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1
Lightning Review of Statistical Mechanics,

Thermodynamics, Phases, and Phase Transitions

In Part I, I will describe various condensed matter models and problems of interest. In

other words, we will study the condensed matter issues that can be described in one way or

another using string theory methods.

To set up the notation, in Chapter 1, I will make a lightning review of thermodynamics,

phase transitions, and statistical mechanics. These are issues that are supposed to be known,

but we will review them in a way that will be useful for us later and in order to have a

common starting point.

1.1 Note on Conventions

In most of this book, I will use field theorists, conventions, with h̄ = c = 1, unless needed

to emphasize some quantum or (non)relativistic issues. We can always reintroduce h̄ and

c by dimensional analysis, if needed. In these conventions, there is only one dimensionful

unit, namely mass = 1/length = energy = 1/time = · · · . When I speak of dimension of a

quantity, I refer to mass dimension.

For the Minkowski metric ημν I use the mostly plus signature convention, so in

the most relevant case of 3+1 dimensions the signature is (− + ++), for ημν =

diag(−1,+1,+1,+1).

I also use the Einstein summation convention, i.e. repeated indices are summed over.

The repeated indices will be one up and one down, unless we are in Euclidean space, when

it doesn’t matter, so we can put all indices down.

1.2 Thermodynamics

In thermodynamics, we use two types of quantities:
� Intensive quantities, which are quantities that are independent of the size of the system.

The relevant examples for us are

T, P, �E, �H , μα, {Pj}. (1.1)

Here T is the temperature, P is the pressure, �E is the electric field, �H is the magnetic field,

μα are chemical potentials for the particle species α, i.e. the increase in energy required to

add one particle to the system, and Pj are generalized pressures (such that P0 = P).
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� Extensive quantities, which are quantities which increase with the size of the system,

usually with the volume (though it can also be with the surface area, for example). The

relevant examples for us are

S,V,V �D,V �B, Nα, {X j}, (1.2)

respectively; i.e. these are the conjugate quantities corresponding to the intensive quantities

above. Here S is the entropy, V the volume, �D is the electric induction, �B is the magnetic

induction, Nα are numbers of particles of species α, and X j are generalized volumes (such

that X0 = −V ).

1. The first law of thermodynamics is then the following statement about the energy

differential:

dU = T dS − PdV +
∑

j

PjdX j + �E · d(V �D) + �H · d(V �B) +
∑

α

μαNα. (1.3)

For the electro-magnetic quantities, we need to add the material relations that relate the

inductions to the fields:
� Electric case:

�D = ǫ0
�E + �P = ǫ�E, (1.4)

where ǫ0 is the vacuum electric permittivity, ǫ is the electric permittivity in the material,

and �P is the polarization.
� Magnetic case:

�B = μ0( �H + �M ) = μ�H , (1.5)

where μ0 is the vacuum magnetic permeability, μ is the magnetic permeability in the ma-

terial, and �M is the magnetization.

From the first law and the material relations we can deduce the electric and magnetic en-

ergy densities (or reversely from the energy densities and material relations we can deduce

the first law for the electro-magnetic case):
� in the vacuum:

ρe =
ǫ0
�E2

2

ρm =
μ0

�H 2

2
. (1.6)

� in the material:

ρe =
ǫ�E2

2
=

�D2

2ǫ

ρm =
μ�H 2

2
=

�B2

2μ
. (1.7)

2. The second law of thermodynamics is the statement that the entropy always increases

in a process, i.e. its variation is positive or zero:

�S ≥ 0. (1.8)
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5 1.2 Thermodynamics

T

S

Fig. 1.1 Third law of thermodynamics.

3. The third law of thermodynamics is usually less known in its correct form. The state-

ment is that as the temperature goes to zero, T → 0, then the entropy goes to a constant,

S → S0. Often it is stated as the fact that S → 0, but there are in fact examples with nonzero

entropy S0 �= 0, i.e. with a degenerate ground state, at zero temperature. One very impor-

tant example for us will be the case of black holes, which later will be embedded in string

theory.

An equivalent statement of the third law is that It is impossible to reach T = 0 in a finite

number of steps from T �= 0. To understand the equivalence, consider the (S, T ) diagram,

and two curves for the system, reaching the same (S0, 0) point, as in Figure 1.1. The most

efficient cooling process is the Carnot process, i.e. an isothermal line (T = const.), fol-

lowed by an isentropic line (S = const.), i.e. a vertical line, followed by a horizontal line.

To reach T = 0 by moving on verticals and horizontals between the two curves, we can see

that we need an infinite number of steps.

For expediency, we will include formally {�E, �H , μα} into {Pj} and {V �D,V �B, Nα} into

{X j}.
� Then the Euler equation (obtained from the homogeneity properties of T and S) says

that for a system with extensive quantities S and {X j}, for j = 1, . . . , r, we have

U = T S +

r
∑

j=1

PjX j. (1.9)

� Together with the first law, the Euler equation implies the Gibbs-Duhem equation:

SdT +

r
∑

j=1

X jdPj = 0. (1.10)

Thermodynamic Potentials

For many systems, it is useful to work with variables that include only part of the ex-

tensive quantities and the rest of the intensive quantities, i.e. with {Pl}, l = 1, . . . , m and
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{Xl ′}, l ′ = m + 1, . . . , r. As always, that is done by performing a Legendre transform over

Xl ; i.e. one uses the following thermodynamic potentials:

Ū = Ū [P1, . . . , Pm] = U −

m
∑

l=1

PlXl . (1.11)

Their differentials, i.e. the first law of thermodynamics for systems at constant

P1, . . . , Pm, are given by

dŪ = −

m
∑

l=1

XldPl +

r
∑

l ′=m+1

Pl ′dXl ′ . (1.12)

This is the general formalism, but there are special cases of thermodynamic potentials

that are important and have been named before:
� The free energy, or Helmholtz potential,

F = U − T S. (1.13)

� The enthalpy,

H = U + PV, (1.14)

and we can also define a generalized enthalpy,

H ∗ = U − PjX j, (1.15)

where j �= 0 and j �= chemical potential.
� The free enthalpy, or Gibbs potential,

G = U − T S + PV, (1.16)

and we can also define a generalized Gibbs potential,

G∗ = U − T S −

m
∑

l=1

PlXl . (1.17)

� The grand-canonical potential,

� = U − T S −

n
∑

α=1

μαNα. (1.18)

The reason for considering the thermodynamic potentials is that at equilibrium, for a

system in contact with a reservoir that fixes T, P1, . . . , Pn, i.e. the situation that we will

denote by

S ∪ RT,P1,...,Pn
, (1.19)

the equilibrium is obtained for the minimum of the thermodynamic potential

Ū [T, P1, . . . , Pn].
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7 1.3 Phase Transitions

1.3 Phase Transitions

One of the quantities that we are interested in, in order to describe a phase transition, is the

dimensionality of the phase manifold. In order to obtain it, we have the Gibbs phase rule:

Consider a system with f phases, n chemical (nonreacting) components, and q nonchem-

ical degrees of freedom, whose intensive parameters we fix (e.g., T, P). Then the number

of effective degrees of freedom = dimensionality of the phase manifold is

v = n + q − f . (1.20)

Example To understand it, consider the simplest case, of a system with two phases ( f = 2),

one component (n = 1), and we fix T and P, i.e. q = 2, then v = 1 + 2 − 2 = 1, i.e. the

separation between the two phases is a line (1-dimensional) that can be, for instance, drawn

in the (T, P) plane.

Phase transition types

There are two important classifications of phase transitions, the first being developed by

Ehrenfest. It is based on the thermodynamic potential Ū for the system under considera-

tion. According to it, we have phase transitions of
� first order, which means that the thermodynamic potential Ū is constant (continuous)

across the phase transition, but its first derivatives are not, i.e. they are discontinuous across

the phase transition, ∂Ū /∂a j �= const.
� second order, which means that the thermodynamic potential Ū is constant across the

phase transition, as are its first derivatives ∂Ū /∂a j = const., but its second derivatives are

discontinuous across the phase transition, ∂2Ū /∂ai∂a j �= const.

In principle, we could go on and define third order (only the third order derivative of

the thermodynamic potential being discontinuous), etc., but no such phase transition was

found until now, so most likely there is no other type of phase transition.

The other important classification is due to Landau, who showed that the first and sec-

ond order phase transitions have a different interpretation, and the difference between them

can be described as follows.
� first order is when the phases differ only quantitatively, but not qualitatively.
� second order is when the phases also differ qualitatively. Specifically, there exists a

so-called order parameter that we will denote by ψ , such that ψ = 0 in one phase that is

symmetric under some symmetry, and ψ �= 0 in the other phase, where we have no such

symmetry, i.e. in the asymmetric phase.

Example of first order phase transition

Consider a system in contact with a (T, P) reservoir, i.e. S ∪ RT,P. Then the thermody-

namic potential is the Gibbs potential G = G(T, P) = U − T S + PV , with dG = −SdT +

V dP + · · · . If the phase transition is first order, G(T, P) is continuous across the phase

www.cambridge.org/9781107180383
www.cambridge.org


Cambridge University Press
978-1-107-18038-3 — String Theory Methods for Condensed Matter Physics
Horatiu Nastase 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Lightning Review of Statistical Mechanics, Thermodynamics, Phases, and Phase Transitions

transition, but its first derivatives,

S = −

(

∂G

∂T

)

P

and V =

(

∂G

∂P

)

T

, (1.21)

are discontinuous, i.e. we have nonzero �V and �S, thus nonzero �12 ≡ T�S. They are

in fact related by the Clausius-Clapeyron relation: Across the coexistence line of the two

phases (i.e. for V1 ≤ V ≤ V2), we have

∂P

∂T

∣

∣

∣

∣

phase trans.

=
�S

�V
=

�12

T (V2 − V1)
. (1.22)

Example of second order phase transition

For the same system in contact with a (T, P) reservoir, the Gibbs potential G(T, P) is

again the relevant thermodynamic potential, and it and its first derivatives, S and V , are

continuous, but its second derivatives are discontinuous, thus the specific heat,

CP =
T

ν

(

∂S

∂T

)

P

= −
T

ν

(

∂2G

∂T 2

)

P

(1.23)

is discontinuous. Here ν is the number of moles, actually defining the molar specific heat.

We can also consider a system in contact with a reservoir of magnetic and/or electric

field �H , �E. In that case, the second derivatives of the thermodynamic potential are the

following susceptibilities:
� the magnetic susceptibility χm, defined as

χm =
∂M

∂H
=

1

μ0

∂B

∂H
− 1 = −

1

μ0

(

∂2Ū

∂H 2

)

(1.24)

is discontinuous, and
� the electric susceptibility

κe =
1

ǫ0

∂P

∂E
=

1

ǫ0

∂D

∂E
= −

1

ǫ0

(

∂2Ū

∂E2

)

(1.25)

is also discontinuous.

1.4 Statistical Mechanics and Ensembles

Statistical Mechanics

We now review the basics of statistical mechanics. We consider first the classical case,

when there is a distribution function in the N-particle phase space. The one-particle phase

space is {�rk, �pk}, and the N-particle phase space is shortened as �rN ≡ {�r1�r2, . . . ,�rN }.

The infinitesimal probability to be in phase space (around the point (�rN , �pN )) at time t is

dP(�rN , �pN , t ) = P (�rN , �pN , t )dŴN =
dN

N
, (1.26)
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9 1.4 Statistical Mechanics and Ensembles

where N is the number of particles (out of which dN are in the given state), P (or also

ρ later) is the distribution function of the statistical ensemble, and dŴN = d�rN d�pN is the

infinitesimal volume element of phase space.

We also define the quantities:
� The phase space volume for maximum energy E,

ŴN (E ) =

∫ E

0

dŴN (E ), (1.27)

� the phase space volume between E and E + �E,

�N (E,�E ) = ŴN (E + �E ) − ŴN (E ), (1.28)

� and the density of states,

ω(E ) =
∂Ŵ(E )

∂E
. (1.29)

Actually, to obtain the correct number of states, we should divide the phase space volume

by (N!h3N ), the quantum unit of phase space times the symmetry factor for N particles.

In fact, above, when we called P the distribution function of the statistical ensemble, we

have implicitly used the ergodic hypothesis, stating that the temporal average should equal

the ensemble average,

〈 f 〉temporal = 〈 f 〉ensemble. (1.30)

This is an ergodic postulate, associated with Gibbs and Tollman (who formalized statistical

mechanics by basing it on postulates from which one can find everything else).

The next important assumption is the one of equilibrium, when there is no time depen-

dence. While there are many interesting things about systems out of equilibrium, like in

the case of heavy ion collisions, for instance, in this course we will stick with the assump-

tion of equilibrium. We then have the postulate of a priori equal probabilities, which states

that: The probability density is constant in the allowed domain D in phase space and zero

outside it.

From the above postulates, we can obtain that the distribution function depends explicitly

only on the total energy of the system E, and depends on phase space only implicitly, i.e.

that

P (�r N , �p N ) = f
(

E(�r N , �p N )
)

. (1.31)

Statistical Ensembles

We now review the most important statistical ensembles.

Microcanonical

The first one can be immediately derived from the above statement that the distribution

function depends explicitly only on E. We consider then a constant energy E = E0, thus

having a probability P(E(. . .)) constant for E = E0 and zero for E �= E0. It is in fact correct

to consider a quasi-microcanonical ensemble, with energy E ∈ (E0, E0 + �E ).
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Boltzmann Formula

The next step is in some sense a postulate, meaning that it cannot be truly derived, but must

be postulated, and in fact there might be alternatives to it for some systems. The postulate

is Boltzmann’s formula relating entropy with the distribution function. We can relate S to

the logarithm of the number of states (remembering that, up to the factor of 1/(N!h3N ), the

total volume of phase space for the quasi-microcanonical case, �, is the number of states).

The result is

S = kB ln �, (1.32)

where kB is Boltzmann’s constant. In the thermodynamical large N limit, we have also the

equivalent formulas

S = kB ln ω = kB ln Ŵ(E ) = −kB〈ln ρ〉. (1.33)

The entropy is S = S(E,V, N, . . .). Note that the above equality is a bit counter-intuitive,

but correct, since in the large N limit, the volume of the 3N-dimensional space bounded

by E is approximately equal to the volume of the space between E and E + dE, as we can

check.

Since the first law is written as (renaming U as E)

dS =
1

T
dE +

P

T
dV −

μ

T
dN + · · · (1.34)

by combining it with the Boltzmann formula, we obtain the relations (β ≡ 1/(kBT )):

β =

(

∂ ln �

∂E

)

V,N

; βP =

(

∂ ln �

∂V

)

E,N

; −βμ =

(

∂ ln �

∂N

)

E,V

. (1.35)

Canonical

Consider the system in contact with a reservoir of temperature, S ∪ RT , in which case the

distribution function is

ρ(H) =
e−βH

Z(β,V, N, . . .)
, (1.36)

where the H is the Hamiltonian and the partition function Z is simply the sum over states

of the numerator,

Z =
∑

n

gne−βEn , (1.37)

where gn is the degeneracy of the energy En.

The thermodynamical potential is the free energy and is given in terms of the partition

function as

F (β,V, N ) = −kBT ln Z. (1.38)
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Grand-Canonical

Consider a system in contact with a temperature and a particle (chemical potential) reser-

voir, S ∪ RT,μ. The distribution function is then

ρ(H) =
e−β(H−μN )

Z(β, βμ, . . .)
, (1.39)

and the partition function is

Z(β, βμ,V, . . .) =
∑

N≥0

e−β(H−μN ) ZN
1

f
. (1.40)

Here Z1 is a single-particle partition function, and f = N! for free particles and f = 1 for

interacting particles.

Isothermal-Isobaric

For the case S ∪ RT,P, the distribution function is

ρ =
e−β(H+PV )

Z(β, βP, . . .)
(1.41)

and the partition function is given as an integration over the volume (which is a continuous

variable, thus integrated instead of summed)

Z(β, βP) =

∫ ∞

0

dVe−βPV Zcan(β,V, N ), (1.42)

and Zcan(β,V, N ) is the canonical partition function.

The thermodynamic potential is the Gibbs potential and is again given in terms of the

partition function as

G(T, P, N ) = −kBT ln Z. (1.43)

Generalized Canonical

The distribution function is

ρ =
e−βH+

∑n
j=1 βPjX j (−βPV +βμN )

Z
, (1.44)

where in brackets we have considered the case that we write explicitly the P and μ vari-

ables, and the partition function is

Z =

(

∫ ∞

0

dV
∑

N≥0

e−βPV +βμN

)

∫

dŴV,N e−βHV,N +
∑n

j=1 βPjX j

= Z(β, (βP, βμ), βP1, . . . , βPn, Xn+1, . . . , Xr ). (1.45)

Note that if we don’t put the P and μ in the reservoir, Z depends on V and N instead.

Then the thermodynamic potential is again given in terms of the partition function as

before:

Ū = −kBT ln Z(β, βP1, . . . , βPn, Xn+1, . . . , Xr ). (1.46)
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The total energy is the statistical average of the sum of the energies, U = 〈E〉, and by

writing it explicitly in terms of the distribution function, we see that we can write it in

terms of the derivative of ln Z:

U = 〈E〉 = −
∂ ln Z

dβ
. (1.47)

Similarly, the extensive quantity X j is the average of some A j, X j = 〈A j〉, and by writing it

explicitly in terms of the distribution function, we see that we can write is as a derivative,

X j = 〈A j〉 =
∂ ln Z

∂βPj

, (1.48)

for j = 1, . . . , n. For the other values, l = n + 1, . . . , r, we obtain

Pl = −
1

β

∂ ln Z

∂Xl

. (1.49)

1.5 Distributions

Classical Distribution: Maxwell-Boltzmann

We now analyze the standard distributions, starting with the classical distribution of

Maxwell-Boltzmann. The total probability is the product of the individual probabilities,

so the same holds for the distributions functions P (or ρ),

P =
∏

i

P (�ri, �pi), (1.50)

and the partition function is Z = ZN
1 /N!.

The distribution function for a single particle is

P (�r, �p) =
e−βE

∫

. . .
∫

d�rd�pe−βE
. (1.51)

Quantum Distributions

Consider one-particle states α, with occupation number nα . Then the energy is

E =
∑

α

ǫαnα (1.52)

and the number of particles is

N =
∑

α

nα. (1.53)

The quantum distribution function is then 〈nα〉. The partition function is

Z =
∏

α

Zα, (1.54)
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