Index

accelerometers 730

capacitive 734–5
electromechanical 730, 732–3
piezoelectric 735–42
vibrometer and 733–4
active-circuit analysis 277
isolation amplifiers 277–81
operational amplifiers 281–97
active elements 223, 230
active microphones 743
actuator 353, 590, 592
adder circuit 291, 292
adjoint matrix 30–1
algebraic manipulations 18–19, 36
alternating current (AC) 433, 558
aluminum–tungsten thermometer 701–2
analog devices 433
analogous relations

element laws 12–13
flow and effort 11–12
variables and equivalent coefficients 13, 14
analysis, physical systems 4
anti-commutative property, cross product 22–3
armature 431–4
armature-controlled DC motors 436, 438
angular velocity 440
block diagram 441
electrical subsystem 439
expanded block diagram 441–2
Kirchhoff’s voltage law 439
with load 448, 452–3
mechanical subsystem 439
state-space representation 442–3
transfer function 441
asymptotes 623
angles vs. n − m 626
root locus 624–5
asymptotically stable system 545–6
automatic control system 589
back emf, DC motor 439–40, 444
balanced force micro-accelerometer 734–5
band-pass passive filter 274–7
bandwidth-limited differentiator circuit 289
bandwidth-limited integrator circuit 287, 288
Bernoulli equation 370–4
bimetallic strip thermometer 697
copper–steel and aluminum–tungsten 701–3
dynamic modeling 698–701
schematic and lumped-parameter model 699
spiral 697, 698
Biot number 345–6
block diagrams 396, 398–9, 401
armature-controlled DC-motor 441–2
branch/takeoff point 414
closed-loop 592
DC motor with load 455
dynamic system with 417
electrical circuit 258–65
equivalent transformation 415–16, 418–19, 423–4
expanded 441–2, 445–6
field-controlled DC-motor 446
linear time-invariant system 414–15
mechanical systems 181–5
open-loop 592, 688
parts of 462–3
PID controller 602
in s-domain 9–10, 182, 457, 461
second-order system 420–1
signal distribution 417–18
sum point 414
system transfer function 418–19
in time domain 10–11, 457–60
time-invariant systems 97–8
Bode diagram/plot 562–3
first-order system 564–6
second-order system 568–71
bounded input–bounded output (BIBO) 545–6
branches 623–4
branch point 414–15
breakaway point 625, 627
break frequency 565, 569
break-in point 625, 627
cantilever-beam accelerometer 737–8
capacitive accelerometers 734–5
capacitors 227
cast iron 730
cause-and-effect approach 414
closed-loop control system 590–2
advantages 591
block diagrams 592
coupled engine–propeller system 695–7
disturbance rejection 598–9
output of 600
parameter variations 596–8
PID gains effect 606
root locus of 621–2
speed control, DC motor 595
step response 609
system response improvement 599–601
commutator 435–6
complementary homogeneous equation 80–2
complete solution, linear differential equation 91–2
complex numbers
algebraic manipulations 36
complex conjugates 35–6
definition 34
magnitude and phase angle 34–5
phase angles, quadrants 35
Index 779

trigonometric manipulations 36–7
computation software 13, 15
condenser microphone 753–6
conduction 336, 337
conservative force 119
constant-pressure process 355
constant-temperature process 356
constant-volume process 356
continuous-time models vs. discrete-time models 5
controlled mechanical system 399–401
control logic 590
control systems 589
actuator 590
closed-loop 590–2
controller 590
liquid-level 652–3
open-loop 590
PID gain tuning 638–9
plant 589–90
robotic system 648–50
robustness of 596
room-temperature 591–2
sensor 590
stability analysis 613–15
steady-state error 615–19
steady-state response 611–13
thermal 650–2
transfer function formulation 592–5
transient response 611–13
by zero placement 639–48
convection 337, 341
convolution theorem 52–3
copper–steel thermometer 701–2
corner frequency 565, 569
coupled engine–propeller system 686–7
closed-loop system 695–7
open-loop system 687–95
coupling relations 397
cover-up method 54
Cramer’s rule 28–30, 144
critically damped system 517, 520, 523, 525
crossover points 627–8
cross product 21–3
current divider rule 237–9
current element 426–7
current-isolation amplifiers 279
current-to-voltage converter 296
cutoff frequency 271, 272
damping elements, rotational systems 149–51
damping force 123, 125, 770
damping ratio 518, 521, 532, 567–8, 571
damping states, second-order system 517–18
D’Arsonval meter/movement 430–3
DC electrical circuit 225
DC motors. See direct current (DC) motors
degrees of freedom (DOFs) 160, 179, 667, 669
diagonal matrix 24
differential equations
applications 63
linear and nonlinear 63–4
linear ordinary 70–95
partial 66–7
spring-mass-damper dynamic system 64–5
state equations 67–9
two-mass dynamic system 65–6
See also specific differential equations
differentiator circuits 288–90
dipolar-charge electrets 735
direct current (DC) motors 396
armature-controlled 438–43
bearings 434
electrical subsystems 437–9
elements 434
field-controlled 443–7
with load 447–56
mechanical subsystems 437–9
modeling 436–8
operations 433–6
rotor 434
shaft 434
simplification 456–7
stator 434
torque-current relations 437–8
direct integration 71–2
first-order differential equation 72
second-order differential equation 73
discrete-time models 5
displacement transmissibility 570, 571
distributed models vs. lumped models 4
DOFs. See degrees of freedom (DOFs)
dominant poles 543–4, 635
dot product 21–3
dry friction 125–7
dynamic modeling, half-car model 669–70
Lagrangian approach 672–3
Newtonian approach 670–2
dynamic responses
Mathematica 198–203, 297–306
MATLAB 191–8, 378–83
dynamic systems
analogous relations 11–13
application problems 666–756
classification 4–5
combined systems and system modeling techniques 396–485
components 1–2
computation software 13, 15
electrical systems 222–306
feedback control systems 589–653
input and output 2–3
mathematics fundamentals 16–102
mechanical systems 114–203
system model representations 6–11
system response analysis 502–77
thermal and fluid systems 334–83
units 15
electret(s)
–based microphones 755–6
dipolar-charge 735
piezoelectric crystal 736
real-charge 735
electrical circuit 223. See also electrical systems
electrical subsystem 397–8, 425, 442
condenser microphone 754
DC motor 437–9
dynamic microphone 744
field-controlled DC motor 443–5
galvanometer 432
loudspeaker 746
open-loop system 687, 688
electrical systems 222–3
active-circuit analysis 277–97
block diagrams 258–65
current and voltage 224–5
definition 223
fundamentals 223–30
impedance 230–41
Kirchhoff’s laws 242–4
electrical systems (cont.)
Mathematica, dynamic responses
297–306
passive-circuit analysis 244–57
passive filters 271–7
state-space representation 265–70
electroacoustic devices 742–56
electromagnetism 425–30
electromechanical systems 396, 425
D’Arsonval meter 430–3
electromagnetism 425–30
electromotive force (emf) 429
electronic cigarettes 702
energy conservation 338–9
energy functions 179
kinetic energy 177–8
potential energy 119, 178
Rayleigh dissipation function 178
equations of motion derivation
rotational systems 145–53
translational systems 130–8
equality of signal 416
Euler’s formula 34, 37, 44, 520
Evans, W. R. 619
exponential function 43–4, 47
Faraday’s law of induction 429, 744
feedback control systems 590
root locus 619–48
rotor system 686–7
Simulink model 611
step response 637, 642, 646
time response 613, 615
by zero placement 640–1
See also closed-loop control system;
control systems
ferroelectrics 736
field-controlled DC motor 436
block diagram 446
with load 450
mechanical and electrical subsystems
443–5
state-space representation 446–7
final-value theorem 52, 507–8
finite-dimensional system 4
first-order differential equations
direct integration 72
particular solutions 82–4
piecewise-continuous forcing
function 78–9
separation of variables 73–4
first-order high-pass filter 289
first-order systems 457
applications 508
Bode diagram 564–6
forced response 509–10
free response 509
frequency response 564–6
general inputs, response to 512–13
impulse response 510–11
PID controller 603
ramp response 511–12
step response 511
time constant estimation 513–14
fluid capacitance 356, 358–9
fluid resistance 356, 360–2
fluid systems
duct/pipe 354–5
gases, equation of state 355–6
hydraulic systems 353
mass conservation 354
pneumatic systems 353
properties 334
SI units 759
See also liquid-level systems
forced response 70–1
boundedness 550
first-order systems 509–10
second-order system 522
stability by 545
system response analysis 503–5
forces and moments 116–17
force transmissibility 570–1
free-body diagrams and auxiliary plots
equations of motion derivation 130–6
motor–propeller assembly 151–3
rigid-body system 172
rotational systems 151–3
translational systems 127–9
free response 70–1
damping cases 520–2
first-order systems 509
stability by 545–6
system response analysis 503–5
frequency domain, system response
analysis 558–71
frequency response 558
advantages 558
Bode diagram/plot 562–3
first-order systems 564–6
general concepts 559–61
Nyquist plot 563–4
plots 561–4
second-order systems 567–71
utilities 560
friction forces 125–7, 150–1
galvanometer 430–3
geared systems 162, 164–8
kinematic relation 163
spur gears 162–3
torque ratio 163–4
work done by torques 164
general differential equations 90
half-car model 667, 669–71
heat energy 336, 338
heating elements 704
governing equations 704–6
properties of 704
stainless-steel 704
temperature change and elongation
706–12
heat transfer
donduction 336, 337
convection 337
radiation 337–8
thermal resistance 340–1
higher-order systems, time responses
539–44
dominant poles 543–4
general 541–2
model reduction 543–4
third-order systems 540–1
high-fidelity audio systems 743
high-pass filters 272–4, 275
Hooke’s law 121, 728
hydraulic systems 353, 370
ideal current source 223
ideal gas law 355
ideal voltage source 223
identity matrix 24
imaginary axis crossings 627
impedance
circuit analysis 231
current divider rule 237–9
definition 230–1
Index 781

differentiator op-amp circuit 288, 289

equivalent form 231, 233–5

tegrator op-amp circuit 285, 287

inverter op-amp circuit 285

lead-lag circuit 290–1

low-pass filter 271

op-amp 281–3

parallel connection 232–3

series connection 231–2

voltage divider rule 235–7, 239–41

voltage-isolation amplifier 278–9

impulse response
damping cases 522–4

first-order systems 510–11

mechanical systems 549

inductors 228–9

inertia effect 368

infinite-dimensional system 4

initial-value theorem 51–2

input-output differential-equations 399

input–output relations 2–3, 258

integro-differential equations 399

integrator circuits 285–8

International System of Units (SI) 15

base units 758

conversion factors 760

electrical and magnetic systems 759

fluid capacitance 358

mechanical systems 758–9

thermal and fluid systems 759–60

thermal capacitance 339

inverse Laplace transform 38

imaginary and complex poles 58–9

partial fraction expansion 53–8

time-domain response 76

inverse piezoelectric effect 736

inverter (sign-changer) circuits 285

invertible matrix 30

isentropic process 356

isobaric process 355

isochoric process 356

isolation amplifiers 277–81

non-inverting op-amps 294–5

isothermal process 356

kinetic energy 177–8

Kirchoff’s current law (KCL) 242, 247, 283, 284, 291, 293

Kirchoff’s voltage law (KVL) 242, 245, 258, 271, 276, 278, 279, 432, 439, 444

lag circuit 287

lag/first-order low-pass filter 287

lag-lead op-amp circuit 290

Lagrange’s equations 127, 179–81

Lagrangean approach 177, 670, 672–3

laminar flow 261

Laplace transform 37, 398, 440

convolution theorem 52–3

definition 38–9

differentiation (derivative property) 48–9

evaluation 42

exponential function 43–4

factoring 42

final-value theorem 52

functions, derivation 46–8

governing equations 409, 412, 421

initial-value theorem 51–2

integration (integral property) 49–50

linearity property 42

multiplication by exponential and t 46

pairs 39, 40

piecewise-continuous functions 60–2

poles and zeros, function $F(s)$ 39, 41

ramp function 43

sinusoidal function 44

step function 43

time-shifted function 44–5

lead circuit 289, 290

lead-lag op-amp circuit 290

Lenz’s law 429

lever–spring system 155–6

linear differential equation 63–4

linear integro-differential expression 50–1

Linear models vs. nonlinear models 4–5

linear ordinary differential equations 51

direct integration 71–3

free response and forced response 70–1

Laplace transform 74–9

method of undetermined coefficients 80–92

piecewise-continuous forcing functions 93–5

separation of variables 73–4

linear resistor 227

linear state-space representations 402–3, 408

linear time-invariant systems 398

block diagram 97, 414–15

Laplace transform for 398

spring–mass–damper system in 460–1

stability states of 545–6

steady-state response 414, 558

time response 571–7

liquid-level systems
dynamic modeling 363–8

energy sources 363

engineering applications 334

flow source 363

fluid capacitance 358–9

fluid resistance 360–2

hydraulic systems 356

mass conservation 359–60

orifice resistance formulas 362–3

pressure source 363

storage tanks 357

water purification 711–23

loading effect 281

loop currents 245

loop method 245–7, 253

Lorentz’ force law 426, 429

loudspeaker 743

actual system vs. second-order approximation 750–1

block diagram 747

dynamic response 748–9

input voltage 749

mechanical and electrical subsystems 746

original system vs. second-order expression 751, 752

piecewise-continuous input 749, 750

simple intercom assembly 753

transfer function 749–50

low-pass filters 271–3

lumped masses 120–1, 175

magnetic field strength 425

magnetic force 426–8

manual PID tuning 606

marginally stable system 546, 548

mass elements 147, 172

MATLAB II, 99–100, 397, 573–6, 761

bode diagrams 562

dynamic responses 191–8, 378–83

equation solvers 763
MATLAB (cont.)
frequency response 764
function blocks, nonlinear state equations 576–7
functions for graphics 763
linear/nonlinear systems, time response 573–7
mathematical functions 762
matrix functions 762
Nyquist plots 563
operators and special characters 762
root locus 628, 631–2
state-space formulation 763
time response of car 683–6
transfer function formulation 763
See also Simulink
matrix algebra
definition 24
determinants 25–30
inverse of 30–1
operations 32–3
single-matrix operations 24–5
matrix determinants 25–30
matrix inverse 30–1
maximum overshoot 530–2
mechanical subsystem 397–401, 425, 442
DC motor 437–9
DC motor with load 447
field-controlled DC motor 443–5
open-loop system 687, 688
mechanical systems 114
block diagrams 181–5
energy approach 177–81
fundamental principles 115–20
Mathematica 198–203
MATLAB 191–8
rigid-body systems, plane motion 169–77
rotational systems 144–68
state-space representations 185–91
translational systems 120–44
mechanical workhorse 434
metric system 15
micro-electromechanical systems
(MEMS) accelerometers 734, 737
microphones, dynamic 743
condenser 753–6
current output 746
fidelity 743
loudspeaker 746–53
mechanical and electrical subsystems 744–6
parts 743
passive and active 743
sound waves 743–4
velocity-sensitive 746
voltage output 745
Modelica System Model 481–2
modeling and simulation 3
by MATLAB/Simulink 464–75
by Wolfram Mathematica 475–85
model parameters 515, 535
musical interpretation 529
moment of force 116–17
monocrystalline 736
motor–propeller assembly 152–3, 686–7
multiple inputs and multiple outputs (MIMO systems) 2, 411, 414, 421
multiplier (amplifier) circuits 283–5
NDSolve functionality 99, 100
net currents 245
Newtonian approach 177, 670–2
Newton’s laws of motion 115–16
Nichols, N. B. 606
node method 247–9
node voltages 247
non-conservative force 119
non-inverting op-amp circuits 293–5
nonlinear air damping effect 692–5
nonlinear differential equation 63
nonlinear state equations, MATLAB 576–7
nonlinear systems, time response 571–7
nonsingular matrix 30
Norton’s theorem 251, 255–6
null matrix 24
numerical integration method 572
Nyquist plot 563–4
Ohm’s law 226, 227, 245, 247, 251, 278, 291, 293
open-loop control system 590
block diagrams 592, 688
configuration 591
coupled engine–propeller system 687–95
ideal case 688–90
nonlinear air damping effect 692–5
output of 600
parameter variations 690–2
parts of 687–8
speed control, DC motor 595
open-loop poles/zeros 621, 623
operational amplifiers (op-amps)
circuits 283
adder, subtractor and comparator 281–2
amplification factor 282
converters 295–6
differentiator 288–90
ideal inverting 281
integrator 285–8
integrator–differentiator combination 290–1
inverter (sign-changer) 285
with load 296–7
multiplier (amplifier) 283–5
non-inverting amplifiers 293–5
non-inverting input 281, 283
typical inverting 282
ordinary differential equations (ODEs) 4
orifice resistance 362–3
overdamped system 517, 520–1, 523, 525
parallel-axis theorem 146, 147
parallel connection, impedance 232–3
partial differential equations (PDEs) 4, 66–7
partial fraction expansion, inverse
Laplace transform 53–8
particle kinematics 117–18
particular solution 80, 82
first-order differential equations 82–4
second-order differential equations 85–91
passive-circuit analysis 244
loop method 245–7, 253
node method 247–9
Norton’s theorem 251, 255–6
superposition theorem 249–50, 256–7
Thevenin’s theorem 250–1, 253–5
passive elements 223
passive filters 271
band-pass filter 274–7
high-pass filter 272–4, 275
low-pass filter 271–2, 273

782 Index
passive microphones 743
peak time 530, 531
performance specification parameters
529–36
permanent-magnet moving-coil
movement 431
phase angles 34, 35, 529, 531, 569, 677
PID controller. See proportional–
integral–derivative (PID) controller
PID feedback control law 50
piecwise-continuous forcing functions
93–5
piecwise-continuous functions 60–2
piezoelectric accelerometers 738–42
construction of 737
crystals 735–7
electrets 735–6
ferroelectrics 736
inverse piezoelectric effect 736
moderate-to-low cost 737
monocrystalline materials 736
Young’s modulus 736–7
piezoelectric effect 736, 737
piezoresistive accelerometers 737–8
plant 397, 589–90
pneumatic systems 353
basic elements 374–6
fundamental principle 374
modeling 376–8
polytropic process 356
potential energy 119, 178, 357
potentiometers 239–40
principle of impulse and momentum
120, 147
principle of work and energy 118–19,
146–7
proportional–integral–derivative (PID)
controller 601–6
algorithm 601–11
block diagram 602
first-order system 603
gain tuning 606–10, 638–9
manual tuning 606
proportional (P) 602
proportional plus derivative (PD) 593–4, 603
proportional plus integral (PI) 603
Simulink, system responses 611
step-response curves 605
tuning 606
Ziegler–Nichols gain tuning 606–10
puddles 153–4
quarter-car suspension model 133–5,
142, 179, 667
quasi-static deflections of car 675–6
radiation 337–8, 341
ramp function 43
ramp response, first-order systems
51–12
Rayleigh dissipation function 178
real-charge electrets 735
rectangular pulse, piecewise-
continuous function 61–2
resistive-heating elements 702. See also
heating elements
resistors 226–7
resonant frequency 567–8
resonant response 538
resonant vibration 85–8
reversible adiabatic process 356
right-hand rule 21–3, 145, 426, 427, 430
rigid-body systems, plane motion
free-body diagrams and auxiliary
plots 172
fundamental principle 171–2
lumped masses and 175–7
mass center and relative motion
169–71
mass elements 172
puddles/disks with movable pins
172–3
spring and damping elements 172
wheel in rolling and sliding motion
173–5
rise time 530, 531
robotic system 648–50
root locus method 619
analysis and design 632–48
angle criteria 623
asymptotes 623–6
branches 623–4
breakaway point 625, 627
break-in point 625, 627
closed-loop system 621–2
concepts 620–2
control system design 638–48
crossover points 627–8
feedback system 634–5
magnitude criteria 623
vs. parameter k 620–1
plot 620–1
properties 622–8
real-axis segments 623–4
sketching 628–32
stability analysis 632–5
system response analysis 635–8
rotating shafts 150, 151, 157
rotational systems 144
damping elements 149–51
double-headed arrows 145
free-body diagrams and auxiliary
plots 151–3
grounded systems 162–8
lever 155–6
mass elements 147
parallel-axis theorem 146, 147
principle of impulse and momentum
147
principle of work and energy 146–7
puddles 153–4
rigid bodies 145–6
rotating shafts 157
simple pendulum 154–5
slewing rigid bar 156–7
spinning rigid disk 157
spring elements 147–9
transfer function formulation 168
translational elements and 158–62
rotor system 686–90, 695–6
nonlinear air damping 692–3
parameters of 689
Simulink model 694
Routh array 551–4, 556
Routh–Hurwitz stability criterion
550–1, 614
application 552, 554–5
features 551
necessary condition 551–2
Routh array 552–4
rules 553
system orders two to four 555–8
Runge–Kutta method 99, 101, 573,
682–3
scalar product 21
s-domain block diagrams 9–10, 182,
457, 461
second-order band-pass filter 290–1
second-order differential equations 49, 51, 291, 445
direct integration 73
Laplace transform 76–7
particular solutions 85–91
second-order systems
damping cases 517–19
free response 520–2
frequency response 567–71
general form 526–8
impulse response 522–4
sinusoidal input to 538–9
step response 525–6
time responses 515–28, 537–9
underdamped 528–37
seismograph 733
sensors 590
accelerometers 730, 732–5
definition 723
displacement, sinusoidal motion 726–31
strain gauge 724, 726
Wheatstone bridge 724
series connection, impedance 231–2
settling time 530–4
simple pendulum 154–5
Simulink 3, 378–83, 464
closed-loop system 695
DC motor 471–3
feedback control system 611
MATLAB function blocks,
nonlinear state equations 576–7
model building 765–6
model window and Library Browser 761, 764–5
nonlinear system 575–6
open-loop system 693–4
simulation 766–70
solution by 573–6
system responses by 611
on time-domain block diagrams 465–9
transfer functions and state-space blocks 469–75
single-input single-output (SISO) system 2
single-matrix operations 24–5
sinusoidal function 44, 668
sinusoidal input, second-order systems 537
damped system 538–9
undamped systems 537–8
SI units. See International System of Units (SI)
slewing rigid bar 156–7
specific heat capacity 338
spinning rigid disk 157
spring elements 147–9, 172
spring–mass-damper systems 4, 6, 95, 571
block diagram of 9, 97, 767–9
capacitance, resistance, and inductance 12–13
free-body diagrams 128, 129
free response and forced response 71
mechanical systems and fluid systems 13, 14
nonlinear differential equation 11
second-order linear differential equation 64–5
second-order systems 515
state variables 8
transfer function 7, 95
spur gears 162–3
stability analysis 544–5
conditions in pole locations 546–50
definitions 545–6
feedback control system 613–15
root locus method 632–5
Routh–Hurwitz stability criterion 550–8
states of 545–6
systems of order 555–8
stable system 546–8
state equations 67–9, 186
linear and nonlinear 401
numerical integration 98–102, 572
state-space representations 7–9, 399, 414
differential equation 405–7
dynamic system 402
electrical systems 265–70
mechanical systems 185–91
state/output equations 401–2
vibration analysis of car 673–5
stator 434
steady-state error 615–19
steady-state response
final-value theorem 507–8
frequency response 560
linear time-invariant system 558
transient response and 505–7
steady-state vibration of car 676–81
step function 43
step response
closed-loop system 609
curves PID controller 605
damping cases 525–6
feedback system 637
first-order systems 511
third-order systems 544
underdamped second-order systems 528–37
storage tanks 357
subtractor circuit 292
summation point theorem 249–50, 256–7
system analysis 398
system-level modeling 396–8
system modeling techniques 398–401
block diagrams 414–24
governing equations 399
input–output differential-equations 399
state-space representations 401–8
transfer function formulations 408–13
system model representations
s-domain block diagram 9–10
state-space representation 7–9
time domain, block diagram in 10–11
transfer function formulation 6–7
system order and input type 508
takeoff point 414
thermal control system 650–2
thermal systems
Biot number 345–6
energy conservation 338–9
engineering applications 334
free-body diagrams and auxiliary plots 346–55
heat energy 338
heat transfer 336–8
linear lumped-parameter models 335
MATLAB and Simulink, dynamic responses 378–83
properties 334
SI units 759
thermal capacitance 339–40
thermal energy 335–6
thermal resistance 340–5
Thevenin’s theorem 250–1, 253–5
third-order differential equation 77–8
third-order systems 540–1
three-degrees-of-freedom (3-DOF) model 667, 669
three-term controller 601
time constant, first-order systems 513–14
time-delay parameter 44
time-domain block diagram 457–64
nonlinear system 11
Simulink models on 465–9
time domain, system response analysis 502–44
concepts 503–8
first-order systems 508–14
higher-order systems 539–44
second-order systems 515–28
sinusoidal input, second-order systems to 537–9
underdamped second-order systems 528–37
time-invariant linear system 408–9
time-invariant models vs. time-variant models 5
time-invariant systems 95
block diagrams 97–8
transfer functions 95–7
time responses
car moving over pothole 681–6
feedback control system 613, 615
first-order systems 508–14
higher-order systems 539–44
second-order systems 515–28, 537–9
time-shifted function 44–5
time-variable system 8, 136, 457, 471, 482
torsional springs 147–9
traditional condenser microphone 754–5
trans-conductance amplifier 295–6
transfer functions 6–7, 168, 399
control systems, formulation 592–5
derivation of 139
formulations 401, 408–13
negative feedback configuration 416–17
quarter-car suspension model 142
spring-mass-damper system 140–4
state-space representations and 186, 469–75
time-invariant linear system 408
time-invariant systems 95–7, 139
for two-input–two-output system 411–13
transfer matrix 411
transient response 505–7
translational springs 121–2
translational systems
derivation of equations of motion 130–8
effective spring coefficients, elastic bodies 122–4
free-body diagrams and auxiliary plots 127–9
friction forces 125–7
jumped masses 120–1
transfer function formulation 138–44
translational springs 121–2
viscous dampers 123, 125
transmissibility parameters 570–1
trans-resistance amplifier 296
triangular pulse, piecewise-continuous function 61, 62
trigonometric manipulations, complex numbers 36–7
Tsiolkovsky rocket equation 137
turbulent flow 361
two-mass dynamic system 65–6
two-segment commutator 435–7
typical inverting op-amp circuit 282
undamped system 517, 520, 522, 525, 537–8
underdamped second-order systems 528
model parameters 529
performance specification parameters 529–35
physical parameters 535–6
sets of parameters 535–7
underdamped system 517, 520, 523, 525
unit conversion factors 760
unit matrix 24
unit ramp function 43
unit step function 43
unit vector decomposition 19–21
definition 17
unity-feedback control system 608
unity-gain buffer 294
unstable system 546–8
vector algebra 16–17
addition and subtraction 18
definition 17
multiplication operations 21–3
scalar multiplication 19
unit-vector decomposition 19–21
vector multiplication operations 21
unity-gain buffer 294
voltage follower 294
voltage-to-current converter circuit
water hammer 368
water purification (liquid-level system) 711–12
actual outflow 713
description 712–13
equilibrium point 719
generated liquid-level graphs 715, 717
governing equations 713
linearization 719
Mathematica code 715, 716
nonlinear and linearized system, PI control 722, 725
nonlinear state-space model 714–16
piecewise-continuous function, PI control 722–3, 724
state-space model 714
steady-state liquid levels 715, 717, 718
786 Index

water purification (cont.)
system parameters variability 718
transfer function and PI control 721
Wheatstone bridge 724, 726, 727, 730
Wolfram Mathematica 3, 99, 100, 198–203, 297–306
classical analysis and design 777
drop-down menu 771, 772
dynamic system, modeling/simulation 475–85
equation solvers 776
graphics generation and styling functions 774–5
mathematical functions 773
matrix functions 774
operators and special characters 772
response 777
state-space formulation 777
time response of car 683–6
transfer function formulation 776
zero matrix 24
zero-pole-gain form 41, 409
zero vector 17
Ziegler, J. G. 606
Ziegler–Nichols ultimate-cycle method 607–8, 638