME/IP
5.4.1 Definition of “Middleware”
5.4.2 The History of SOME/IP
5.4.3 SOME/IP Features
5.4.4 Service Discovery (SD)
Notes
References

6 Ethernet in Automotive System Development
6.1 A Brief Overview of the System Development Process
6.2 The Software Design
6.3 The Networking Architecture
6.3.1 EE Architecture in Perspective
6.3.2 The In-Vehicle Communication Network
6.3.3 The Supply Network
6.4 Test and Qualification
Notes
References

7 Outlook
Notes
References

Index