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A BRIEF HISTORY OF DETERMINACY

PAUL B. LARSON

§1. Introduction. Determinacy axioms are statements to the effect that
certain games are determined, in that each player in the game has an optimal
strategy. The commonly accepted axioms for mathematics, the Zermelo-
Fraenkel axioms with the Axiom of Choice (ZFC; cf. [Jec03, Kun11]), imply
the determinacy of many games that people actually play. This applies in
particular to many games of perfect information, games in which the players
alternate moves which are known to both players, and the outcome of the
game depends only on this list of moves, and not on chance or other external
factors. Games of perfect information which must end in finitely many moves
are determined. This follows from the work of Ernst Zermelo [Zer13], Dénes
Kőnig [Kőn27] and László Kálmar [Kal28], and also from the independent
work of John von Neumann and Oskar Morgenstern (in their 1944 book,
reprinted as [vNM04]).

As pointed out by Stanisław Ulam [Ula60], determinacy for games of perfect
information of a fixed finite length is essentially a theorem of logic. If we
let x1,y1,x2,y2,. . . ,xn,yn be variables standing for the moves made by players
player I (who plays x1,. . . ,xn) and player II (who plays y1,. . . ,yn), and A
(consisting of sequences of length 2n) is the set of runs of the game for which
player I wins, the statement

∃x1∀y1 . . . ∃xn∀yn〈x1, y1, . . . , xn, yn〉 ∈ A

essentially asserts that the first player has a winning strategy in the game, and
its negation,

∀x1∃y1 . . . ∀xn∃yn〈x1, y1, . . . , xn, yn〉 �∈ A

essentially asserts that the second player has a winning strategy.1

The author was supported in part by NSF grants DMS-0801009, DMS-1201494 and DMS-
1764320. This paper is a revised version of [Lar12].

1If there exists a way of choosing a member from each nonempty set of moves of the game,
then these statements are actually equivalent to the assertions that the corresponding strategies
exist. Otherwise, in the absence of the Axiom of Choice the statements above can hold without the
corresponding strategy existing.
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4 PAUL B. LARSON

We let � denote the set of natural numbers 0, 1, 2, . . . ; for brevity we will
often refer to the members of this set as “integers”. Given sets X and Y , XY
denotes the set of functions from X to Y . The Baire space is the space ��,
with the product topology. The Baire space is homeomorphic to the space of
irrational real numbers (cf., e.g., [Mos09, p. 9]), and we will often refer to its
members as “reals” (though in various contexts the Cantor space �2, the set of
subsets of � (℘(�)) and the set of infinite subsets of � ([�]�) are all referred
to as “the reals”).
Given A ⊆ ��, we let G�(A) denote the game of perfect information of

length � in which the two players collaborate to define an element f of ��
(with player I choosing f(0), player II choosing f(1), player I choosing f(2),
and so on), with player I winning a run of the game if and only if f is an
element of A. A game of this type is called an integer game, and the set A is
called the payoff set. A strategy in such a game for player I (player II) is a
function Σ with domain the set of sequences of integers of even (odd) length
such that for each a ∈ dom(Σ), Σ(a) is in �. A run of the game (partial or
complete) is said to be according to a strategy Σ for player I (player II) if every
initial segment of the run of odd (nonzero even) length is of the form a�〈Σ(a)〉
for some sequence a. A strategy Σ for player I (player II) is a winning strategy
if every complete run of the game according to Σ is in (out of) A. We say that a
set A ⊆ �� is determined (or the corresponding game G�(A) is determined) if
there exists a winning strategy for one of the players. These notions generalize
naturally for games in which players play objects other than integers (e.g., real
games, in which they play elements of ��) or games which run for more than
� many rounds (in which case player I typically plays at limit stages).
The study of determinacy axioms concerns games whose determinacy is

neither proved nor refuted by the Zermelo-Fraenkel axioms ZF (without the
Axiom of Choice). Typically such games are infinite. Axioms stating that
infinite games of various types are determined were studied by StanisławMazur,
Stefan Banach and Ulam in the late 1920s and early 1930s; were reintroduced
by David Gale and Frank Stewart [GS53] in the 1950s and again by Jan
Mycielski and Hugo Steinhaus [MS62] in the early 1960s; gained interest with
the work of David Blackwell [Bla67] and Robert Solovay in the late 1960s; and
attained increasing importance in the 1970s and 1980s, finally coming to a
central position in contemporary set theory.

Mycielski and Steinhaus introduced the Axiom of Determinacy (AD), which
asserts the determinacy of G�(A) for allA ⊆ ��. Work of Banach in the 1930s
shows that AD implies that all sets of reals satisfy the property of Baire. In the
1960s, Mycielski and Stanisław Świerczkowski proved that AD implies that all
sets of reals are Lebesgue measurable, and Mycielski showed that AD implies
countable choice for reals. Together, these results show that determinacy
provides a natural context for certain areas of mathematics, notably analysis,
free of the paradoxes induced by the Axiom of Choice.

www.cambridge.org/9781107182998
www.cambridge.org


Cambridge University Press
978-1-107-18299-8 — Large Cardinals, Determinacy and Other Topics
Volume 4
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

A BRIEF HISTORY OF DETERMINACY 5

Unaware of the work of Banach, Gale and Stewart [GS53] had shown that
AD contradicts ZFC. However, their proof used a wellordering of the reals
given by the Axiom of Choice, and therefore did not give a nondetermined
game of this type with definable payoff set. Starting with Banach’s work,
many simply definable payoff sets were shown to induce determined games,
culminating in D. Anthony Martin’s celebrated 1974 result [Mar75] that all
games with Borel payoff set are determined. This result came after Martin had
used measurable cardinals to prove the determinacy of games whose payoff set
is an analytic sets of reals.
The study of determinacy gained interest from two theorems in 1967, the

first due to Solovay and the second to Blackwell. Solovay proved that under
AD, �1 (the least uncountable ordinal) is a measurable cardinal, setting off
a study of strong Ramsey properties on the ordinals implied by determinacy
axioms. Blackwell used open determinacy (proved by Gale and Stewart) to
reprove a classical theorem of Kazimierz Kuratowski. This also led to the
application, by John Addison, Martin, Yiannis Moschovakis and others, of
stronger determinacy axioms to produce structural properties for definable sets
of reals. These axioms included the determinacy of ∆

˜
1
n sets of reals, for n ≥ 2,

statements which would not be proved consistent relative to large cardinals
until the 1980s.

The large cardinal hierarchy was developed over the same period, and came
to be seen as a method for calibrating consistency strength. In the 1970s,
various special cases of ∆

˜
1
2 determinacy were located on this scale, in terms

of the large cardinals needed to prove them. Determining the consistency
(relative to large cardinals) of forms of determinacy at the level of ∆

˜
1
2 and

beyond would take the introduction of new large cardinal concepts. Martin
(in 1978) and W. Hugh Woodin (in 1984) would prove Π

˜
1
2-determinacy and

AD
L(R) respectively, using hypotheses near the very top of the large cardinal

hierarchy. In a dramatic development, the hypotheses for these results would
be significantly reduced through work of Woodin, Martin and John Steel.
The initial impetus for this development was a seminal result of Matthew
Foreman, Menachem Magidor and Saharon Shelah which showed, assuming
the existence of a supercompact cardinal, that there exists a generic elementary
embedding with well-founded range and critical point �1. Combined with
work of Woodin, this yielded the Lebesgue measurability of all sets in the
inner model L(R) from this hypothesis. Shelah and Woodin would reduce the
hypothesis for this result further, to the assumption that there exist infinitely
many Woodin cardinals below a measurable cardinal.

Woodin cardinals would turn out to be the central large cardinal concept for
the study of determinacy. Through the study of tree representations for sets
of reals, Martin and Steel would show that Π

˜
1
n+1-determinacy follows from

the existence of n Woodin cardinals below a measurable cardinal, and that
this hypothesis is not sufficient to prove stronger determinacy results for the
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6 PAUL B. LARSON

projective hierarchy. Woodin would then show that the existence of infinitely
many Woodin cardinals below a measurable cardinal implies ADL(R), and he
would locate the exact consistency strengths of ∆

˜
1
2-determinacy and AD

L(R) at
one Woodin cardinal and �Woodin cardinals respectively.
In the aftermath of these results, many new directions were developed,

and we give only the briefest indication here. Using techniques from inner
model theory, the exact consistency strengths of many determinacy hypotheses
were established. Using similar techniques, it has been shown that almost
every natural statement (i.e., not invented specifically to be a counterexample)
implies directly those determinacy hypotheses of lesser consistency strength.
For instance, by Kurt Gödel’s Second Incompleteness Theorem, ZFC cannot
prove that the AD holds in L(R), as the latter implies the consistency of the
former. Empirically, however, every natural extension T of ZFC of sufficient
consistency strength (i.e., such that Peano Arithmetic does not prove the
consistency of of T from the consistency of ZF+ AD) does appear to imply that
AD holds in L(R). This sort of phenomenon is taken by some as evidence that
the statement that AD holds in L(R), and other determinacy axioms, should
be counted among the true statements extending ZFC (cf., e.g., [KW]).
The history presented here relies heavily on those given by Jackson [Jac10],

Kanamori [Kan95, Kan03], Moschovakis [Mos09], Neeman [Nee04] and Steel
[Ste08B]. As the title suggests, this is a selective and abbreviated account of the
history of determinacy. We have omitted many interesting topics, including,
e.g., Blackwell games [Bla69, Mar98, MNV03] and proving determinacy in
second-order arithmetic [LSR87, LSR88, KW10].

§2. Early developments. The first published paper in mathematical game
theory appears to be Zermelo’s paper [Zer13] on chess. Although he noted
that his arguments apply to all games of reason not involving chance, Zermelo
worked under two additional chess-specific assumptions. The first was that
the game in question has only finitely many states, and the second was that
an infinite run of the game was to be considered a draw. Zermelo specified
a condition which is equivalent to the existence of a strategy in such a game
guaranteeing a win within a fixed number ofmoves, as well as another condition
equivalent to the existence of a strategy guaranteeing that one will not lose
within a given fixed number of moves. His analysis implicitly introduced the
notions of game tree, subtree of a game tree, and quasi-strategy.2

The paper states indirectly, but does not quite prove, or even define, the
statement that in any game of perfect information with finitely many possible
positions such that infinite runs of the game are draws, either one player

2As defined above, a strategy for a given player specifies a move in each relevant position; a
quasi-strategy merely specifies a set of acceptable moves. The distinction is important when the
Axiom of Choice fails, but is less important in the context of Zermelo’s paper.
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A BRIEF HISTORY OF DETERMINACY 7

has a strategy that guarantees a win, or both players have strategies that
guarantee at least a draw. A special case of this fact is determinacy for games of
perfect information of a fixed finite length, which is sometimes called Zermelo’s
Theorem.

Kőnig [Kőn27] applied the fundamental fact now known as Kőnig’s Lemma
to the study of games, among other topics. While Kőnig’s formulation was
somewhat different, his lemma is equivalent to the assertion that every infinite
finitely branching tree with a single root has an infinite path (a path can be
found by iteratively choosing any successor node such that the tree above that
node is infinite). Extending Zermelo’s analysis to games in which infinitely
many positions are possible while retaining the condition that each player has
only finitely many options at each point, Kőnig used the statement above to
prove that in such a game, if one player has a strategy (from a given point in
the game) guaranteeing a win, then he can guarantee victory within a fixed
number of moves. The application of Kőnig’s Lemma to the study of games
was suggested by von Neumann.

Kálmar [Kal28] took the analysis a step further by proving Zermelo’s
Theorem for games with infinitely many possible moves in each round. His
arguments proceeded by assigning transfinite ordinals to nodes in the game
tree, a method which remains an important tool in modern set theory. Kálmar
explicitly introduced the notion of a winning strategy for a game, although
his strategies were also quasi-strategies as above. In his analysis, Kálmar
introduced a number of other important technical notions, including the
notion of a subgame (essentially a subtree of the original game tree), and
classifying strategies into those which depend only on the current position in
the game and those which use the history of the game so far.3

Games of perfect information for which the set of infinite runs is divided into
winning sets for each player appear in a question byMazur in the Scottish Book,
answered by Banach in an entry dated 4 August 1935 (cf. [Mau81, p. 113]).
Following up onMazur’s question (still in the Book), Ulam asked about games
where two players collaborate to build an infinite sequence of 0’s and 1’s by
alternately deciding each member of the sequence, with the winner determined
by whether the infinite sequence constructed falls inside some predetermined
set E. Essentially raising the issue of determinacy for arbitrary G�(E), Ulam
asked: for which sets E does the first player (alternately, the second player)
have a winning strategy? (§ 2.1 below has more on the Banach-Mazur game.)

Games of perfect informationwere formally defined in 1944 by vonNeumann
and Morgenstern [vNM04]. Their book also contains a proof that games of
perfect information of a fixed finite length are determined (p. 123).

Infinite games of perfect information were reintroduced by Gale and Stewart
[GS53], who were unaware of the work of Mazur, Banach and Ulam (Gale,

3Cf. [SW01] for much more on these papers of Zermelo, Kőnig and Kálmar.
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8 PAUL B. LARSON

personal communication). They showed that a nondetermined game can be
constructed using the Axiom of Choice (more specifically, from a wellordering
of the set of real numbers).4 They also noted that the proof from the Axiom of
Choice does not give a definable undetermined game, and raised the issue of
whether determinacy might hold for all games with a suitably definable payoff
set. Toward this end, they introduced a topological classification of infinite
games of perfect information, defining a game (or the set of runs of the game
which are winning for the first player) to be open if all winning runs for the
first player are won at some finite stage (i.e., if, whenever 〈x0, x1, x2, . . .〉 is a
winning run of the game for the first player, there is some n such that the first
player wins all runs of the game extending 〈x0, . . . , xn〉). Using this framework,
they proved a number of fundamental facts, including the determinacy of all
games whose payoff set is a Boolean combination of open sets (i.e., in the
class generated from the open sets by the operations of finite union, finite
intersection and complementation). The determinacy of open games would
become the basis for proofs of many of the strongest determinacy hypotheses.
Gale and Stewart also asked a number of important questions, including the
question of whether all Borel games are determined (to be answered positively
by Martin [Mar75] in 1974).5 Classifying games by the definability of their
payoff sets would be an essential tool in the study of determinacy.

2.1. Regularity properties. Early motivation for the study of determinacy
was given by its implications for regularity properties for sets of reals. In
particular, determinacy of certain games of perfect information was shown
to imply that every set of reals has the property of Baire and the perfect set
property, and is Lebesgue measurable.6 These three facts themselves each
contradict the Axiom of Choice. We will refer to Lebesgue measurability, the
property of Baire and the perfect set property as the regularity properties, the
fact that there are other regularity properties notwithstanding.

4Given a setY , we letACY denote the statement that whenever {Xa : a ∈ Y} is a collection of
nonempty sets, there is a function f with domain Y such that f(a) ∈ Xa for all a ∈ Y . Zermelo’s
Axiom of Choice (AC) [Zer04] is equivalent to the statement that ACY holds for all sets Y . A
linear ordering≤ of a set X is a wellordering if every nonempty subset of X has a≤-least element.
The Axiom of Choice is equivalent to the statement that there exist wellorderings of every set.

Kőnig’s Lemma is a weak form of the Axiom of Choice and cannot be proved in ZF (cf.
[Lév79, Exercise IX.2.18]).

5The Borel sets are the members of the smallest class containing the open sets and closed under
the operations of complementation and countable union. The collection of Borel sets is generated
in �1 many stages from these two operations. A natural process assigns a measure to each Borel
set (cf., e.g., [Hal50]).

6A set of reals X has the property of Baire if X △O is meager for some open set O, where the
symmetric difference A△ B of two sets A and B is the set (A\B) ∪ (B\A), where A\B = {x ∈
A : x �∈ B}. A set of reals X has the perfect set property if it is countable or contains a perfect
set (an uncountable closed set without isolated points). A set of reals X is Lebesgue measurable if
there is a Borel set B such that X △ B is a subset of a Borel measure 0 set. Cf. [Oxt80].
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Question 43 of the Scottish Book, posed by Mazur, asks about games where
two players alternately select the members of a shrinking sequence of intervals
of real numbers, with the first player the winner if the intersection of the
sequence intersects a set given in advance. Banach posted an answer in 1935,
showing that such games are determined if and only if the given set is either
meager (in which case the second player wins) or comeager relative to some
interval (in which case the first player wins). The determinacy of the restriction
of this game to each interval implies then that the given set has the Baire
property (cf. [Oxt80, pp. 27–30] and [Kan03, pp. 373–374]). The game has
come to be known as the Banach-Mazur game. Using an enumeration of the
rationals, one can code intervals with rational endpoints with integers, getting
a game on integers.
Morton Davis [Dav64] studied a game, suggested by Lester Dubins, where

the first player plays arbitrarily long finite strings of 0’s and 1’s and the second
player plays individual 0’s and 1’s, with the payoff set a subset of the set of
infinite binary sequences as before. Davis proved that the first player has a
winning strategy in such a game if and only if the payoff set contains a perfect set,
and the second player has a winning strategy if and only if the payoff set is finite
or countably infinite. The determinacy of all such games then implies that every
uncountable set of reals contains a perfect set (asymmetric games of this type
can be coded by integer games of perfect information). It follows that under
AD there is no set of reals whose cardinality falls strictly between ℵ0 and 2ℵ0 .7

Mycielski and Świerczkowski showed that the determinacy of certain integer
games of perfect information implies that every subset of the real line is
Lebesgue measurable [MŚ64]. Simpler proofs of this fact were later given by
Leo Harrington (cf. [Kan03, pp. 375–377]) and Martin [Mar03].
By way of contrast, an argument of Vitali [Vit05] shows that under ZFC

there are sets of reals which are not Lebesgue measurable. Banach and Tarski
(cf. [BT24]; cf. also [Wag93] for a modern exposition), building on work of
Hausdorff [Hau14], showed that under ZFC the unit ball can be partitioned
into five pieces which can be rearranged to make two copies of the same
sphere, again violating Lebesgue measurability as well as physical intuition. As
with the undetermined game given by Gale and Stewart, the constructions of
Vitali and Banach-Tarski use the Axiom of Choice and do not give definable
examples of nonmeasurable sets. Via the Mycielski-Świerczkowski theorem,
determinacy results would rule out the existence of definable examples, for
various notions of definability.

2.2. Definability. As discussed above, ZFC implies that open sets are deter-
mined, and implies also that there exists a nondetermined set. The study of
determinacy merges naturally with the study of sets of reals in terms of their

7I.e., for every set X , if there exist injections f : � → X and g : X → 2� , then either X is
countable or there exists a bijection between X and 2� .
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10 PAUL B. LARSON

definability (i.e., descriptive set theory), which can be taken as a measure of
their complexity. In this section we briefly introduce some important definabil-
ity classes for sets of reals. Standard references include [Mos80, Kec95]. While
we do mention some important results in this section, much of the section can
be skipped on a first reading and used for later reference.
A Polish space is a topological space which is separable and completely

metrizable. Common examples include the integers �, the reals R, the open
interval (0, 1), the Baire space ��, the Cantor space �2 and their finite and
countable products. Uncountable Polish spaces without isolated points are a
natural setting for studying definable sets of reals. For the most part we will
concentrate on the Baire space and its finite powers.
Following notation introduced by Addison [Add58B],8 open subsets of a

Polish space are called Σ
˜
0
1, complements of Σ

˜
0
n sets are Π˜

0
n, and countable

unions of Π
˜
0
n sets are Σ˜

0
n+1. More generally, given a positive α < �1, Σ˜

0
α

consists of all countable unions of members of
⋃
�<α Π˜

0
� , andΠ˜

0
α consists of all

complements of members of Σ
˜
0
α . The Borel sets are the members of

⋃
α<�1

Σ
˜
0
α .

A pointclass is a collection of subsets of Polish spaces. Given a pointclass
Γ ⊆ ℘(��), we let Det(Γ) and Γ-determinacy each denote the statement that
G�(A) is determined for all A ∈ Γ. Philip Wolfe proved Σ

˜
0
2-determinacy in

ZFC[Wol55]. Davis followed by proving Π
˜
0
3-determinacy [Dav64]. Jeffrey

Paris would prove Σ
˜
0
4-determinacy [Par72]. However, this result was proved

after Martin had used a measurable cardinal to prove analytic determinacy (cf.
§ 5.2).

Continuous images of Π
˜
0
1 sets are said to be Σ

˜
1
1, complements of Σ

˜
1
n sets are

Π
˜
1
n, and continuous images ofΠ

˜
1
n sets are Σ˜

1
n+1. For each i ∈ {0, 1} and n ∈ �,

the pointclass ∆
˜
i
n is the intersection of Σ

˜
i
n and Π˜

i
n. The boldface projective

pointclasses are the sets Σ
˜
1
n, Π˜

1
n, and ∆˜

1
n for positive n ∈ �. These classes were

implicit in work of Lebesgue as early as [Leb18]. They were made explicit in
independent work by Nikolai Luzin [Luz25C, Luz25B, Luz25A] and Wacław
Sierpiński [Sie25]. The notion of a boldface pointclass in general (i.e., possibly
non-projective) is used in various ways in the literature. We will say that a
pointclass Γ is boldface (or closed under continuous preimages or continuously
closed) if f−1[A] ∈ Γ for all A ∈ Γ and all continuous functions f between
Polish spaces (where A is a subset of the codomain). The classes Σ

˜
0
α , Π˜

0
α , ∆˜

0
α

are also boldface in this sense.
The pointclass Σ

˜
1
1 is also known as the class of analytic sets, and was given

an independent characterization by Mikhail Suslin [Sus17]: A set of reals A
is analytic if and only if there exists a family of closed sets Ds (for each finite

8The papers [Add58B] and [Add58A] appear in the same volume of FundamentaMathematicae.
The front page of the volume gives the date 1958–1959. The individual papers have the dates 1958
and 1959 on them, respectively.
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