
Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Programming Languages

Computer scientists often need to learn new programming languages quickly. The best way to

prepare is to understand the foundational principles that underlie even the most complicated industrial

languages.

This text for an undergraduate programming-languages course distills great languages and their

design principles down to easy-to-learn <bridge= languages implemented by interpreters whose key

parts are explained in the text. The book goes deep into the roots of both functional and object-oriented

programming, and it shows how types and modules, including generics/polymorphism, contribute to

eûective programming.

The book is not just about programming languages; it is also about programming. Through

concepts, examples, and more than 300 practice exercises that exploit the interpreters, students learn

not only what programming-language features are common but also how to do things with them.

Substantial implementation projects include Milner9s type inference, both copying and mark-and-

sweep garbage collection, and arithmetic on arbitrary-precision integers.

Norman Ramsey is Associate Professor of Computer Science at Tufts University. Since earning his

PhD at Princeton, he has worked in industry and has taught programming languages, advanced

functional programming, programming language implementation, and technical writing at Purdue,

the University of Virginia, and Harvard as well as Tufts. He has received Tufts9s Lerman-Neubauer

Prize, awarded annually to one outstanding undergraduate teacher. He has also been a Hertz Fellow

and an Alfred P. Sloan Research Fellow. His implementation credits include a code generator for the

Standard ML of New Jersey compiler and another for the Glasgow Haskell Compiler.

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Programming Languages
Build, Prove, and Compare

Norman Ramsey
Tufts University, Massachusetts

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

3143321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi 3 110025, India

103 Penang Road, #05306/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University9s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781107180185

DOI: 10.1017/9781316841396

© Norman Ramsey 2023

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-18018-5 Hardback

Additional resources for this publication at www.cambridge.org/ramsey

Cambridge University Press has no responsibility for the persistence or accuracy of

URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

To Cory, who also knows joy in creation

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

CONTENT�
PREFACE ix

AC9NOWLEDGMENT� xv

CRED1T� xvii

TABLE� OF 7UDGMENT FORM� AND 1MPORTANT FUNCT1ON� xviii

SYMBOL� AND NOTAT1ON xx

INTRODUCT1ON 1

PART I. FOUNDAT1ON�

1 AN 1MPERAT1VE CORE 11
1.1 Looking at languages 13

1.2 The Impcore language 17

1.3 Abstract syntax 27

1.4 Environments and the

meanings of names

28

1.5 Operational semantics 29

1.6 The interpreter 38

1.7 Operational semantics

revisited: Proofs

55

1.8 Extending Impcore 66

1.9 Summary 67

1.10 Exercises 72

2 SCHEME, S0EXPRE��1ON�, AND F1R�T0CLA�� FUNCT1ON� 89

2.1 Overview of µScheme& 90

2.2 Language I: Values, syntax,

and initial basis

91

2.3 Practice I: Recursive functions

on lists of values

98

2.4 Records and trees (more data) 107

2.5 Combining theory and practice:

Algebraic laws

110

2.6 Language II: Local variables

and let
117

2.7 Language III: First0class

functions, lambda,
and locations

120

2.8 Practice III: Higher0order

functions on lists

127

2.9 Practice IV: Higher0order

functions for polymorphism

131

2.10 Practice V:

Continuation0passing style

136

2.11 Operational semantics 144

2.12 The interpreter 152

2.13 Extending µScheme with

syntactic sugar

162

2.14 Scheme as it really is 168

2.15 Summary 172

2.16 Exercises 176

3 CONTROL OPERATOR� AND A �MALL0�TEP �EMANT1C�: µSCHEME+ 201

3.1 The µScheme+ language 202

3.2 Procedural programming

with control operators

205

3.3 Operational semantics:

Evaluation using a stack

210

3.4 Operational semantics:

Lowering to a core language

213

3.5 A semantics of Core µScheme+ 215

3.6 The interpreter 223

3.7 Stacks, control, and semantics

as they really are

239

3.8 Summary 243

3.9 Exercises 248

4 AUTOMAT1C MEMORY MANAGEMENT 257
4.1 What garbage is and

where it comes from

258

4.2 Garbage0collection basics 259

4.3 The managed heap in

µScheme+
263

4.4 Mark0and0sweep collection 266

4.5 Copying collection 271

4.6 Debugging a collector 280

4.7 Mark0compact collection 283

4.8 Reference counting 283

4.9 Garbage collection

as it really is

285

4.10 Summary 287

4.11 Exercises 292

5 INTERLUDE: µSCHEME 1N ML 301

5.1 Names and environments& 303

5.2 Abstract syntax and values 306

5.3 Evaluation 309

5.4 Deoning and embedding

primitives

312

5.5 Notable diferences

between ML and C

314

5.6 Free and bound variables& 315

5.7 Summary 317

5.8 Exercises 320

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

vii

6 TYPE �Y�TEM� FOR IMPCORE AND µSCHEME 327

6.1 Typed Impcore: A statically

typed imperative core

329

6.2 A type0checking interpreter

for Typed Impcore

337

6.3 Extending Typed Impcore

with arrays

343

6.4 Common type constructors 348

6.5 Type soundness 350

6.6 Polymorphic type systems

and Typed µScheme

351

6.7 Type systems as they really are 383

6.8 Summary 383

6.9 Exercises 386

7 ML AND TYPE 1NFERENCE 401

7.1 Nano0ML: A nearly

applicative language

402

7.2 Abstract syntax and values

of nano0ML

404

7.3 Operational semantics 405

7.4 Type system for nano0ML 407

7.5 From typing rules

to type inference

417

7.6 The interpreter 433

7.7 Hindley0Milner as it really is 441

7.8 Summary 441

7.9 Exercises 443

PART II. PROGRAMM1NG AT �CALE

8 U�ER0DEF1NED, ALGEBRA1C TYPE� (AND PATTERN MATCH1NG) 457

8.1 Case expressions and

pattern matching

459

8.2 Algebraic data types in µML 466

8.3 Equational reasoning

with case expressions

476

8.4 Syntactic sugar:

Patterns everywhere

480

8.5 Type generativity and

type equivalence

483

8.6 Abstract syntax and values& 485

8.7 Theory and implementation

of user0deoned types

486

8.8 Theory and implementation

of case expressions

490

8.9 Algebraic data types

as they really are

499

8.10 Summary 501

8.11 Exercises 503

9 MOLECULE, AB�TRACT DATA TYPE�, AND MODULE� 525

9.1 The vocabulary

of data abstraction

527

9.2 Introduction to Molecule,

part I: Writing client code

528

9.3 Introduction, part II:

Implementing an abstraction

530

9.4 The Molecule language 534

9.5 Molecule9s initial basis 544

9.6 Program design: Abstractions 545

9.7 Key feature: Inspecting

multiple representations

555

9.8 Molecule9s type system:

Enforcing abstraction

558

9.9 Notes on the interpreter 579

9.10 Abstract data types, modules,

and overloading

as they really are

580

9.11 Summary 585

9.12 Exercises 589

10 SMALLTAL9 AND OB7ECT0OR1ENTAT1ON 609

10.1 Object0oriented programming

by example

610

10.2 Data abstraction all over again 625

10.3 The µSmalltalk language 627

10.4 The initial basis of µSmalltalk 636

10.5 Object0oriented programming

techniques

654

10.6 Technique I: Method dispatch

replaces conditionals

654

10.7 Technique II: Abstract classes 656

10.8 Technique III: Multiple

representations&

662

10.9 Technique IV: Invariants in

object0oriented programming

673

10.10 Operational semantics 677

10.11 The interpreter 685

10.12 Smalltalk as it really is 700

10.13 Objects and classes

as they really are

707

10.14 Summary 707

10.15 Exercises 713

AFTERWORD 727

B1BL1OGRAPHY 733

KEY WORD� AND PHRA�E� 745

CONCEPT 1NDEX 749

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

This textbook, suitable for an undergraduate or master9s0level course in program0

ming languages, is about great language0design ideas, how to describe them pre0

cisely, and how to use them efectively. The ideas revolve around functions, types,

modules, and objects. They are described using formal semantics and type theory,

and their use is illustrated through programming examples and exercises.

The ideas, descriptive techniques, and examples are conveyed by means of

bridge languages. A bridge language models a real programming language, but it is

small enough to describe formally and to learn in a week or two, yet big enough

to write interesting programs in. The bridge languages in this book model Algol,

Scheme, ML, CLU, and Smalltalk, and they are related to many modern descen0

dants, including C, C++, OCaml, Haskell, Java, JavaScript, Python, Ruby, and Rust.

Each bridge language is supported by an interpreter, which runs all the exam0

ples and supports programming exercises. The interpreters, which are presented

in depth in an online Supplement, are carefully craved and documented. They can

be used not only for exercises but also to implement students9 own language0design

ideas.

The book develops these concepts:

" Abstract syntax and operational semantics

" Deonitional interpreters

" Algebraic laws and equational reasoning

" Garbage collection

" Symbolic computing and functional programming

" Parametric polymorphism

" Monomorphic and polymorphic type systems

" Type inference

" Algebraic data types and pattern matching

" Data abstraction using abstract types and modules

" Data abstraction using objects and classes

The concepts are supported by the bridge languages as shown in the Introduc0

tion (Table I.2, page 5), which also explains each bridge language in greater detail

(pages 3 to 7).

The book calls for skills in both programming and proof:

" As prerequisites, learners should have the orst0year, two0semester program0

ming sequence, including data structures, plus discrete mathematics.

" To extend andmodify the implementations inChapters 1 to 4, a learnerneeds

to be able to read and modify C code; the necessary skills have to be learned

elsewhere. C is used because it is the simplest way to express programs that

work extensively with pointers andmemory, which is the topic of Chapter 4.

ix

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

x

To extend and modify the implementations in Chapters 5 to 10, a learner

needs to be able to read and modify Standard ML code; the necessary skills

are developed in Chapters 2, 5, and 8. Standard ML is used because it is a

simple, powerful language that is ideally suited to writing interpreters.

" To prove the simpler theorems, a learner needs to be able to substitute equals

for equals and to oll in templates of logical reasoning. To prove the more

interesting theorems, a learner needs to be able towrite a proof by induction.

DE�1GN1NG A COUR�E TO U�E TH1� BOO9

Some books capture a single course, and when using such a book, your only choice

is to start at the beginning and go as far as you can. But in programming languages,

instructors have many good choices, and a book shouldn9t make them all for you.

This book is designed so you can choosewhat to teach andwhat to emphasizewhile

retaining a coherent point of view: how programming languages can be used efec0

tively in practice. If you9re relatively new to teaching programming languages and

are not sure what to choose, you can9t go wrong with a course on functions, types,

and objects (Chapters 1, 2, 6, 7, and 10). If you have more experience, consider the

ideas below.

Programming Languages: Build, Prove, and Compare gives you interesting, pow0

erful programming languages that share a common syntax, a common theoretical

framework, and a common implementation framework. These frameworks sup0

port programmingpractice in the bridge languages, implementation and extension

of the bridge languages, and formal reasoning about the bridge languages. The de0

sign of your course will depend on how you wish to balance these elements.

" To unlock the full potential of the subject, combine programming practice

with theoretical study and work on interpreters. If your students have only

two semesters of programming experience and no functional programming,

you can focus on the core foundations in Chapters 1 to 3: operational seman0

tics, functional programming, and control operators. You can supplement

that work with one of two foundational tracks: If your students are com0

fortable with C and pointers, they can implement continuation primitives

in µScheme+, and they can implement garbage collectors. Or if they can

make a transition from µScheme to Standard ML, with help from Chapter 8,

they can implement type checkers and possibly type inference.

If your students have an additional semester of programming experience or

if they have already been exposed to functional programming, your course

can advance into types, modules, and objects. When I teach a course like

this, it begins with four homework assignments that span an introduction

to the framework, operational semantics, recursive functions, and higher0

order functions. Aver completing these assignments, my students learn

Standard ML, in which they implement orst a type checker, then type infer0

ence. This schedule leaves a week for programming with modules and data

abstraction, a couple of weeks for Smalltalk, and a bit of time for the lambda

calculus.

A colleague whose students are similarly experienced begins with Impcore

and µScheme, transitions to Standard ML to work on type systems and

type inference, then returns to the bridge languages to explore µSmalltalk,

µProlog, and garbage collection.

If your students have seen interpreters and are comfortable with proof by

induction, your course can move much more quickly through the founda0

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Designing a course

to use this book

xi

tional material, creating room for other topics. When I taught a course like

this, it explored everything inmy other class, then added garbage collection,

denotational semantics, and logic programming.

" A second design strategy tilts your class toward programming practice, ei0

ther de0emphasizing or eliminating theory. To introduce programming prac0

tice in diverse languages, Build, Prove, and Compare occupies a sweet spot be0

tween two extremes. One extreme <covers= N languages in N weeks. This

extreme is great for exposure, but not for depth4when students must work

with real implementations of real languages, a week or even two may be

enough to motivate them, but it9s not enough to build proociency.

The other extreme goes into full languages narrowly but deeply. Students

typically use a couple of popular languages, and overheads are high: each

language has its own implementation conventions, and students must man0

age the gratuitous details and diferences that popular languages make in0

evitable.

Build, Prove, and Compare ofers both breadth and depth, without the over0

head. If you want to focus on programming practice, you can aim for <four

languages in tenweeks=: µScheme,µML,Molecule, andµSmalltalk. You can

bring your students up to speed on the common syntactic, semantic, and im0

plementation frameworks using Impcore, and that knowledge will support

them through to the next four languages. If you have a couple of extra weeks,

you can deepen your students9 experience by having them work with the in0

terpreters.

" A third design strategy tilts your class toward applied theory. Build, Prove,

and Compare is not suitable for a class in pure theory4the bridge languages

are too big, the reasoning is informal, and the classic results are miss0

ing. But it is suitable for a course that is primarily about using formal

notation to explain precisely what is going on in whole programming lan0

guages, reinforced by experience implementing that notation. Your stu0

dents can do metatheory with Impcore, Typed Impcore, Typed µScheme,

and nano0ML; equational reasoning with µScheme; and type systems with

Typed Impcore, Typed µScheme, nano0ML, µML, and Molecule. They can

compare how universally quantioed types are used in three diferent designs

(Typed µScheme, nano0ML/µML, and Molecule).

" What about a course in interpreters? If you are interested in deonitional inter0

preters,Build, Prove, and Compare presentsmanywell0craved examples. And

the online Supplement presents a powerful infrastructure that your students

can use to build more deonitional interpreters (Appendices F to I). But apart

from this infrastructure, the book does not discuss what a deonitional in0

terpreter is or how to design one. For a course on interpreters, you would

probably want an additional book.

All of these potential designs are well supported by the exercises (345 in total),

which fall into three big categories. For insight into how to use programming lan0

guages efectively, there are programming exercises that use the bridge languages.

For insight into the workings of the languages themselves, as well as the formalism

that describes them, there are programming exercises that extend or modify the

interpreters. And for insight into formal description and proof, there are theory ex0

ercises. Model solutions for some of the more challenging exercises are available

to instructors.

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

xii

A fewexercises are simple enough and easy enough that your students canwork

on them for 10 to 20 minutes in class. But most are intended as homework.

" To introduce a new language like Impcore, µScheme, µML, Molecule, or

µSmalltalk, think about assigning from a half dozen to a full dozen program0

ming exercises, most easy, some of medium diïculty.

" To introduce proof technique, think about assigning around a half dozen

proof problems, maybe one or two involving some form of induction (some

metatheory, or perhaps an algebraic law involving lists).

" To develop a deep understanding of a single topic, assign one exercise or a

group of related exercises aimed at that topic. Such exercises are provided

for continuations, garbage collection, type checking, type inference, search

trees, and arbitrary0precision integers.

CONTENT� AND �COPE

Because this book is organized by language, its scope is partly determined by what

the bridge languages do and do not ofer relative to the originals on which they are

based.

" µScheme ofers define, a lambda, and three <let= forms. Values include sym0

bols, machine integers, Booleans, cons cells, and functions. There9s no nu0

meric tower and there are no macros.

" µML ofers type inference, algebraic data types, and pattern matching.

There are no modules, no exceptions, no mutable reference cells, and no

value restriction.

" Molecule ofers a procedural, monomorphic core language with mutable al0

gebraic types, coupled to amodule language that resembles OCaml and Stan0

dard ML.

" µSmalltalk ofers a pure object0oriented language in which everything is an

object; even classes are objects. Control now is expressed via message pass0

ing in a form of continuation0passing style. µSmalltalk provides a modest

class hierarchy, which includes blocks, Booleans, collections, magnitudes,

and three kinds of numbers. And µSmalltalk includes just enough renection

to enable programmers to add newmethods to existing classes.

Each of the languages supports multiple topical themes; the major themes are

programming, semantics, and types.

" Idiomatic programming demonstrates efective use of proven features that are

found in many languages. Such features include functions (µScheme, Chap0

ter 2), algebraic data types (µML, Chapter 8), abstract data types andmodules

(Molecule, Chapter 9), and objects (µSmalltalk, Chapter 10).

" Big­step semantics expresses the meaning of programs in a way that is easily

connected to interpreters, and which, with practice, becomes easy to read

and write. Big0step semantics are given for Impcore, µScheme, nano0ML,

µML, and µSmalltalk (Chapters 1, 2, 7, 8, and 10).

" Type systems guide the construction of correct programs, help document

functions, and guarantee that language features like polymorphism and data

abstraction are used safely. Type systems are given for Typed Impcore,

Typed µScheme, nano0ML, µML, and Molecule (Chapters 6 to 9).

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Sovware and other

supplements

xiii

In addition the major themes and the concepts listed above, the book addresses,

to varying degrees, these other concepts:

" Subtype polymorphism, in µSmalltalk (Chapter 10)

" Light metatheory for both operational semantics and type systems (Chap0

ters 1, 5, and 6)

" Free variables, bound variables, variable capture, and substitution, in both

terms and types (Chapters 2, 5, and 6)

" Continuations for backtracking search, for small0step semantics, and for

more general control now (Chapters 2, 3, and 10)

" The propositions0as0types principle, albeit brieny (Chapter 6 Averword)

A book is characterized not only by what it includes but also by what it omits.

To start, this book omits the classic theory results such as type soundness and

strong normalization; although learners can prove some simple theorems and look

for interesting counterexamples, theory is used primarily to express and commu0

nicate ideas, not to establish facts. The book also omits lambda calculus, because

lambda calculus is not suitable for programming.

The book omits concurrency and parallelism. These subjects are too diïcult

and too ramioed to be handled well in a broad introductory book.

And for reasons of space and time, the book omits three engaging program0

ming models. One is the pure, lazy language, as exemplioed by Haskell. An0

other is the prototype0based object0oriented language,made popular by JavaScript,

but brilliantly illustrated by Self. The third is logic programming, as exemplioed

by Prolog4although Prolog is explored at length in the Supplement (Appendix D).

If you are interested in µHaskell, µSelf, or µProlog, please write to me.

SOFTWARE AND OTHER �UPPLEMENT�

The sovware described in the book is available from the book9s web site, which is

build1prove1compare.net. The web site also provides a <playground= that allows

you to experiment with the interpreters directly in your browser, without having to

download anything. And it holds the book9s PDF Supplement, which includes ad0

ditional material on multiprecision arithmetic, extensions to algebraic data types,

logic programming, and longer programming examples. The Supplement also de0

scribes all the code: both the reusable modules and the interpreter0specioc mod0

ules.

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Acknowledgments

I was inspired by Sam Kamin9s 1990 book Programming Languages: An Interpreter­

Based Approach. When I asked if I could build on his book, Sam gave me his bless0

ing and encouragement. Programming Languages: Build, Prove, and Compare is nar0

rower and deeper than Sam9s book, but several programming examples and several

dozen exercises are derived from Sam9s examples and exercises, with permission.

I owe him a great debt.

In 1995, the Computer Science faculty at Purdue invited me to visit for a year

and teach programming languages. Without that invitation, there might not have

been a book.

An enormous book is not among the typical duties of a tenured computer0

science professor. Kathleen Fishermade it possible forme to onish this bookwhile

teaching at Tuvs; I am profoundly grateful.

Andrea Schuler and JackDavidson helpedme get permissions for the epigraphs

that appear at the beginning of each chapter.

Russ Cox helped bootstrap the early chapters, especially the C code. His work

was supported by an InnovationGrant from theDean for Undergraduate Education

at Harvard.

Many colleagues contributed to the development of Molecule. Matthew Fluet9s

insights and oversight were invaluable; without him, Chapter 9 would never have

been completed. And Andreas Rossberg9s chapter review helped get me onto the

right track.

Robby Findler suggested that the control operators in µScheme+ be lowered

to the label and long1goto forms. He also suggested the naming convention for

µScheme+ exceptions.

David Chase suggested the garbage0collector debugging technique described in

Section 4.6.2.

Matthew Fluet found some embarrassing naws in Typed Impcore and Typed

µScheme, which I repaired. Matthew also suggested the example used in Sec0

tion 6.6.8, which shows that if variable capture is not avoided, Typed µScheme9s

type system can be subverted.

Benjamin Pierce taught me how to think about the roles of proofs in program0

ming languages; Section 1.7 explains his ideas as I understand them.

Chris Okasaki opened my eyes to a whole new world of data structures.

The work of William Cook (2009) shaped my understanding of the consensus

view about what properties characterize an object0oriented language. Any misun0

derstandings of or departures from the consensus view are my own.

Christian Lindig wrote, in Objective Caml, a prettyprinter fromwhich I derived

the prettyprinter in Appendix J.

Sam Guyer helped me articulate my thoughts on why we study programming

languages.

Matthew Flatt helped me start learning about macros.

Kathy Gray and Matthias Felleisen developed check1expect and check1error,
which I have embraced and extended.

xv

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Acknowledgments

xvi

Cyrus Cousins found a subtle bug in µScheme+.

Mike Hamburg and Inna Zakharevich spurredme to improve the concrete syn0

tax of µSmalltalk and to provide better error messages.

Andrew Black examined an earlier design of µSmalltalk and found it want0

ing. His insistence on good design and clear presentation spurred innumerable

improvements to Chapter 10.

Pharo By Example (Black et al. 2010) explained Smalltalk metaclasses in a way

I could understand.

Dan Grossman read an early version of the manuscript, and he not only com0

mented on every detail but also mademe think hard about what I was doing. Kath0

leen Fisher9s careful reading spurred me to make many improvements through0

out Chapters 1 and 2. Jeremy Condit, Ralph Corderoy, Allyn Dimock, Lee Feigen0

baum, Luiz de Figueiredo, Andrew Gallant, Tony Hosking, Scott Johnson, Juergen

Kahrs, and Kell Pogue also reviewed parts of the manuscript. Gregory Price sug0

gested ways to improve the wording of several problems. Penny Anderson, Jon

Berry, Richard Borie, Allyn Dimock, Sam Guyer, Kathleen Fisher, Matthew Fluet,

William Harrison, David Hemmendinger, Tony Hosking, Joel Jones, Giampiero

Pecelli, Jan Vitek, and Michelle Strout bravely used preliminary versions in their

classes. Penny found far more errors and suggested many more improvements

than anyone else; she has my profound thanks.

My students, who are too numerous tomention by name, foundmany errors in

earlier dravs. Students in early classes were paid one dollar per error, from which

an elite minority earned enough to recover the cost of their books.

Individual chapters were reviewed by Richard Eisenberg, Mike Sperber, Robby

Findler, Ron Garcia, Jan Midtgaard, Richard Jones, Suresh Jagannathan, John

Reppy, Dimitrios Vytiniotis, François Pottier, Chris Okasaki, Stephanie Weirich,

Roberto Ierusalimschy,MatthewFluet, Andreas Rossberg, StephenChang, Andrew

Black, Will Cook, and Markus Triska.

Larry Bacow inspired me to do the right thing and live with the consequences.

Throughout the many years I have worked on this book, Cory Kerens has loved

and supportedme. And during the onal push, she has been the perfect companion.

She, too, knows what it is to be obsessed with a creative work4and that shipping is

also a feature. Cory, it9s time to go adventuring!

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Credits

In the epigraph for the Introduction, Russ Cox is quoted by permission.

The epigraph for Chapter 1 is from John Backus 1978. Can programming be liber0

ated from the von Neumann style? A functional style and its algebra of programs.

Communications of the ACM, 21(8):6133641. Used by permission.

The epigraphs for Chapters 2 and 4 are from Richard Kelsey, William Clinger, and

Jonathan Rees 1998. Revised5 Report on the Algorithmic Language Scheme. Used by

permission.

The epigraph for Chapter 3 is fromPeter J. Landin 1964. Themechanical evaluation

of expressions. Computer Journal, 6(4):3083320. Used by permission.

In the epigraph for Chapter 5, David Hanson and the unnamed student are quoted

by permission.

The orst epigraph for Chapter 6 is from John C. Reynolds 1974. Towards a theory

of type structure. In Colloque sur la Programmation, Paris, France, LNCS, volume 19,

pages 4083425. Springer0Verlag. Used by permission.

In the second epigraph for Chapter 6, Arvind is quoted by permission.

The epigraph for Chapter 7 is from Robin Milner 1983. How ML evolved. Polymor­

phism4The ML/LCF/Hope Newsletter, 1(1). Used by permission.

The epigraph for Chapter 8 is from Frederick P. Brooks, Jr. 1975. The Mythical Man­

Month. Addison0Wesley. Used by permission.

The epigraph for Chapter 9 is from Barbara Liskov and Stephen Zilles 1974. Pro0

gramming with abstract data types. SIGPLAN Notices, 9(4):50359. Used by permis0

sion.

The orst epigraph for Chapter 10 is from Alan C. Kay 1993. The early history of

Smalltalk. SIGPLAN Notices, 28(3):69395. Used by permission.

The second epigraph for Chapter 10 is from Kristen Nygaard and Ole0Johan Dahl

1978. The development of the SIMULA languages. SIGPLAN Notices, 13(8):2453272.

Used by permission.

xvii

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Judgment forms, important functions, & concrete syntax

Evaluation judgments

Language Expression or related form Page Deonition Page

Impcore 〈e, ξ, φ, ρ〉 ⇓ 〈v, ξ2, φ, ρ2〉 30 〈d, ξ, φ〉 → 〈ξ2, φ2〉 37

µScheme 〈e, ρ, σ〉 ⇓ 〈v, σ2〉 144 〈d, ρ, σ〉 → 〈ρ2, σ2〉 151

µScheme+ 〈e/v, ρ, σ, S〉 →
〈e2/v2, ρ2, σ2, S2〉

215 〈d, ρ, σ〉 → 〈ρ2, σ2〉 222

Typed Impcore (as in Impcore) 30 37

Typed µScheme 〈e, ρ, σ〉 ⇓ 〈v, σ2〉 380 (as in Impcore) 151

nano0ML 〈e, ρ〉 ⇓ v 405 〈d, ρ〉 → ρ2 405

µML 〈e, ρ〉 ⇓ v 491 (as in nano0ML) 405

〈p, v〉£ r (pattern match) 490

µSmalltalk

deonition 〈d, ξ, σ,F〉 → 〈ξ2, σ2,F 2〉 684

expression onishes 〈e, ρ, csuper, F, ξ, σ,F〉 ⇓ 〈v;σ2,F 2〉 679

expression returns 〈e, ρ, csuper, F, ξ, σ,F〉 ↑ 〈v, F 2;σ2,F 2〉 679

expressions return 〈[e1, . . . , en], ρ, csuper, F, ξ, σ,F〉 ↑ 〈v, F 2;σ2,F 2〉 679

expressions onish 〈[e1, . . . , en], ρ, csuper, F, ξ, σ,F〉 ⇓ 〈[v1, . . . , vn];σ
2,F 2〉 679

primitive 〈p, [v1, . . . , vn], ξ, σ,F〉 ⇓p 〈v;σ2,F 2〉 679

method dispatch m� c@ imp 681

Typing judgments

Language Expression or related form Page Deonition Page

Typed Impcore Γξ,Γφ,Γρ ` e : τ 335 〈d,Γξ,Γφ〉 → 〈Γ2

ξ,Γ
2

φ〉 336

Typed µScheme ∆,Γ ` e : τ 363 〈d,Γ〉 → Γ2 366

nano0ML Γ ` e : τ (nondeterministic) 413 〈d,Γ〉 → Γ2 416

θΓ ` e : τ (with substitutions) 418 〈d,Γ〉 → Γ2 416

C,Γ ` e : τ (with constraints) 418 〈d,Γ〉 → Γ2 416

µML (as in nano0ML) 418 (as in nano0ML) 416

Γ,Γ2 ` p : τ (pattern) 496

Molecule (14 judgment forms are shown in Chapter 9, Figure 9.14) 565

Well­formedness judgments

Language Form Judgment Page

Typed Impcore Type τ is a type 334

Typed µScheme Kind κ is a kind 354

Type ∆ ` τ :: κ 355

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Functions &

Syntax

xix

Evaluation and type­checking functions

Evaluation Type checking and elaboration

Language Exp. Page Def. Page Exp. Page Def. Page

Impcore eval 48 evaldef 53

µScheme eval 155 evaldef 159

µScheme+ eval 227 evaldef 159

µScheme (in ML) eval 309 evaldef 311

Typed Impcore eval S397 evaldef S398 typeof 338 typdef 341

Typed µScheme eval S411 evaldef S412 typeof (E) 366 typdef (E) 366

nano0ML eval S429 evaldef S430 typeof 437 typdef 439

µML ev 492 evalDataDef 490 ty 497 typeDataDef 489

µSmalltalk eval 688 evaldef 693

Other judgments

Language Concept Judgment Page

µScheme Primitive equality v1 ≡ v2 150

µScheme+ Tail position e is in tail position 253

µScheme Free term variable y ∈ fv(e) 316

Typed µScheme Free type variable α ∈ ftv(τ) 371

Typed µScheme Type equivalence τ ≡ τ 2 369

Typed µScheme Capture0avoiding substitution τ 2[α 7→ τ] ≡ τ 22 374

Nano0ML Constraint satisoed C is satisoed 428

Tables relating judgments and functions

Language Evaluation Type checking

Impcore page 40 4

µScheme (C code) page 153 4

µScheme (ML code) page 304 4

Typed Impcore 4 page 338

Typed µScheme 4 page 367

nano0ML 4 page 432

µML page 492 page 491

Concrete syntax

Language Page Language Page

Impcore 18 nano0ML 404

µScheme 93 µML 467

µScheme+ 203 Molecule 536

Typed Impcore 330 µSmalltalk 628

Typed µScheme 353

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Notation

xx

Symbols and notation, in order of appearance

Impcore

::= deones a syntactic category in a grammar, page 17
∣

∣ separates alternatives in a grammar, page 17
{

· · ·
}

repeatable syntax in a grammar, page 17

ξ global0variable environment (<ksee=), page 28

φ function environment (<fee=), page 29

ρ value environment (<roe=), page 29

x object0language variable, page 29

v value, page 29

7→ shows binding in function or environment, page 29

y object0language variable, page 29

{} empty environment, page 29

d deonition, page 30

e expression, page 30

〈· · · 〉 brackets wrapping abstract0machine state, page 30

⊕ object0language operator, page 30

⇓ relates initial and onal states of big0step evaluation (<yields=), page 30

dom domain of an environment or function, page 32

∈ membership in a set, page 32

f name of object0language function, page 36

→ relates initial and onal states in evalution of deonitions, page 37
·

= deones syntactic sugar, page 66

[[· · ·]] brackets used to wrap syntax (<Oxford brackets=), page 81
[

· · ·
]

optional syntax in a grammar, page 86

µScheme

P in a mini0index, marks a primitive function (<primitive=), page 95

O(· · ·) asymptotic complexity, page 100

k a key in an association list, page 105

a an attribute in an association list, page 105

{· · · } justiocation of a step in an equational proof, page 114

(|· · · |) a closure, page 122

◦ function composition (<composed with=), page 125

:: inox notation for cons (<cons=), page 128
∨ disjunction (<or=), page 139

¬ Boolean complement (<not=), page 139

σ the store: a mapping of locations to values (<sigma=), page 144

⊆ the subset relation, renexively closed (<subset=), page 181

µScheme+

[] an empty stack (<empty=), page 210

F frame on an evaluation stack (<frame=), page 210

S evaluation stack, page 210

• a hole in an evaluation context (<hole=), page 211

eý e2 lowering transformation (<lowerexp=), page 214

www.cambridge.org/9781107180185
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages: Build, Prove, and Compare
Norman Ramsey
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Notation

xxi

→ the reduction relation in a small0step semantics (<steps to=), page 215

e/v abstract0machine component: either an expression or a value, page 215

→7 the renexive, transitive closure of the reduction relation

(<normalizes to=), page 215

C an evaluation context in a traditional semantics, page 241

λ the Greek way of writing lambda, page 242

Garbage collection

H the size of the heap, page 260

L the amount of live data, page 261

γ the ratio of heap size to live data (<gamma=), page 262

Type systems

τ a type (<tau=), page 333

Γ type environment; maps term variable to its type (<gamma=), page 333

→ in a function type, separates the argument types from the result type

(<arrow=), page 334

× in a function type, separates the types of the arguments (<cross=), page 334

` in a judgment, separates context from conclusion (<turnstile=), page 335

e : τ ascribes type τ to term e (<e has type τ =), page 335
→ relates type environments before and aver typing of deonition, page 336

µ a type constructor (<mew=), page 347

× forms pair types or product types (multiplication is · on page S15)

(<cross=), page 348

+ used to form sum types, page 349

[[τ]] the set of values associated with type τ , page 350
κ a kind, which classioes types (<kappa=), page 354

∗ the kind ascribed to types that classify terms (<type=), page 354

⇒ used to form kinds of type constructors (<arrow=), page 354

τ :: κ ascribes kind κ to type τ (<τ has kind κ=), page 354
∆ a kind environment (<delta=), page 354

α, β, γ type variables (<alpha, beta, gamma=), page 356

∀ used to write quantioed, polymorphic types (<for all=), page 356

(τ1, . . . , τn) τ τ applied to type parameters τ1, . . . , τn, page 357
≡ type equivalence, page 369

∩ set intersection, page 374

∅ the empty set (<empty=), page 374

Type inference

σ a type scheme (<sigma=), page 408

θ a substitution (<THAYT0uh=), page 409

� the instance relation (<instance of=), page 410

θI the identity substitution, page 411

τ ∼ τ 2 simple type0equality constraint (<τ must equal τ 2=), page 418
C type0equality constraint, page 418

T the trivial type0equality constraint, page 420

≡ equivalence of constraints, page 432

Abstract data types

H· · ·I bag brackets, page 550

<: the subtype relation, page 561

www.cambridge.org/9781107180185
www.cambridge.org

