
Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages
Norman Ramsey
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

This textbook, suitable for an undergraduate or master’s‐level course in program‐

ming languages, is about great language‐design ideas, how to describe them pre‐

cisely, and how to use them effectively. The ideas revolve around functions, types,

modules, and objects. They are described using formal semantics and type theory,

and their use is illustrated through programming examples and exercises.

The ideas, descriptive techniques, and examples are conveyed by means of

bridge languages. A bridge language models a real programming language, but it is

small enough to describe formally and to learn in a week or two, yet big enough

to write interesting programs in. The bridge languages in this book model Algol,

Scheme, ML, CLU, and Smalltalk, and they are related to many modern descen‐

dants, including C, C++, OCaml, Haskell, Java, JavaScript, Python, Ruby, and Rust.

Each bridge language is supported by an interpreter, which runs all the exam‐

ples and supports programming exercises. The interpreters, which are presented

in depth in an online Supplement, are carefully crafted and documented. They can

be used not only for exercises but also to implement students’ own language‐design

ideas.

The book develops these concepts:

• Abstract syntax and operational semantics

• Definitional interpreters

• Algebraic laws and equational reasoning

• Garbage collection

• Symbolic computing and functional programming

• Parametric polymorphism

• Monomorphic and polymorphic type systems

• Type inference

• Algebraic data types and pattern matching

• Data abstraction using abstract types and modules

• Data abstraction using objects and classes

The concepts are supported by the bridge languages as shown in the Introduc‐

tion (Table I.2, page 5), which also explains each bridge language in greater detail

(pages 3 to 7).

The book calls for skills in both programming and proof:

• As prerequisites, learners should have the first‐year, two‐semester program‐

ming sequence, including data structures, plus discrete mathematics.

• To extend andmodify the implementations inChapters 1 to 4, a learnerneeds

to be able to read and modify C code; the necessary skills have to be learned

elsewhere. C is used because it is the simplest way to express programs that

work extensively with pointers andmemory, which is the topic of Chapter 4.

ix

www.cambridge.org/9781107180185
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages
Norman Ramsey
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

x

To extend and modify the implementations in Chapters 5 to 10, a learner

needs to be able to read and modify Standard ML code; the necessary skills

are developed in Chapters 2, 5, and 8. Standard ML is used because it is a

simple, powerful language that is ideally suited to writing interpreters.

• To prove the simpler theorems, a learner needs to be able to substitute equals

for equals and to fill in templates of logical reasoning. To prove the more

interesting theorems, a learner needs to be able towrite a proof by induction.

DEſıGNıNG A COURſE TO UſE THıſ BOOĸ

Some books capture a single course, and when using such a book, your only choice

is to start at the beginning and go as far as you can. But in programming languages,

instructors have many good choices, and a book shouldn’t make them all for you.

This book is designed so you can choosewhat to teach andwhat to emphasizewhile

retaining a coherent point of view: how programming languages can be used effec‐

tively in practice. If you’re relatively new to teaching programming languages and

are not sure what to choose, you can’t go wrong with a course on functions, types,

and objects (Chapters 1, 2, 6, 7, and 10). If you have more experience, consider the

ideas below.

Programming Languages: Build, Prove, and Compare gives you interesting, pow‐

erful programming languages that share a common syntax, a common theoretical

framework, and a common implementation framework. These frameworks sup‐

port programmingpractice in the bridge languages, implementation and extension

of the bridge languages, and formal reasoning about the bridge languages. The de‐

sign of your course will depend on how you wish to balance these elements.

• To unlock the full potential of the subject, combine programming practice

with theoretical study and work on interpreters. If your students have only

two semesters of programming experience and no functional programming,

you can focus on the core foundations in Chapters 1 to 3: operational seman‐

tics, functional programming, and control operators. You can supplement

that work with one of two foundational tracks: If your students are com‐

fortable with C and pointers, they can implement continuation primitives

in µScheme+, and they can implement garbage collectors. Or if they can

make a transition from µScheme to Standard ML, with help from Chapter 8,

they can implement type checkers and possibly type inference.

If your students have an additional semester of programming experience or

if they have already been exposed to functional programming, your course

can advance into types, modules, and objects. When I teach a course like

this, it begins with four homework assignments that span an introduction

to the framework, operational semantics, recursive functions, and higher‐

order functions. After completing these assignments, my students learn

Standard ML, in which they implement first a type checker, then type infer‐

ence. This schedule leaves a week for programming with modules and data

abstraction, a couple of weeks for Smalltalk, and a bit of time for the lambda

calculus.

A colleague whose students are similarly experienced begins with Impcore

and µScheme, transitions to Standard ML to work on type systems and

type inference, then returns to the bridge languages to explore µSmalltalk,

µProlog, and garbage collection.

If your students have seen interpreters and are comfortable with proof by

induction, your course can move much more quickly through the founda‐

www.cambridge.org/9781107180185
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages
Norman Ramsey
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Designing a course

to use this book

xi

tional material, creating room for other topics. When I taught a course like

this, it explored everything inmy other class, then added garbage collection,

denotational semantics, and logic programming.

• A second design strategy tilts your class toward programming practice, ei‐

ther de‐emphasizing or eliminating theory. To introduce programming prac‐

tice in diverse languages, Build, Prove, and Compare occupies a sweet spot be‐

tween two extremes. One extreme “covers” N languages in N weeks. This

extreme is great for exposure, but not for depth—when students must work

with real implementations of real languages, a week or even two may be

enough to motivate them, but it’s not enough to build proficiency.

The other extreme goes into full languages narrowly but deeply. Students

typically use a couple of popular languages, and overheads are high: each

language has its own implementation conventions, and students must man‐

age the gratuitous details and differences that popular languages make in‐

evitable.

Build, Prove, and Compare offers both breadth and depth, without the over‐

head. If you want to focus on programming practice, you can aim for “four

languages in tenweeks”: µScheme,µML,Molecule, andµSmalltalk. You can

bring your students up to speed on the common syntactic, semantic, and im‐

plementation frameworks using Impcore, and that knowledge will support

them through to the next four languages. If you have a couple of extra weeks,

you can deepen your students’ experience by having them work with the in‐

terpreters.

• A third design strategy tilts your class toward applied theory. Build, Prove,

and Compare is not suitable for a class in pure theory—the bridge languages

are too big, the reasoning is informal, and the classic results are miss‐

ing. But it is suitable for a course that is primarily about using formal

notation to explain precisely what is going on in whole programming lan‐

guages, reinforced by experience implementing that notation. Your stu‐

dents can do metatheory with Impcore, Typed Impcore, Typed µScheme,

and nano‐ML; equational reasoning with µScheme; and type systems with

Typed Impcore, Typed µScheme, nano‐ML, µML, and Molecule. They can

compare how universally quantified types are used in three different designs

(Typed µScheme, nano‐ML/µML, and Molecule).

• What about a course in interpreters? If you are interested in definitional inter‐

preters,Build, Prove, and Compare presentsmanywell‐crafted examples. And

the online Supplement presents a powerful infrastructure that your students

can use to build more definitional interpreters (Appendices F to I). But apart

from this infrastructure, the book does not discuss what a definitional in‐

terpreter is or how to design one. For a course on interpreters, you would

probably want an additional book.

All of these potential designs are well supported by the exercises (345 in total),

which fall into three big categories. For insight into how to use programming lan‐

guages effectively, there are programming exercises that use the bridge languages.

For insight into the workings of the languages themselves, as well as the formalism

that describes them, there are programming exercises that extend or modify the

interpreters. And for insight into formal description and proof, there are theory ex‐

ercises. Model solutions for some of the more challenging exercises are available

to instructors.

www.cambridge.org/9781107180185
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages
Norman Ramsey
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

xii

A fewexercises are simple enough and easy enough that your students canwork

on them for 10 to 20 minutes in class. But most are intended as homework.

• To introduce a new language like Impcore, µScheme, µML, Molecule, or

µSmalltalk, think about assigning from a half dozen to a full dozen program‐

ming exercises, most easy, some of medium difficulty.

• To introduce proof technique, think about assigning around a half dozen

proof problems, maybe one or two involving some form of induction (some

metatheory, or perhaps an algebraic law involving lists).

• To develop a deep understanding of a single topic, assign one exercise or a

group of related exercises aimed at that topic. Such exercises are provided

for continuations, garbage collection, type checking, type inference, search

trees, and arbitrary‐precision integers.

CONTENTſ AND ſCOPE

Because this book is organized by language, its scope is partly determined by what

the bridge languages do and do not offer relative to the originals on which they are

based.

• µScheme offers define, a lambda, and three “let” forms. Values include sym‐

bols, machine integers, Booleans, cons cells, and functions. There’s no nu‐

meric tower and there are no macros.

• µML offers type inference, algebraic data types, and pattern matching.

There are no modules, no exceptions, no mutable reference cells, and no

value restriction.

• Molecule offers a procedural, monomorphic core language with mutable al‐

gebraic types, coupled to amodule language that resembles OCaml and Stan‐

dard ML.

• µSmalltalk offers a pure object‐oriented language in which everything is an

object; even classes are objects. Control flow is expressed via message pass‐

ing in a form of continuation‐passing style. µSmalltalk provides a modest

class hierarchy, which includes blocks, Booleans, collections, magnitudes,

and three kinds of numbers. And µSmalltalk includes just enough reflection

to enable programmers to add newmethods to existing classes.

Each of the languages supports multiple topical themes; the major themes are

programming, semantics, and types.

• Idiomatic programming demonstrates effective use of proven features that are

found in many languages. Such features include functions (µScheme, Chap‐

ter 2), algebraic data types (µML, Chapter 8), abstract data types andmodules

(Molecule, Chapter 9), and objects (µSmalltalk, Chapter 10).

• Big­step semantics expresses the meaning of programs in a way that is easily

connected to interpreters, and which, with practice, becomes easy to read

and write. Big‐step semantics are given for Impcore, µScheme, nano‐ML,

µML, and µSmalltalk (Chapters 1, 2, 7, 8, and 10).

• Type systems guide the construction of correct programs, help document

functions, and guarantee that language features like polymorphism and data

abstraction are used safely. Type systems are given for Typed Impcore,

Typed µScheme, nano‐ML, µML, and Molecule (Chapters 6 to 9).

www.cambridge.org/9781107180185
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-18018-5 — Programming Languages
Norman Ramsey
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Software and other

supplements

xiii

In addition the major themes and the concepts listed above, the book addresses,

to varying degrees, these other concepts:

• Subtype polymorphism, in µSmalltalk (Chapter 10)

• Light metatheory for both operational semantics and type systems (Chap‐

ters 1, 5, and 6)

• Free variables, bound variables, variable capture, and substitution, in both

terms and types (Chapters 2, 5, and 6)

• Continuations for backtracking search, for small‐step semantics, and for

more general control flow (Chapters 2, 3, and 10)

• The propositions‐as‐types principle, albeit briefly (Chapter 6 Afterword)

A book is characterized not only by what it includes but also by what it omits.

To start, this book omits the classic theory results such as type soundness and

strong normalization; although learners can prove some simple theorems and look

for interesting counterexamples, theory is used primarily to express and commu‐

nicate ideas, not to establish facts. The book also omits lambda calculus, because

lambda calculus is not suitable for programming.

The book omits concurrency and parallelism. These subjects are too difficult

and too ramified to be handled well in a broad introductory book.

And for reasons of space and time, the book omits three engaging program‐

ming models. One is the pure, lazy language, as exemplified by Haskell. An‐

other is the prototype‐based object‐oriented language,made popular by JavaScript,

but brilliantly illustrated by Self. The third is logic programming, as exemplified

by Prolog—although Prolog is explored at length in the Supplement (Appendix D).

If you are interested in µHaskell, µSelf, or µProlog, please write to me.

SOFTWARE AND OTHER ſUPPLEMENTſ

The software described in the book is available from the book’s web site, which is

build‑prove‑compare.net. The web site also provides a “playground” that allows

you to experiment with the interpreters directly in your browser, without having to

download anything. And it holds the book’s PDF Supplement, which includes ad‐

ditional material on multiprecision arithmetic, extensions to algebraic data types,

logic programming, and longer programming examples. The Supplement also de‐

scribes all the code: both the reusable modules and the interpreter‐specific mod‐

ules.

www.cambridge.org/9781107180185
www.cambridge.org

