

Introduction to Engineering Heat Transfer

This new text integrates fundamental theory with modern computational tools such as EES, MATLAB, and FEHT to equip students with the essential tools for designing and optimizing real-world systems and the skills needed to become effective practicing engineers. Real engineering problems are illustrated and solved in a clear step-by-step manner. Starting from first principles, derivations are tailored to be accessible to undergraduates by separating the formulation and analysis from the solution and exploration steps to encourage a deep and practical understanding. Numerous exercises are provided for homework and self-study and include standard hand calculations as well as more advanced project-focused problems for the practice and application of computational tools. Appendices include reference tables for thermophysical properties, and answers to selected homework problems from the book. Complete with an online package of guidance documents on EES, MATLAB, and FEHT software, sample code, lecture slides, video tutorials, and a test bank and full solutions manual for instructors, this is an ideal text for undergraduate heat transfer courses and a useful guide for practicing engineers.

G. F. Nellis is Professor of Mechanical Engineering at the University of Wisconsin, Madison. His teaching expertise has been recognized through awards including the Polygon Engineering Council Outstanding Professor of Mechanical Engineering Award (2013 and 2007), the Pi Tau Sigma Distinguished Professor of Mechanical Engineering Award (2016, 2012, 2009, and 2006), and the J. G. Woodburn award for Excellence in Teaching (2008). He is a Fellow of the American Society of Heating, Refrigeration, and Air-Conditioning Engineers.

S. A. Klein is Emeritus Professor of Mechanical Engineering at the University of Wisconsin, Madison. He is the recipient of the American Society for Mechanical Engineers (ASME) James Harry Potter Gold Medal (2013), the Pi Tau Sigma Distinguished Professor of Mechanical Engineering Award (1991, 1992) and the Polygon Engineering Council Outstanding Professor of Mechanical Engineering Award (1991, 1992). He is a Fellow of ASME, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE), the American Solar Energy Society (ASES), and the International Building Performance Simulation Association (IBPSA).

"This excellent text on heat transfer continues the tradition of the strong analytical treatment of conduction and convection heat transfer, buttressed by strong EES, FEHT, and MATLAB examples . . . The emphasis on examples is substantial, and the use of the software is tastefully introduced in ways that emphasize the solution instead of the software . . . This edition is well organized, succinctly written, and well supported by software aids. The book is also a valuable reference for those in a wide variety of disciplines desiring to self-learn heat transfer. All the essential elements of a heat transfer course are well represented in this volume."

Ernest W. Tollner, University of Georgia

"No other text spells out real-world problems with computer-based solutions as clearly as this one. This text will allow readers to translate quickly heat transfer lessons learned into interesting applied solutions."

Thomas Merrill, Rowan University

"I've practiced heat transfer for 30 years as an engineer in industry, a scientist at a national lab, and an academic. Midway through my career, I studied Nellis and Klein's pedagogically pioneering text. It was only then that I obtained a firm grasp of the subject matter. Feedback from students in my classes on their book has been remarkably terrific."

Marc Hodes, Tufts University

Introduction to Engineering Heat Transfer

G. F. Nellis

University of Wisconsin, Madison

S. A. Klein

University of Wisconsin, Madison

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107179530

© G. F. Nellis and S. A. Klein 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in Singapore by Markono Print Media Pte Ltd 2021

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Nellis, Gregory, 1969, author. | Klein, Sanford A., 1950, author.

Title: Introduction to engineering heat transfer / G. F. Nellis (University of Wisconsin, Madison), S. A. Klein (University of Wisconsin, Madison).

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2020. | Includes bibliographical references and index.

Identifiers: LCCN 2019013363 | ISBN 9781107179530 (hardback; alk. paper) |

ISBN 110717953X (hardback; alk. paper)

Subjects: LCSH: Heat-Transmission.

Classification: LCC TJ260 .N453 2019 | DDC 621.402/2-dc23

LC record available at https://lccn.loc.gov/2019013363

ISBN 978-1-107-17953-0 Hardback

Additional resources for this publication at www.cambridge.org/nellisklein

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

	Preface		page xv
	Sample Pro	ogram of Study	xvii
	Nomenclat	ture	xix
	Introduc	tion	1
	1.1 Relev	ance of Heat Transfer	1
	1.2 Relati	onship to Thermodynamics	2
		em Solving Methodology	5
		Transfer Mechanisms	6
	1.4.1	Conduction	6
	1.4.2		7
	1.4.3		8
		nophysical Properties	15
	1.5.1		15
		Ideal Gas Model	
			17
	1.5.3	1	21
		usions and Learning Objectives	24
	Reference		25
	Problems		25
	Projec	ets	30
2	One Dim	ancional Standy State Conduction	22
2		ensional, Steady-State Conduction	32
		uction Heat Transfer	32
	2.1.1	Fourier's Law	32
	2.1.2	,	35
		y-State 1-D Conduction without Generation	35
	2.2.1		35
	2.2.2	The Plane Wall	36
		Define a Differential Control Volume	37
		Carry out an Energy Balance on the Control Volume	37
		Take the Limit as $dx\rightarrow 0$	38
		Substitute Rate Equations into the Differential Equation	38
	2.2.2	Define Boundary Conditions	39
	2.2.3		46
	2.2.4	Radial Conduction	54
		Radial Conduction in a Cylinder	54
	225	Radial Conduction in a Sphere	57 5 2
	2.2.5	Other Resistance Formulae	59
		Convection Resistance	59
		Contact Resistance Radiation Resistance	60
	2.2 641		62
		y-State 1-D Conduction with Generation	75 75
	2.3.1	Introduction	75 70
	2.3.2	Uniform Thermal Energy Generation in a Plane Wall	78
	2.3.3	÷.	93
		Spnerical Geometry	94
2.3.3 Uniform Thermal Energy Generation in Radial Geometries Cylindrical Geometry Spherical Geometry 93 94			

VI	
••	

		Contents
	2.3.4 Spatially Nonuniform Generation	101
	2.4 Numerical Solutions	101
	2.4.1 Introduction	105
	2.4.2 Developing the Finite Difference Equations	106
	2.4.2 Developing the 1 line Difference Equations 2.4.3 Solving the Equations with EES	110
	2.4.4 Solving the Equations with Matrix Decomposition	113
	2.4.5 Solving the Equations with Gauss–Seidel Iteration	119
	2.4.6 Temperature-Dependent Properties	123
	Implementation in EES	125
	Implementation using Matrix Decomposition	127
	Implementation using Gauss–Seidel Iteration	131
	2.5 Conclusions and Learning Objectives	132
	References	133
	Problems	133
	Conduction without Generation: Concepts and Analytical Solutions	133
	Thermal Resistance Problems	138
	Conduction with Generation: Concepts and Analytical Solutions	154
	Numerical Solution Concepts	165
	Numerical Solutions	166
	Projects	171
3	Extended Surface Problems	185
	3.1 Extended Surfaces	185
	3.1.1 The Extended Surface Approximation	185
	3.1.2 The Biot Number	186
	3.2 Analytical Solutions to Extended Surface Problems	188
	3.2.1 Deriving the ODE and Boundary Conditions	188
	3.2.2 Solving the ODE	189
	3.2.3 Applying the Boundary Conditions	191
	3.2.4 Hyperbolic Trigonometric Functions	194
	3.2.5 Solutions to Linear Homogeneous ODEs	195
	3.3 Fins	201
	3.3.1 Fin Efficiency	202
	3.3.2 Convection from the Fin Tip	207
	3.3.3 Fin Resistance	213
	3.3.4 Finned Surfaces	217
	3.4 Numerical Solutions to Extended Surface Problems	223
	3.5 Conclusions and Learning Objectives	228
	Problems	229
	The Extended Surface Approximation and the Biot Number	229
	Analytical Solutions to Extended Surface Problems	231
	Fins and Finned Surfaces	238
	Numerical Solutions to Extended Surface Problems	241
	Projects	246
4	Two-Dimensional, Steady-State Conduction	255
	4.1 The Governing Differential Equation and Boundary Conditions	255
	4.2 Shape Factors	258
	4.2.1 Definition of Shape Factor	258
	4.2.2 Shape Factor Resistance	261
	4.2.3 The Meaning of a Shape Factor	263

Contents

		vii
	4.3 Finite Difference Solution	268
	4.3.1 Introduction	268
	4.3.2 Developing the Finite Difference Equations	268
	4.3.3 Solving the Equations with EES	273
	4.3.4 Solving the Equations with Matrix Decomposition	277
	4.3.5 Solving the Equations with Gauss–Seidel Iteration	283
	4.4 Finite Element Solution	288
	4.4.1 Introduction	288
	4.4.2 Specifying the Problem	289
	4.4.3 Specifying the Mesh and Solving	289
	4.4.4 Examination of the Solution	290
	Mesh Convergence	290
	Engineering Judgment	291
	4.5 Conclusions and Learning Objectives	293
	References	293
	Problems	293
	The Governing Differential Equation and Boundary Conditions	293
	Shape Factors	296
	Finite Difference Solutions	298
	Finite Element Method using FEHT	302
	Projects	308
5	Lumped Transient Problems	310
	5.1 The Lumped Capacitance Assumption	310
	5.1.1 The Biot Number	310
	5.1.2 The Lumped Capacitance Time Constant	311
	5.2 Analytical Solutions	316
	5.2.1 Deriving the Differential Equation	317
	5.2.2 Solving the Differential Equation	318
	Step Change in Ambient Temperature	320
	Ramped Ambient Temperature	320
	5.3 Numerical Solutions	332
	5.3.1 Introduction	332
	5.3.2 The Euler Method	333
	5.3.3 Predictor–Corrector Methods	338
	5.3.4 Implicit Methods	340
	5.3.5 Using ODE Solvers	343
	EES' Integral Command	343
	MATLAB's ODE Solvers	345
	5.4 Conclusions and Learning Objectives	352
	Problems	353
	The Lumped Capacitance Approximation and the Biot Number	353
	Analytical Solutions	355
	Numerical Solutions	362
	Projects	367
6	Transient Conduction	375
	6.1 Conceptual Tools	375
	6.1.1 Diffusive Energy Transport	375
	6.1.2 The Diffusive Time Constant	380
	6.1.3 The Semi-Infinite Resistance	385

•••	

				Contents
	6.2	Anoly	rtical Salution	200
	0.2	Analy 6.2.1	rtical Solution The Differential Equation	388 388
			The Differential Equation	
		6.2.2	Semi-Infinite Body Solutions	392
		6.2.3	Bounded Problem Solutions The Plane Wall – Exact Solution	398 398
			The Plane Wall – Exact Solution The Plane Wall – Approximate Solution	398 404
			The Cylinder – Exact Solution	407
			The Cylinder – Approximate Solution	409
			The Sphere – Exact Solution	409
			The Sphere – Approximate Solution	410
	6.3	1-D N	Numerical Solutions	414
		6.3.1	Introduction	414
		6.3.2	The State Equations	415
		6.3.3	The Euler Method	418
		6.3.4	Predictor–Corrector Methods	423
		6.3.5	Implicit Methods	425
			Implementation with EES	425
			Implementation with Matrix Decomposition	426
			Implementation with Gauss-Seidel Iteration	428
		6.3.6	Using ODE Solvers	430
			EES' Integral Command	430
			MATLAB's ODE Solver	432
	6.4	2-D N	Numerical Solutions	435
		6.4.1	Introduction	435
		6.4.2	The Finite Difference Solution	435
			Deriving the State Equations	435
			Integrating through Time	438
		6.4.3	The Finite Element Solution	441
			Specifying the Problem	442
			Specifying the Mesh and Solving	443
		C 1	Mesh Convergence	444
			usions and Learning Objectives	445
		erences		446
	Pro	blems	. 177 1	446
			eptual Tools	446
			Differential Equation and Boundary Conditions	453
			Infinite Solutions	456
			Wall, Cylinder, and Sphere Solutions	457
			ransient Numerical Solutions	460
			Element Method using FEHT	467
		Projec	ets	469
7	Cor	ivectio	on	477
	7.1	The L	aminar Boundary Layer	477
		7.1.1	The Velocity Boundary Layer	477
		7.1.2	The Thermal Boundary Layer	480
		7.1.3	A Conceptual Model of Laminar Boundary Layer Growth	482
		7.1.4	The Prandtl Number	483
		7.1.5	A Conceptual Model of Shear Stress and the Heat Transfer Coefficient	484
		7.1.6	The Reynolds Number	489
		7.1.7	The Friction Coefficient and the Nusselt Number	490
		7.1.8	The Reynolds Analogy	492

Contents

Contents			iz
	7.1.9	Local vs. Average Quantities	494
		The Average Friction Coefficient	494
		The Drag Coefficient	495
		The Average Nusselt Number	495
7.	2 Turb	ulent Boundary Layer Concepts	498
	7.2.1	Introduction	498
	7.2.2	The Critical Reynolds Number	498
	7.2.3	A Conceptual Model of the Turbulent Boundary Layer	501
7.	3 The I	Boundary Layer Equations	504
	7.3.1	Introduction	504
	7.3.2	The Governing Equations for Viscous Fluid Flow	504
		The Continuity Equation	504
		The Momentum Equations	506
		The Energy Conservation Equation	509
	7.3.3	The Boundary Layer Simplifications	510
		The Continuity Equation	511
		The x-Momentum Equation	512
		The y-Momentum Equation The France Concernation Equation	513 513
7	1 Dime	The Energy Conservation Equation ensional Analysis in Convection	514
/.		Introduction	514
	7.4.1	The Dimensionless Boundary Layer Equations	516
	7.4.2	The Dimensionless Boundary Layer Equations The Dimensionless Continuity Equation	516
		The Dimensionless Momentum Equation The Dimensionless Momentum Equation	517
		The Dimensionless Energy Equation	517
	7.4.3	** *	518
	,,,,,	The Friction and Drag Coefficients	518
		The Nusselt Number	520
	7.4.4	The Reynolds Analogy (Revisited)	524
7.	5 Conc	lusions and Learning Objectives	525
	eferences		526
Pı	roblems		526
	Lami	nar Boundary Layer Concepts	526
		alent Boundary Layer Concepts	529
		Boundary Layer Equations and Dimensional Analysis for Convection	530
	Projec		533
8 E	xternal	Forced Convection	536
8.	1 Meth	odology for using a Convection Correlation	536
8.		over a Flat Plate	538
	8.2.1	The Friction Coefficient	538
		Local Friction Coefficient for a Smooth Plate	538
		Local Friction Coefficient for a Rough Plate	539
		Average Friction Coefficient	540
	8.2.2	The Nusselt Number	543
		Constant Temperature	543
		Unheated Starting Length	553
		Constant Heat Flux	555
8.		across a Cylinder	558
	8.3.1	The Drag Coefficient	560
	8.3.2	The Nusselt Number	561
8.	4 Flow	across other Extrusions	568

		Contents	
8.5	Flow past a Sphere	573	
	Conclusions and Learning Objectives	578	
	ferences	579	
	blems	579	
110	Flow over a Flat Plate	579	
	Flow over Cylinders and other Extrusions	583	
	Flow over a Sphere	585	
	Projects	587	
Int	Internal Forced Convection		
9.1	Internal Flow Concepts	591	
	9.1.1 Velocity and Momentum Considerations	591	
	Internal vs. External Flow	591	
	The Developing Region vs. the Fully Developed Region	591	
	The Mean Velocity, Hydraulic Diameter, and Reynolds Number	593	
	The Laminar Hydrodynamic Entry Length	594	
	Turbulent Internal Flow	595	
	The Pressure Gradient	597	
	The Friction Factor	599	
	9.1.2 Thermal Considerations	601	
	The Developing Region vs. the Fully Developed Region	601	
	The Mean Temperature and the Heat Transfer Coefficient	601	
	The Laminar Thermal Entry Length	605	
	Turbulent Internal Flow	605	
0.2	The Nusselt Number	607	
9.2		609	
	9.2.1 Introduction	609	
	9.2.2 Flow Classification	609	
	9.2.3 The Friction Factor	610	
	Laminar Flow	611	
	Turbulent Flow EES' Internal Flow Convection Library	619 621	
	9.2.4 The Nusselt Number	627	
	Laminar Flow	627	
	Turbulent Flow	632	
9.3		637	
7.5	9.3.1 Introduction	637	
	9.3.2 The Energy Balance	637	
	9.3.3 Specified Heat Flux	639	
	Constant Heat Flux	639	
	9.3.4 Specified Wall Temperature	644	
	Constant Wall Temperature	644	
	9.3.5 Specified External Temperature	645	
9.4	Conclusions and Learning Objectives	650	
	ferences	650	
	blems	651	
F10	Internal Flow Concepts	651	
	•		
	Internal Flow Correlations	653	
	The Energy Balance	657	
	Projects	667	

_						
Т	n	n	t	۵	n	t

		xi
10	Free Convection	672
	10.1 Free Convection Flow	672
	10.2 Dimensionless Parameters	672
	10.2.1 The Characteristic Buoyancy Velocity	672
	10.2.2 The Volumetric Thermal Expansion Coefficient	674
	The Volumetric Thermal Expansion Coefficient of an Ideal Gas	675
	10.2.3 The Grashof Number and the Rayleigh Number	676
	10.3 External Free Convection Correlations	676
	10.3.1 Introduction	676
	10.3.2 Plate	676
	Heated or Cooled Vertical Plate	676
	Horizontal Plate - Heated Upward Facing or Cooled Downward Facing	680
	Horizontal Plate - Heated Downward Facing or Cooled Upward Facing	681
	Plate at an Arbitrary Angle	688
	10.3.3 Sphere	693
	10.3.4 Cylinder	694
	Horizontal Cylinder	694
	Vertical Cylinder	694
	10.4 Internal Free Convection Correlations	700
	10.4.1 Introduction	700
	10.4.2 Vertical Parallel Plate Channels	700
	10.4.3 Enclosures	706
	10.5 Combined Free and Forced Convection	707
	10.6 Conclusions and Learning Objectives	711
	References	711
	Problems	712
	Free Convection Concepts	712
	Free Convection from Plates, Spheres, and Cylinders	712
	Free Convection in Channels	715
	Free Convection in Enclosures	715
	Combined Free and Forced Convection	717
	Projects	718
П	Boiling and Condensation	720
	11.1 Relevance	720
	11.2 Pool Boiling	721
	11.2.1 Introduction	721
	11.2.2 The Boiling Curve	721
	11.2.3 Pool Boiling Correlations	724
	11.3 Flow Boiling	730
	11.3.1 Introduction	730
	11.3.2 Flow Boiling Correlations	731
	11.4 Film Condensation	736
	11.4.1 Introduction	736
	11.4.2 Correlations for Film Condensation	737
	Vertical Wall	737
	Horizontal, Downward Facing Plate	741
	Horizontal, Upward Facing Plate	742
	Single Horizontal Cylinder	742
	Bank of Horizontal Cylinders	742
	Single Horizontal Finned Tube	742

xii —		Contents
	11.5 Flow Condensation	742
	11.5 Flow Condensation	743
	11.5.1 Introduction	743
	11.5.2 Flow Condensation Correlations	744
	11.6 Conclusions and Learning Objectives	745
	References	746
	Problems	747
	Pool Boiling	747
	Flow Boiling	748
	Film Condensation	749
	Flow Condensation	752
	Projects	753
12	Heat Exchangers	754
	12.1 Introduction to Heat Exchangers	754
	12.1.1 Applications of Heat Exchangers	754
	12.1.2 Heat Exchanger Classifications and Flow Configurations	755
	12.1.3 Overall Energy Balance	759
	12.1.4 Heat Exchanger Conductance	761
	Fouling Resistance	762
	12.1.5 Flow across Tube Banks	765
	The Friction Factor	767
	The Nusselt Number	768
	12.1.6 Compact Heat Exchanger Correlations	773
	12.2 The Heat Exchanger Problem	778
	12.2.1 Introduction	778
	12.2.2 The Counter-Flow Heat Exchanger Solution	778
	12.3 The Log-Mean Temperature Difference Method	782
	12.3.1 Introduction	782
	12.3.2 Counter-Flow and Parallel-Flow Heat Exchangers	783
	12.3.3 Shell-and-Tube and Cross-Flow Heat Exchangers	786
	12.4 The Effectiveness– <i>NTU</i> Method	787
	12.4.1 Introduction	787
		787
	12.4.2 Effectiveness, Number of Transfer Units, and Capacitance Ratio	
	12.4.3 Effectiveness– <i>NTU</i> Solution for a Counter-Flow Heat Exchanger	788
	12.4.4 Effectiveness– <i>NTU</i> Solutions	791
	12.4.5 Further Discussion of Heat Exchanger Effectiveness	792
	Behavior as C_R Approaches Zero Behavior as NTU Approaches Zero	793 795
	Behavior as NTU Becomes Infinite	793 796
	Heat Exchanger Design	790
	12.5 Conclusions and Learning Objectives	803
	References	803
	Problems	
		804
	Heat Exchanger Conductance, Tube Banks, and Compact Heat Exchangers	804
	Log-Mean Temperature Difference Solution	806
	Effectiveness–NTU Solution	807
	Projects	817
13	Mass Transfer	827
	13.1 Composition Relationships	827
	13.1.1 Ideal Gas Mixtures	830

Contents

		iix ————iix
	13.2 Mass Diffusion	830
	13.2.1 Fick's Law	830
	13.2.2 The Diffusion Coefficient for Binary Mixtures	831
	Gas Mixtures	831
	Liquid Mixtures	833
	Solids	834
	13.2.3 Concentrations at Interfaces	834
	Gas Mixture in Contact with Pure Liquid or Solid	834
	Liquid Mixture in Contact with Pure Solid	835
	Liquid Mixture in Contact with Gas	836
	13.3 Transient Diffusion through a Stationary Solid	838
	13.4 Diffusion of a Species in a Fluid	842
	13.4.1 Diffusive and Advective Mass Transfer	842
	13.4.2 Evaporation through a Layer of Gas	843
	13.5 Momentum, Energy, and Mass Transfer Analogies	847
	13.6 Simultaneous Heat and Mass Transfer	853
	13.7 Conclusions and Learning Objectives	858
	References	859
	Problems	859
	Concentration Relationships	859
	The Diffusion Coefficient and Boundary Conditions	859
	Transient Diffusion through a Solid	860
	Diffusion of a Species in a Fluid	861
	Heat Mass Transfer Analogy	862
	Simultaneous Heat and Mass Transfer	863
	Projects	864
14	Radiation	866
	14.1 Introduction	866
	14.1.1 Electromagnetic Radiation	866
	14.1.2 The Electromagnetic Spectrum	866
	14.2 Emission of Radiation by a Blackbody	867
	14.2.1 Introduction	867
	14.2.2 Blackbody Emission	868
	Planck's Law	868
	Blackbody Emission in Specified Wavelength Bands	869
	14.3 Radiation Exchange between Black Surfaces	872
	14.3.1 Introduction	872
	14.3.2 View Factors	873
	Inspection	873
	The View Factor Integral	873
	The Enclosure Rule	874
	Reciprocity	875
	Other View Factor Relationships	875
	The Crossed and Uncrossed Strings Method	876
	The View Factor Libraries	879
	14.3.3 Blackbody Radiation Calculations	879
	The Space Resistance	879
	N-Surface Solutions 14.4 Radiation Characteristics of Real Surfaces	887 892
	17.7 IXAGIAGION CHATACIONICO OI IXCAI DUNACO	ロ プム

14.4.1 Introduction

892

xiv —

14.4.2 Emission from Real Surfaces	892
Spectral, Directional Emissivity	892
Hemispherical Emissivity	893
Total Hemispherical Emissivity	893
The Diffuse Surface Approximation	895
The Diffuse Gray Surface Approximation	896
14.4.3 Reflectivity, Absorptivity, and Transmissivity	896
Diffuse and Specular Surfaces	897
Hemispherical and Total Hemispherical Reflectivity, Absorptivity, and Transmissivity	897
Kirchhoff's Law	897
The Diffuse Surface Approximation	897
The Diffuse Gray Surface Approximation	898
14.5 Diffuse Gray Surface Radiation Exchange	900
14.5.1 Introduction	900
14.5.2 Radiosity	900
14.5.3 Diffuse Gray Surface Radiation Calculations	901
Resistance Network	902
N-Surface Solutions	905
14.6 Conclusions and Learning Objectives	909
References	910
Problems	910
Blackbody Radiation and the Electromagnetic Spectrum	910
View Factors	913
Blackbody Radiation Exchange	914
Properties of Real Surfaces	918
Diffuse Gray Surface Radiation Exchange	920
Projects	931
riojecis	931
Appendix A Thermophysical Properties of Solids	940
Appendix B Thermophysical Properties of Liquids	943
Appendix C Thermophysical Properties of Gases	945
Appendix D Thermophysical Properties of Saturated Liquids	948
Appendix E Engineering Equation Solver (EES) Software	952
Appendix F Finite Element Heat Transfer (FEHT) Software	966
Appendix G MATLAB Software	978
Appendix H Answers to Selected Problems	987
Appendix II Answers to selected Houseins	901
Index	993

Contents

Preface

The objective of this book is to provide engineering students with the capability, tools, and confidence to solve real-world heat transfer problems. This objective has resulted in a textbook that differs from existing heat transfer textbooks in an important way. This textbook introduces fundamental heat transfer concepts at an introductory, undergraduate level that is appropriate for a practicing engineer and integrates these concepts with modern computational tools. The text provides extensive examples and problems that utilize these tools. The practicing engineer of today is expected to be proficient with computer tools; engineering education must evolve accordingly. Most real engineering problems cannot be solved using a sequential set of calculations that can be easily carried out with a pencil and a hand calculator. Engineers must have the ability and confidence to utilize the powerful computational tools that are available and essential for design and optimization of real-world systems.

The text reinforces good engineering problem solving technique by delineating the formulation and analysis steps from the solution and exploration steps. In the formulation step, the problem itself is defined and, through appropriate approximations, simplified to the point where it can be represented by a set of mathematical equations. These equations are derived from first principles in the analysis step. Many textbooks stop their presentation at this point. However, the solution step where the equations are solved is equally important. In some cases hand calculations are appropriate for solving the equations. More typically, the complexity of the problem dictates that some type of computational software must be used for the solution step. Each of these steps is essential. It is not possible to move to the solution step until the formulation and analysis steps are complete. Separating these steps forces the student to understand that the computational software cannot be used to "think" for them, but rather provide powerful tools for helping them solve the relevant equations. Computational software is essential for the exploration step in which the engineer carries out parametric, optimization, and design studies that allow a deeper understanding of the problem and provide more useful results. Exploration studies are a natural first step to becoming an effective practicing engineer.

This book integrates the computational software Engineering Equation Solver (EES), MATLAB, and Finite Element Heat Transfer (FEHT) directly with the heat transfer material so that students can see the relevance of these tools. The specific commands and output associated with these software packages are used in the solution and exploration steps of numerous examples so that the integration is seamless and does not detract from the presentation of the heat transfer concepts. The computational software tools used in this book are all common in industry and have existed for more than a decade; therefore, while this software will certainly continue to evolve, it is not likely to disappear. Educational versions of these software packages are available and therefore the use of these tools should not represent an economic hardship to any academic institution or student. These tools are easy to learn and use, allowing students to become proficient with all of them in a reasonable amount of time. Therefore, learning the computer tools will not detract from material coverage. In fact, providing the capability to easily solve the equations developed in the analysis is a motivator to many students. To facilitate this learning process, tutorials for each of the software packages are provided as appendices in this book.

Traditionally, tables and charts have been required to solve heat transfer problems in order to, for example, determine properties, view factors, shape factors, convection relations, and related information. Limited versions of these tables and graphs are provided in the textbook; however, much more extensive libraries have been made available as functions and procedures in the EES software so that they can be easily accessed and used to solve problems. The Heat Transfer Library that has been developed and integrated with EES as part of the preparation of this textbook and the more advanced textbook, *Heat Transfer*, enables a profound shift in the focus of the educational process. It is trivial to obtain, for example, the value of a shape factor or a view factor using the Heat Transfer Library. Therefore, it is possible to assign problems involving design and optimization studies that would be computationally impossible without these computer tools.

xvi

Preface

Integrating the study of heat transfer with computer tools does not diminish the depth of understanding of the underlying physics that students obtain. Conversely, our experience indicates that the innate understanding of the subject matter is enhanced by appropriate use of these tools for several reasons. First, the software allows the student to tackle practical and relevant problems as opposed to the comparatively simple problems that must otherwise be assigned. Real-world engineering problems are more satisfying to the student. Therefore, the marriage of computer tools with theory motivates students to understand the governing physics as well as to learn how to apply the computer tools. When a solution is obtained, students can carry out a more extensive investigation of its behavior and therefore a more intuitive and complete understanding of the subject of heat transfer. Along with the typical homework problems, each chapter includes several project type problems that allow a guided exploration of advanced topics using computer tools. Real-world problems often require a combination of English and SI units. The EES software provides unit checking that should prevent the student (and practicing) engineer from making unit conversion errors. Therefore, the examples and problems in this book use mixed units.

This book is unusual in its linking of classical theory and modern computing tools. It fills an obvious void that we have encountered in teaching undergraduate heat transfer. The text was developed over many years from our experiences teaching Introduction to Heat Transfer (an undergraduate course) at the University of Wisconsin. It is our hope that this text will not only be useful during the heat transfer course, but also a life-long resource for practicing engineers.

Sample Program of Study

A sample program of study is laid out below for a one-semester undergraduate course. The format assumes that there are 45 lectures within a 15-week semester.

Lecture	Sections in book	Topics
1	Chapter 1	Introduction
2	2.1-2.2.2	Fourier's Law, 1-D steady-state conduction
3	2.2.3-2.2.5	Resistance concepts and circuits
4	2.3	1-D steady-state with generation
5	2.4	Numerical solutions
6	3.1-3.2	Extended surface approximation and analytical solution
7	3.3	Fin behavior, fin efficiency, and finned surfaces
8	3.4	Numerical solution to extended surface problems
9	4.1-4.2	2-D steady-state conduction, shape factors
10	4.3.1-4.3.3	Finite difference solutions with EES
11	4.3.4-4.3.5	Finite difference solutions using matrix decomposition and Gauss-Seidel iteration
12	4.4	Finite element solutions
13	5.1-5.2	Lumped capacitance approximation and analytical solution
14	5.3	Numerical solution to lumped capacitance problems
15	6.1	1-D transient conduction concepts
16	6.2	Analytical solutions to 1-D transient problems
17	6.3	Numerical solutions to 1-D transient problems
18	6.4.3	Finite element solution to 2-D transient problems
19	7.1–7.2	Laminar and turbulent boundary layer concepts
20	7.3–7.4	The boundary layer equations and dimensional analysis
21	8.1-8.2	External flow correlations and flow over a flat plate
22	8.3-8.5	Flow over extrusions and spheres
23	9.1.1	Internal flow hydrodynamic concepts
24	9.1.2	Internal flow thermal concepts
25	9.2	Internal flow correlations
26	9.3	The energy balance for an internal flow
27	10.1-10.2	Free convection concepts and dimensionless parameters
28	10.3-10.4	Free convection correlations
29	10.5	Combined free and forced convection
30	11.1-11.2	Pool boiling
31	11.3-11.5	Boiling and condensation correlations
32	12.1-12.2	Heat exchanger configurations & concepts
33	12.3	Log-mean temperature difference method
34	12.4.1-12.4.4	Effectiveness–NTU method
35	12.4.5	Behavior of ε -NTU solutions and heat exchanger design
36	13.1-13.2	Introduction to mass transfer and mass diffusion
37	13.3	Diffusion in a stationary solid
38	13.4	Diffusion in a fluid
39	13.5–13.6	Mass transfer analogies and simultaneous heat and mass transfer

Sample Program of Study

xviii				Jampie Trogram or Judy
XVIII				
	40	14.1–14.2	Introduction to radiation and blackbodies	
	41	14.3.1-14.3.2	View factors	
	42	14.3.3	Blackbody radiation exchange	
	43	14.4	Radiation characteristics of real surfaces	
	44	14.5	Diffuse, gray surface radiation exchange	
	45		Multi-mode heat transfer problems	

Nomenclature

A	area (m²)	C_N	correction factor for number
<u>A</u>	the coefficient matrix in a		of tubes in a tube bank (-)
=	system of linear equations	C_{nb}	nucleate boiling constant (-)
A_c	cross-sectional area (m ²)	C_R	capacitance ratio (-)
A_p	projected area (m ²)	Co	convection number (-)
A_s	surface area (m ²)	COP	coefficient of performance (-)
$A_{s,fin}$	surface area of a single fin	D	diameter (m)
	exposed to fluid (m ²)	D_h	hydraulic diameter (m)
$A_{s,fins}$	surface area of all of the fins	dx	differential distance in the
	on a finned surface (m ²)		x-direction (m)
$A_{s,prime}$	surface area of the base of a	е	specific energy (J/kg)
Î	finned surface that is exposed		surface roughness (m)
	to fluid (m ²)	E_b	blackbody emissive power
$A_{s,total}$	total surface area of fins and		(W/m^2)
	base exposed to fluid (m ²)	${E}_{b,0-\lambda_1}$	blackbody emissive power
AR	aspect ratio of a rectangular		for $\lambda < \lambda_1(W/m^2)$
	duct, defined as the ratio of	$E_{b,\lambda}$	blackbody spectral emissive
	the minimum to the		power (W/m ² -μm)
	maximum dimensions of the	ed	energy density (J/kg)
	cross-section	err	iteration error (varies)
AR_{tip}	tip to perimeter surface area	f	Moody (or Darcy) friction
	ratio for a fin (-)		factor (-)
<u>b</u>	the constant vector in a	${F}_{0-\lambda_1}$	fraction of blackbody
	system of linear equations		radiation emitted at $\lambda < \lambda_1$ (-)
Bi	Biot number (-)	$F_{i,j}$	view factor from surface i to
Bo	boiling number (-)		surface <i>j</i> (-)
С	specific heat capacity (J/kg-K)	${F}_{\lambda_1-\lambda_2}$	fraction of blackbody
	speed of light (299,792,000		radiation emitted at $\lambda_1 < \lambda < \lambda_2$ (-)
	m/s)	f_l	friction factor associated with
c_v	specific heat capacity at	_	the flow of liquid alone (-)
	constant volume (J/kg-K)	$ar{f}$	average Moody friction
c_p	specific heat capacity at		factor (-)
	constant pressure (J/kg-K)	$f_{Fanning}$	Fanning friction factor (-)
C	thermal capacitance (J/K)	fpl	number of fins per length
\dot{C}	capacitance rate (W/K)		(1/m)
C_1, C_2	undetermined constant of	Ec	Eckert number (-)
	integration (varies)	F_D	drag force (N)
C_{crit}	critical heat flux constant (-)	Fo	Fourier number (-)
C_D	drag coefficient (-)	Fr	Froude number (-)
$ar{C}_f$ $ar{C}_f$	local friction coefficient (-)	Fr_{mod}	modified Froude number (-)
C_f	average friction coefficient (-)	g	gravitational acceleration (m/s ²)
C_i	the <i>i</i> th constant in a separation	G	mass velocity, also known as
~	of variables solution (-)		mass flux (kg/m ² -s)
C_{ms}	heat capacity of microscale	\dot{g}	rate of thermal energy
	energy carrier (J/K)		generation (W)

xix

Nomenclature

\dot{g}'''	rata of thormal anaray ganaration	mL	fin constant ()
g	rate of thermal energy generation		fin constant (-)
C	per unit volume (W/m³)	MW	molecular weight (kg/kmol)
Ga	Galileo number (-)	N	total number of time steps
Gr	Grashof number (-)		used (in numerical problems)
Gz	Graetz number (-)		intermediate dimensionless
h	local heat transfer coefficient		parameter for flow boiling
_	(W/m^2-K)		correlation (-)
\bar{h}	average heat transfer	n_{ms}	number density of microscale
~	coefficient (W/m ² -K)		energy carriers (#/m ³)
\tilde{h}	dimensionless heat transfer	N_L	number of rows of tubes in
	coefficient for flow boiling (-)		the longitudinal direction in
h_l	superficial heat transfer		a tube bank
	coefficient of the liquid phase	Nu	local Nusselt number (-)
_	(W/m^2-K)	Nu_x	local Nusselt number based
\bar{h}_{eff}	effective heat transfer		on the characteristic length x (-)
	coefficient (W/m ² -K)	\overline{Nu}	average Nusselt number (-)
\bar{h}_{rad}	radiation heat transfer	NTU	number of transfer units (-)
	coefficient (W/m ² -K)	OUT	amount or rate of some
i	specific enthalpy (J/kg)		arbitrary quantity leaving a
	integer index for spatial		system
	location (in numerical	p	pressure (Pa)
	problems)	P	LMTD effectiveness (-)
j	integer index for time	$ ilde{p}$	dimensionless pressure (-)
	(in numerical problems)	p_{atm}	atmospheric pressure (Pa)
j_H	Colburn j_H factor (-)	p_{∞}	free stream pressure (Pa)
I_c	current (ampere)	per	wetted perimeter (m)
IN	amount or rate of some	per_h	perimeter exposed to
	arbitrary quantity entering a	• "	heating (m)
	system	Pr	Prandtl number (-)
k	thermal conductivity	\dot{q}	heat transfer rate (W)
	(W/m-K)	\dot{q}_{cond}	heat transfer rate due to
k_c	contraction loss coefficient (-)	1 conu	conduction (W)
k_e	expansion loss coefficient (-)	$\dot{q}_{\it conv}$	heat transfer rate due to
Kn	Knudsen number (-)	1 conv	convection (W)
L	length (m)	\dot{q}_{fin}	heat transfer rate to a fin (W)
L_c	corrected length for fin	$\dot{q}_{\mathit{fin},k o\infty}$	heat transfer rate to a fin with
$\mathcal{L}_{\mathcal{C}}$	calculation (m)	$4Jin, \kappa \rightarrow \infty$	$k \rightarrow \infty$ (W)
L_{char}	characteristic length (m)	\dot{q}_{nofin}	heat transfer rate that would
L_{cond}	conduction length (m)	A no fin	occur from a surface if fin
L_{flow}	length in the flow		was removed (W)
Lflow	direction (m)	${\dot q}_{rad}$	heat transfer rate due to
L_{ms}	average distance between	4 rad	radiation (W)
Lms	energy carrier	ä	heat transfer rate in the
	interactions (m)	\dot{q}_r	r-direction (W)
Ι.	\$ * *	à à à	heat transfer rate in the x -,
L_{nb}	nucleate boiling length	$\dot{q}_x,\dot{q}_y,\dot{q}_z$	
700	scale (m)	äll	y-, and z-directions (W)
m	mass flow rate (kg/s)	\dot{q}''	heat transfer rate per unit
m	mass (kg)	• //	area, heat flux (W/m ²)
M	total number of nodes used	$\dot{q}_{\it conv}^{\prime\prime}$	heat flux due to convection
	(in numerical problems)		(W/m^2)

Nomenclature xxi

$I_{rad}^{\prime\prime}$	heat flux due to radiation (W/m^2)	R_{SF}	shape factor thermal resistance (K/W)
.// :// ://		D	` '
$\ddot{q}_{x}^{\prime\prime},\dot{q}_{y}^{\prime\prime},\dot{q}_{z}^{\prime\prime}$	heat flux in the x-, y-, and $\frac{1}{2}$	R_{sph}	thermal resistance associated
"	z-directions (W/m²)		with radial conduction
3	surface heat flux (W/m ²)		through a spherical shell
7) 5 7) 8, crit 1) 8, nb	critical heat flux (W/m²)	D	(K/W)
s,nb	nucleate boiling heat flux	$R_{surface-to-surroundings}$	thermal resistance between
	(W/m^2)		the surface of an object and
	total amount of heat	_	its surroundings (K/W)
	transfer (J)	R_{total}	total resistance of a finned
	dimensionless heat transfer (-)	_	surface (K/W)
	radial coordinate, radius (m)	R_{univ}	universal gas constant (8314
	dimensionless radial		J/kmol-K)
	coordinate (-)	R_c''	area-specific contact
	thermal resistance (K/W)		resistance (K-m ² /W)
	gas constant (J/kg-K)	Ra	Rayleigh number (-)
	LMTD capacitance ratio (-)	Re	Reynolds number (-)
c	contact thermal resistance	Re_{δ_m}	Reynolds number based on
	(K/W)		the momentum boundary
cond	thermal resistance to		layer thickness (-)
	conduction (K/W)	Re_x	Reynolds number based on
cond,int	thermal resistance to internal		the characteristic length x (-
	conduction within an object	RR	radius ratio, ratio of inner t
	(K/W)		outer radius of an annular
cond.x	thermal resistance to		duct (-)
	conduction in the x-direction	S	a coordinate direction (m)
	(K/W)	S	shape factor (m)
cond, y	thermal resistance to conduction		spacing between plates (m)
	in the y-direction (K/W)	S_L	tube pitch in the longitudina
-conv	thermal resistance to		direction in a bank of
	convection (K/W)		tubes (m)
cyl	thermal resistance associated	S_T	tube pitch in the transverse
Cyi	with radial conduction through	. <u>1</u>	direction in a bank of
	a cylindrical shell (K/W)		tubes (m)
e	electrical resistance (ohm)	St	Stanton number (-)
e f	fouling resistance (K/W)	STORED	amount or rate of some
fin	thermal resistance of a single	STORED	arbitrary quantity being
jin	fin (K/W)		stored in a system
fins	thermal resistance of all of the	t	time (s)
rjins	fins on a finned surface (K/W)	t_j	time at the <i>j</i> th time in a
,, f	fouling factor (K-m ² /W)	' J	numerical solution (s)
i,j	space resistance between	t_{sim}	simulation time (s)
i,j	surfaces <i>i</i> and <i>j</i> in a radiation	T	temperature (K)
	problem (1/m ²)	$ar{T}$	average temperature (K)
	thermal resistance to		film temperature (K)
pw	conduction through a plane	T_f	solution to a homogeneous
		T_h	_
,	wall (K/W)	T	differential equation (K)
rad	thermal resistance associated	T_i	temperature of the <i>i</i> th node
	with radiation (K/W)	T	in a numerical solution (K)
Ls	surface resistance in a	T_{j}	temperature at the <i>j</i> th time in
	radiation problem (1/m ²)		a numerical solution (K)

			Nomencl
$T_{i,j}$	temperature of the <i>i</i> th node	X	<i>x</i> -coordinate (m)
*,/	and jth time in a numerical		direction parallel to a surface
	solution (K)		and in the flow direction for
\hat{T}_i	an intermediate estimate of		convection problems (m)
- 1	the temperature of the <i>i</i> th		thermodynamic quality (-)
	node in a numerical	$X_{fd,h}$	hydrodynamic entry
	solution (K)	Nja,n	length (m)
\hat{T}_j	an intermediate estimate of	χ_i	x-location of the <i>i</i> th node in a
1)	the temperature at the <i>j</i> th	λ_1	numerical solution (m)
	time in a numerical	$ ilde{X}$	dimensionless x-coordinate (-)
	solution (K)		the vector of unknown
T_{ini}	* *	<u>X</u>	
	initial temperature (K)		temperatures in a system of
T_p	solution to a particular	V	linear equations (K)
T.	differential equation (K)	X_{tt}	Lockhart Martinelli
T_{ref}	reference temperature (K)		parameter (-)
T_s	surface temperature (K)	У	y-coordinate (m)
T_{sur}	surrounding temperature (K)		direction perpendicular to a
T_{∞}	free stream temperature (K)		surface for convection
th	thickness (m)		problems (m)
time	time duration (s)	$\widetilde{\mathcal{Y}}$	dimensionless y-coordinate (-
tol	tolerance (K)	Z	z-coordinate (m)
и	velocity in the <i>x</i> -direction (m/s)		
	specific internal energy (J/kg)	Greek Symbols	
UA	conductance (W/K)	α	absorption coefficient (1/m)
u_{char}	characteristic velocity (m/s)	α	thermal diffusivity (m ² /s)
u_f	fluid approach velocity for an		ratio of gas side surface area
	external flow (m/s)		_
u_m	mean velocity (m/s)	0	volume (1/m)
u_{max}	maximum velocity (m/s)	β	volumetric thermal expansio
u_{∞}	free stream velocity (m/s)		coefficient (1/K)
\tilde{u}	dimensionless velocity in the	χ	correction factor for pressure
	<i>x</i> -direction (-)	0	drop in tube bank (-)
U	total internal energy (J)	δ	boundary layer thickness (m)
v	velocity in the <i>y</i> -direction (m/s)	δ_m	momentum boundary layer
	velocity in the <i>r</i> -direction (m/s)		thickness (m)
v_{ms}	average velocity of microscale	δ_t	thermal penetration depth (n
· ms	energy carriers (m/s)		thermal boundary layer
\tilde{v}	dimensionless velocity in the		thickness (m)
•	y-direction (-)	δ_{vs}	viscous sublayer thickness (n
V	volume (m ³)	Δi_{vap}	latent heat of vaporization (J
, V	volumetric flow rate (m ³ /s)	Δp	pressure drop (Pa)
\dot{V}_{oc}	open circuit flow rate	Δp_{dh}	dead head pressure rise
V oc	produced by a pump with no		produced by a pump with no
			flow (Pa)
	resistance (m³/s)	Δp_{pump}	pressure rise generated by a
ŵ	work transfer rate,	- x ··· x	pump (Pa)
	power (W)	Δt	duration of time step (s)

W	total amount of work (J) width (m)	Δt_{crit}	duration of critical time step

T_{cond}	temperature difference due to	au	viscous stress on the y-face of a
11 cond	conduction (K)	$ au_{yx}$	control volume in the x-
$T_{cond,x}$	temperature difference due to		direction (Pa)
- conu,x	conduction in <i>x</i> -direction (K)	$ au_{yy}$	viscous stress on the y-face of a
$T_{cond,y}$	temperature difference due to	yy	control volume in the
,	conduction in the <i>y</i> -		y-direction (Pa)
	direction (K)	$ au_{diff}$	diffusive time constant (s)
T_{conv}	temperature difference due to	$ au_{lumped}$	lumped capacitance time
	convection (K)		constant (s)
T_e	excess temperature, surface	v	kinematic viscosity (m ² /s)
	minus saturation		frequency (Hz)
	temperature (K)	ζ	angle relative to horizontal
T_{lm}	log mean temperature		(radian)
	difference (K)	ζ_1	the 1st eigenvalue in a
X	distance between nodes in the		separation of variables solution
	x-direction (m)		(-)
y	distance between nodes in the	ζ_i	the <i>i</i> th eigenvalue in a separation
	y-direction (m)		of variables solution (-)
	emissivity (-)		
	effectiveness (-)	Subscripts	
n	fin effectiveness (-)		
	viscous dissipation function	b	base
	(W/m^3)	c	contact, corrected
	efficiency (-)	C	cold
'n	fin efficiency (-)	cond	conduction
	overall efficiency of a finned	conv	convection
	surface (-)	crit	critical time step where
	Von Kármán constant, 0.41 (-)		simulation becomes unstable
	wavelength (μm)		critical Reynolds number for
	dynamic viscosity (N-s/m²)	1	laminar-to-turbulent transition
	temperature difference (K)	cyl	cylinder
	dimensionless temperature	diff	diffusive
	difference (-)	fc	forced convection
	density (kg/m³)	fd	fully developed
	electrical resistivity $(\Omega-m)$	fin	fin
	Stefan–Boltzmann constant $(5.67 \times 10^{-8} \text{ W/m}^2\text{-K}^4)$	h	homogeneous
	$(3.67 \times 10^{\circ} \text{ W/m} - \text{K})$ surface tension (N/m)	H	hot
	ratio of free flow to frontal area		solution for constant heat flux
	(-)	in	boundary condition
	(-) shear stress (Pa)	in	entering a system, inner (e.g., diameter or radius)
		ini	
	shear stress at a surface (Pa)	ini int	initial, at time $t = 0$ internal, within an object
	average shear stress on	int	inner surface
	surface (Pa) viscous stress on the <i>x</i> -face of a	is Lagt	
x	control volume in the x-	l,sat	saturated liquid laminar
	direction (Pa)	lam	maximum possible amount
	viscous stress on the x-face of a	max	natural convection
y		nc	
	control volume in the <i>y</i> -direction (Pa)	p pw	particular plane wall

0	overall	$a_{i,j}$	the value of a at node i and
OS	outer surface		time <i>j</i>
out	leaving a system, outer (e.g.,	a^k	the value of a for iteration h
	diameter or radius)	$a_{x=x_1}$	the value of a evaluated at
rad	radiation		the <i>x</i> -location x_1
S	at the surface	a(x)	a is a function only of x
semi-∞	related to the semi-infinite	da	the ordinary derivative of a
	body solution	$\frac{da}{dx}$	with respect to x (a is only a
SF	shape factor		function of x)
sph	sphere	da	the ordinary derivative of a
surface-to-surroundings	from the surface of	$\left. \overline{dx} \right _{x=x_1}$	with respect to x evaluated
	an object to the	1x=x1	at x-location x_1
	surroundings	∂a	the partial derivative of a
T	solution for constant	$\frac{\partial u}{\partial x}$	with respect to x (a is a
	temperature boundary	***	function of variables other
	condition		than x)
total	total resistance	<u>a</u>	a one-dimensional vector of
turb	turbulent	<u></u>	values
uh	unheated	а	a two-dimensional matrix
v,sat	saturated vapor	<u>a</u>	of values
VS	viscous sublayer	$\underline{\underline{a}}^{-1}$	the inverse of \underline{a} , a two-
X	in the <i>x</i> -direction	=	dimensional matrix of
y	in the <i>y</i> -direction		values
,	,	$\operatorname{Max}(a_i) i = 1 \dots M$	the maximum value of the
		112011 (01) 1	elements of vector a with
	bbreviations (Where a		indices $i = 1$ to M
and b are Arbitrary	Quantities)	$Min(a_i) i = 1 \dots M$	the minimum value of the
a' 1	per unit length	112111 (w _l) v 1 1 1 1 1 1 1	elements of vector a with
	per unit area		indices $i = 1$ to M
	per unit volume	$\sum_{i=1}^{M} a_i$	the sum of the elements in
	average value of a	$\triangle i=1^{\mathbf{u}_l}$	vector a with indices $i = 1$ to M
	prediction of <i>a</i> obtained	$a\ b$	quantity a in parallel with
	during a predictor step	u o	quantity b, shorthand for
	dimensionless form of the		
	variable <i>a</i>		$\left(\frac{1}{a} + \frac{1}{b}\right)^{-1}$
	the value of a at node i	O(a)	order of magnitude of the
			quantity a
a_j 1	the value of a at time j		quarrety a

Nomenclature