
Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

CONTENT�
PREFACE ix

AC9NOWLEDGMENT� xv

CRED1T� xvii

TABLE� OF 7UDGMENT FORM� AND 1MPORTANT FUNCT1ON� xviii

SYMBOL� AND NOTAT1ON xx

INTRODUCT1ON 1

PART I. FOUNDAT1ON�

1 AN 1MPERAT1VE CORE 11
1.1 Looking at languages 13

1.2 The Impcore language 17

1.3 Abstract syntax 27

1.4 Environments and the

meanings of names

28

1.5 Operational semantics 29

1.6 The interpreter 38

1.7 Operational semantics

revisited: Proofs

55

1.8 Extending Impcore 66

1.9 Summary 67

1.10 Exercises 72

2 SCHEME, S0EXPRE��1ON�, AND F1R�T0CLA�� FUNCT1ON� 89

2.1 Overview of µScheme& 90

2.2 Language I: Values, syntax,

and initial basis

91

2.3 Practice I: Recursive functions

on lists of values

98

2.4 Records and trees (more data) 107

2.5 Combining theory and practice:

Algebraic laws

110

2.6 Language II: Local variables

and let
117

2.7 Language III: First0class

functions, lambda,
and locations

120

2.8 Practice III: Higher0order

functions on lists

127

2.9 Practice IV: Higher0order

functions for polymorphism

131

2.10 Practice V:

Continuation0passing style

136

2.11 Operational semantics 144

2.12 The interpreter 152

2.13 Extending µScheme with

syntactic sugar

162

2.14 Scheme as it really is 168

2.15 Summary 172

2.16 Exercises 176

3 CONTROL OPERATOR� AND A �MALL0�TEP �EMANT1C�: µSCHEME+ 201

3.1 The µScheme+ language 202

3.2 Procedural programming

with control operators

205

3.3 Operational semantics:

Evaluation using a stack

210

3.4 Operational semantics:

Lowering to a core language

213

3.5 A semantics of Core µScheme+ 215

3.6 The interpreter 223

3.7 Stacks, control, and semantics

as they really are

239

3.8 Summary 243

3.9 Exercises 248

4 AUTOMAT1C MEMORY MANAGEMENT 257
4.1 What garbage is and

where it comes from

258

4.2 Garbage0collection basics 259

4.3 The managed heap in

µScheme+

263

4.4 Mark0and0sweep collection 266

4.5 Copying collection 271

4.6 Debugging a collector 280

4.7 Mark0compact collection 283

4.8 Reference counting 283

4.9 Garbage collection

as it really is

285

4.10 Summary 287

4.11 Exercises 292

5 INTERLUDE: µSCHEME 1N ML 301

5.1 Names and environments& 303

5.2 Abstract syntax and values 306

5.3 Evaluation 309

5.4 Deoning and embedding

primitives

312

5.5 Notable diferences

between ML and C

314

5.6 Free and bound variables& 315

5.7 Summary 317

5.8 Exercises 320

www.cambridge.org/9781107180185
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

vii

6 TYPE �Y�TEM� FOR IMPCORE AND µSCHEME 327

6.1 Typed Impcore: A statically

typed imperative core

329

6.2 A type0checking interpreter

for Typed Impcore

337

6.3 Extending Typed Impcore

with arrays

343

6.4 Common type constructors 348

6.5 Type soundness 350

6.6 Polymorphic type systems

and Typed µScheme

351

6.7 Type systems as they really are 383

6.8 Summary 383

6.9 Exercises 386

7 ML AND TYPE 1NFERENCE 401

7.1 Nano0ML: A nearly

applicative language

402

7.2 Abstract syntax and values

of nano0ML

404

7.3 Operational semantics 405

7.4 Type system for nano0ML 407

7.5 From typing rules

to type inference

417

7.6 The interpreter 433

7.7 Hindley0Milner as it really is 441

7.8 Summary 441

7.9 Exercises 443

PART II. PROGRAMM1NG AT �CALE

8 U�ER0DEF1NED, ALGEBRA1C TYPE� (AND PATTERN MATCH1NG) 457

8.1 Case expressions and

pattern matching

459

8.2 Algebraic data types in µML 466

8.3 Equational reasoning

with case expressions

476

8.4 Syntactic sugar:

Patterns everywhere

480

8.5 Type generativity and

type equivalence

483

8.6 Abstract syntax and values& 485

8.7 Theory and implementation

of user0deoned types

486

8.8 Theory and implementation

of case expressions

490

8.9 Algebraic data types

as they really are

499

8.10 Summary 501

8.11 Exercises 503

9 MOLECULE, AB�TRACT DATA TYPE�, AND MODULE� 525

9.1 The vocabulary

of data abstraction

527

9.2 Introduction to Molecule,

part I: Writing client code

528

9.3 Introduction, part II:

Implementing an abstraction

530

9.4 The Molecule language 534

9.5 Molecule9s initial basis 544

9.6 Program design: Abstractions 545

9.7 Key feature: Inspecting

multiple representations

555

9.8 Molecule9s type system:

Enforcing abstraction

558

9.9 Notes on the interpreter 579

9.10 Abstract data types, modules,

and overloading

as they really are

580

9.11 Summary 585

9.12 Exercises 589

10 SMALLTAL9 AND OB7ECT0OR1ENTAT1ON 609

10.1 Object0oriented programming

by example

610

10.2 Data abstraction all over again 625

10.3 The µSmalltalk language 627

10.4 The initial basis of µSmalltalk 636

10.5 Object0oriented programming

techniques

654

10.6 Technique I: Method dispatch

replaces conditionals

654

10.7 Technique II: Abstract classes 656

10.8 Technique III: Multiple

representations&

662

10.9 Technique IV: Invariants in

object0oriented programming

673

10.10 Operational semantics 677

10.11 The interpreter 685

10.12 Smalltalk as it really is 700

10.13 Objects and classes

as they really are

707

10.14 Summary 707

10.15 Exercises 713

AFTERWORD 727

B1BL1OGRAPHY 733

KEY WORD� AND PHRA�E� 745

CONCEPT 1NDEX 749

www.cambridge.org/9781107180185
www.cambridge.org

