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Probability Theory

Though there be no such thing as chance in the world, our ignorance of the real
cause of any event has the same influence on the understanding.

—David Hume

Our book begins by providing a formalization of probability theory, estab-
lishing some basic theorems that will allow us to formally describe random
generative processes and quantify relevant features of these processes. We
believe that it is important for researchers to understand the assumptions
embedded in mathematical probability theory before attempting to make sta-
tistical claims. In keeping with the agnostic paradigm, we will attempt to
draw attention to the relevant intricacies involved, and highlight where mathe-
matical constructions serve as approximations. The foundation of probability
theory allows researchers to precisely define the scope of their research ques-
tions and to rigorously quantify their uncertainty about the conclusions they
draw from their findings. Our approach is somewhat unconventional, in
that we focus on describing random variables before we consider data, so
as to have well-defined inferential targets. This is sometimes referred to as
the “population first” approach.1 This approach will enable us to engage
with the more complex topics in Parts II and III with relative ease and
rigor.

We begin this chapter with a discussion of how random generative processes
assign probabilities to random events. We can then describe probabilities of
individual events and how the probability of one event relates to the proba-
bility of another. We proceed to consider random variables, which take on
real number values determined by the outcomes of random generative pro-
cesses. We describe several types of functions that characterize the probability
distributions of random variables; these distribution functions allow us to
characterize the probability that the random variable takes on any given value

1 See Angrist and Pischke (2009).
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4 Probability

or values. When we have two or more random variables whose values are
determined simultaneously, we can describe their joint distributions, which
also allows us to describe their marginal and conditional distributions. Here,
we primarily focus on bivariate relationships (between two random variables),
but we outline multivariate generalizations. At the end of the chapter, we pro-
vide suggestions for readers interested in a more technical treatment of the
material or alternative approaches.

1.1 RANDOM EVENTS

Probability theory is a mathematical construct used to represent processes
involving randomness, unpredictability, or intrinsic uncertainty. In a setting
in which there are several possible outcomes, each with some probability of
occurring, we refer to the process by which the outcome is determined as a
random generative process. In this section, we present the basic principles of
probability theory used to describe random generative processes.

1.1.1 What Is Probability?

We can think of a random generative process as a mechanism that selects an
outcome from among multiple possible outcomes. This mechanism could be
flipping a coin or rolling a die, drawing a ball from an urn, selecting a person
at random from a group of people, or any other process in which the outcome
is in some sense uncertain. A single instance of selecting an outcome is known
as a draw from or realization of the random generative process. The term
experiment is also commonly used, but we shall refrain from this usage to
avoid confusion with experiments in the ordinary sense of the term.

The probability of an event describes the proportion of times that event
can be expected to occur among many realizations of a random generative
process. This interpretation of probability is known as frequentist probability
or frequentism: the probability of an event A is interpreted as representing
how frequently A would occur among many, many draws from a random
generative process. It is the long-run average or limiting value of the frequency
of observing event A among repeated realizations of the generative process.2

Probability theory is a model, which is an approximation of reality. Every-
day macrophysical processes are not actually characterized by fundamental
randomness. Consider, for example, a coin flip. In principle, if we could know
the exact mass, shape, and position of the coin at the moment it was flipped
and the exact magnitude and direction of the force imparted to it by the flipper

2 There are other interpretations of probability, most notably the Bayesian interpretation, which

treats probability as representing a degree of belief or confidence in a proposition. We do not

discuss these alternative interpretations and will be operating under the frequentist paradigm

throughout this book.
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Probability Theory 5

and of all other forces acting on it, we could predict with certainty whether it
would land on heads or tails.3

The mathematical construct of randomness is, therefore, a modeling
assumption, not necessarily a fundamental feature of reality.4 It allows us to
model the outcomes of the coin flip given our uncertainty about the exact
nature of the forces that will act on the coin in any particular instance. Simi-
larly, in the social and health sciences, the assumption of randomness allows
us to model various outcomes that we might care about, given our uncertainty
about the precise features of complex social or biological processes.

1.1.2 Fundamentals of Probability Theory

We now introduce the formal definitions and notation used to represent the
basic elements of random generative processes. There are three formal com-
ponents that together fully describe a random generative process. The first is
the sample space, denoted by �. The sample space is the set of all possible5

outcomes of the random generative process. Individual outcomes (sometimes
known as sample points) are denoted by Ë * �. Outcomes can be represented
by numbers, letters, words, or other symbols—whatever is most convenient
for describing every distinct possible outcome of the random generative pro-
cess. For example, if we wanted to describe a single roll of a six-sided die,
we could let � = {1,2,3,4,5,6}. To describe a roll of two six-sided dice, we
could let � be the set of all ordered pairs of integers between 1 and 6, that is,
� = {(x,y) * Z

2 : 1 f x f 6,1 f y f 6}. To describe a fair coin flip, we could
let � = {Heads,Tails} or � = {H,T}. To describe choosing a random person in
the United States and measuring their height in inches, we could let � be the
set of all positive real numbers, � =R

+.
The second component of a random generative process is the event space.

Events are subsets of � and are denoted by capital Roman letters, for example,
A ¦ �. Whereas � describes all distinguishable states of the world that could
result from the generative process, an event may occur in multiple states of
the world, so we represent it as a set containing all states of the world in
which it occurs. For example, in the case of rolling a single six-sided die, we
could represent the event of rolling an even number by the set A = {Ë * � :
Ë is even} = {2,4,6}. Of course, an event can also correspond to a single state
of the world, for instance, the event of rolling a 3, which we might represent by

3 See Diaconis, Holmes, and Montgomery (2007).
4 Current thinking in physics suggests that randomness is a fundamental feature of quantum-

mechanical processes rather than merely a representation of unknown underlying variables

determining individual outcomes. We are not considering quantum mechanics in this book.

Suffice it to say that quantum randomness is probably not relevant to the social or health

sciences.
5 We use the word “possible” here loosely, as the probability of a given outcome occurring may

be zero.
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6 Probability

the set B = {3}; such events are variously known as atomic events , elementary
events, or simple events. For a given random generative process, a set of events
is called an event space if it satisfies certain properties, which we state in the
following definition. (We use the notation AC to refer to the complement of
the event A with respect to the sample space: AC = �\A = {Ë * � : Ë /* A}.)

Definition 1.1.1. Event Space
A set S of subsets of � is an event space if it satisfies the following:

" Nonempty: S  = '.
" Closed under complements: if A * S, then AC * S.
" Closed under countable unions: if A1,A2,A3, ... * S, then A1 * A2 *

A3 * ... * S.6

Since each event in an event space will have an associated probability of
occurring, these properties ensure that certain types of events will always have
well-defined probabilities. Consider, again, a single roll of a six-sided die. Sup-
pose A is the event of rolling an even number. If we can assign a probability
to this event occurring, then we will also be able to assign a probability to this
event not occurring, that is, AC, the event of rolling an odd number. Similarly,
suppose B is the event of rolling a number greater than 4. If we can assign
probabilities to A and B, then we will also be able to assign a probability to
the event of at least one of these occurring, that is, A*B, the event of rolling a
2, 4, 5, or 6.

This brings us to the final component needed to mathematically describe
a random generative process: the probability measure. A probability mea-
sure is a function P : S ³ R that assigns a probability to every event in the
event space.7 To ensure that P assigns probabilities to events in a manner
that is coherent and in accord with basic intuitions about probabilities, we
must place some conditions on P. Such conditions are provided by the Kol-
mogorov probability axioms, which serve as the foundation of probability
theory. These axioms define a probability space, a construct that both accords
with basic intuitions about probabilities and lends itself to rigorous and useful
mathematics.

6 A set S of subsets of another set � that satisfies these properties is formally known as a Ã -

algebra or Ã -field on �. Some readers well versed in set theory may wonder why we do not

simply let S = P(�), the power set (that is, the set of all subsets) of �. For reasons that

we will not discuss in this book, this does not always work; for some sample spaces �, it

is impossible to define the probability of every subset of � in a manner consistent with the

axioms of probability (see Definition 1.1.2). We need not worry too much about this point,

though; in practice we will be able to define the probability of any event of interest without

much difficulty. For this reason, we suggest that readers not worry too much about Ã -algebras

on their first read.
7 Note: we do not make the stronger assumption that P : S ³ [0,1], since we prove this in

Theorem 1.1.4.
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Probability Theory 7

Definition 1.1.2. Kolmogorov Axioms
Let � be a sample space, S be an event space, and P be a probability
measure. Then (�,S,P) is a probability space if it satisfies the following:

" Non-negativity: "A * S, P(A) g 0, where P(A) is finite and real.
" Unitarity: P(�) = 1.
" Countable additivity: if A1,A2,A3, ... * S are pairwise disjoint,8 then

P(A1 * A2 * A3 * ...) = P(A1)+ P(A2)+ P(A3)+ ... =
"

i

P(Ai).

The intuition behind each of these axioms is as follows: The first axiom
states that the probability of any event is a non-negative number; there cannot
be a less-than-zero chance of an event occurring. The second axiom states that
the probability measure of the entire sample space is one.9 In other words, it
is certain that some outcome will occur. Finally, the third axiom states that,
given any number of mutually exclusive events, the probability that one of
those events will occur is the sum of their individual probabilities. Together,
these axioms are sufficient to rule out any probability statements that would be
nonsensical, and they provide the building blocks that will allow us to derive
other useful properties (as we will see in Theorem 1.1.4, Basic Properties of
Probability).

We can represent any random generative process as a probability space
(�,S,P), as illustrated by the following simple example.

Example 1.1.3. A Fair Coin Flip
Consider a fair coin flip. Let H represent the outcome “heads” and T represent
the outcome “tails.” Let � = {H,T} and S = {', {H}, {T}, {H,T}}. Then we can
define the probability measure as follows:

P(A) =
1

2
|A|,"A * S.

The notation |A| denotes the cardinality of the set A, that is, the number of
elements in A. So this means

" P(') = 1
2
|'| = 1

2
· 0 = 0. The probability of nothing happening is zero.

" P
�

{H}
�

= 1
2

�

�{H}
�

� = 1
2
· 1 = 1

2
. The probability of getting heads is 1

2
.

" P
�

{T}
�

= 1
2

�

�{T}
�

� = 1
2
· 1 = 1

2
. The probability of getting tails is 1

2
.

8 Recall that sets A and B are disjoint if A+B = '. We say that A1,A2,A3, ... are pairwise disjoint

if each of them is disjoint from every other, that is, "i  = j, Ai + Aj = '.
9 Notice that Definition 1.1.1 implies that any event space must contain �: S is nonempty, so

#A * S. Since S is closed under complements, AC * S, and so since S is closed under countable

unions, A * AC = � * S. Likewise, �C = ' * S.
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8 Probability

" P
�

{H,T}
�

= 1
2

�

�{H,T}
�

� = 1
2
· 2 = 1. The probability of getting either heads

or tails is one.

The reader can verify that S is a proper event space (that is, it is nonempty
and closed under complements and countable unions) and that P satisfies the
Kolmogorov axioms, so (�,S,P) is a probability space. �10

Several other fundamental properties of probability follow directly from the
Kolmogorov axioms.

Theorem 1.1.4. Basic Properties of Probability
Let (�,S,P) be a probability space.11 Then

" Monotonicity: "A,B * S, if A ¦ B, then P(A) f P(B).
" Subtraction rule: "A,B * S, if A ¦ B, then P(B\A) = P(B)2 P(A).
" Zero probability of the empty set: P(') = 0.
" Probability bounds: "A * S, 0 f P(A) f 1.
" Complement rule: "A * S, P

�

AC
�

= 1 2 P(A).

Proof: Let A,B * S with A ¦ B. Since B = A * (B\A), and A and (B\A) are
disjoint, countable additivity implies

P(B) = P(A)+ P(B\A).

Rearranging this equation, non-negative probabilities then imply monotonic-
ity: P(B\A) g 0, so

P(A) = P(B)2 P(B\A) f P(B).

Rearranging again yields the subtraction rule:

P(B\A) = P(B)2 P(A).

The subtraction rule, in turn, implies zero probability of the empty set: A ¦ A,
so

P(') = P(A\A) = P(A)2 P(A) = 0.

Monotonicity and unitarity (and non-negativity) imply the probability bounds:
since A ¦ �,

0 f P(A) f P(�) = 1.

Finally, the subtraction rule and unitarity imply the complement rule:

P
�

AC
�

= P(�\A) = P(�)2 P(A) = 1 2 P(A). �

10 Note that we use the � symbol to denote the end of an example.
11 This assumption shall henceforth be implicit in all definitions and theorems referring to �, S,

and/or P.
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Probability Theory 9

We can put each of these properties in simple terms. Monotonicity implies
that, if one event is a subset of another (so that the former always occurs
whenever the latter does), then the probability of the former occurring is no
greater than that of the latter. The subtraction rule implies that the probability
that the second event occurs but not the first is equal to the probability of the
second event minus the probability of the first event. Zero probability of the
empty set means that some event in our event space must occur, and probabil-
ity bounds mean that each of these events has some probability of occurring
between zero and one. Finally, the complement rule implies that the proba-
bility of any of these events not occurring is one minus the probability of the
event occurring—so that the probability that a given event either occurs or
does not occur is one.

1.1.3 Joint and Conditional Probabilities

We often want to describe how the probability of one event relates to the
probability of another. We begin by establishing the joint probability of events
A and B, or the probability that events A and B will both occur in a single
draw from (�,S,P).

Definition 1.1.5. Joint Probability
For A,B * S, the joint probability of A and B is P(A + B).

In other words, the joint probability of two events A and B is the probability
of the intersection of A and B (which is itself an event in S), that is, the set of
all states of the world in which both A and B occur. We illustrate this point
with the following example.

Example 1.1.6. A Fair Die Roll
Consider a roll of one fair (six-sided) die. Let � = {1,2,3,4,5,6}, S = P(�)

(the power set—that is, the set of all subsets—of �), and P(A) = 1
6
|A|, "A * S.

Let A = {Ë * � : Ë g 4} = {4,5,6} and B = {Ë * � : Ë is even} = {2,4,6}. Then

P(A + B) = P
�

{4,5,6}+ {2,4,6}
�

= P
�

{4,6}
�

=
1

6

�

�{4,6}
�

� =
2

6
=

1

3
. �

Just as P(A + B) is the probability that both A and B will occur in a single
draw from (�,S,P), P(A*B) is the probability that A or B (or both) will occur
in a single draw from (�,S,P). The following theorem allows us to relate these
two probabilities.

Theorem 1.1.7. Addition Rule
For A,B * S,

P(A * B) = P(A)+ P(B)2 P(A + B).
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10 Probability

Proof: Note that (A\B), (B\A), and (A + B) are pairwise disjoint and

(A * B) = (A\B)* (B\A)* (A + B),

so by countable additivity,

P(A * B) = P(A\B)+ P(B\A)+ P(A + B)

= P
�

A\(A + B)
�

+ P
�

B\(A + B)
�

+ P(A + B)

= P(A)2 P(A + B)+ P(B)2 P(A + B)+ P(A + B)

= P(A)+ P(B)2 P(A + B),

where the second equality holds because

A\B = '* (A\B)

=
�

A + AC
�

*
�

A + BC
�

= A +
�

AC * BC
�

= A + (A + B)C

= A\(A + B),

and likewise B\A = B\(A + B), while the third equality follows from the
subtraction rule, since A + B ¦ A and A + B ¦ B. �

In other words, the probability of at least one of two events occurring is
equal to the sum of the probabilities of each occurring minus the probability
of both occurring. Of course, if A and B are disjoint, this reduces to P(A*B) =

P(A)+ P(B), which is just a special case of countable additivity.
We might also want to describe the probability of observing event A given

that we observe event B. This is known as conditional probability.

Definition 1.1.8. Conditional Probability
For A,B * S with P(B) > 0, the conditional probability of A given B is

P(A|B) =
P(A + B)

P(B)
.

We can rearrange this definition to obtain another useful formula: the
Multiplicative Law of Probability.

Theorem 1.1.9. Multiplicative Law of Probability
For A,B * S with P(B) > 0,

P(A|B)P(B) = P(A + B).

Proof: Rearrange Definition 1.1.8. �
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Probability Theory 11

One of the most important theorems regarding conditional probability is
Bayes’ Rule (also known as Bayes’ Theorem or Bayes’ Law). Bayes’ Rule
relates the conditional probability of A given B to the conditional probability
of B given A. Suppose we have a hypothesis about the probability that some
event A will occur, and we then observe event B. We can update the probabil-
ity that we predict A will occur, using information about the frequency with
which B occurs given A. This kind of deduction constitutes a key element of
probabilistic reasoning and thus has many applications in the social sciences.

Theorem 1.1.10. Bayes’ Rule
For A,B * S with P(A) > 0 and P(B) > 0,

P(A|B) =
P(B|A)P(A)

P(B)
.

Proof: By the Multiplicative Law of Probability, P(A + B) = P(B|A)P(A). So,
by the definition of conditional probability,

P(A|B) =
P(A + B)

P(B)
=

P(B|A)P(A)

P(B)
. �

Although we will not be making use of Bayes’ Rule in this book, we would
be remiss to neglect it entirely. The following example illustrates the above
concepts, including the utility of Bayes’ Rule, by combining the previous
examples of fair coins and fair dice.

Example 1.1.11. Flipping a Coin and Rolling a Die
Consider the following generative process. An experimenter flips a fair coin. If
the coin comes up heads, the experimenter rolls a fair four-sided die. If the coin
comes up tails, the experimenter rolls a fair six-sided die. The sample space can
thus be represented by

� =
�

(H,1),(H,2),(H,3),(H,4),(T,1),(T,2),(T,3),(T,4),(T,5),(T,6)
�

.

Let A denote the event of observing heads, B denote the event of
observing 3, and C denote the event of observing 6. Formally, A =

{(H,1),(H,2),(H,3),(H,4)}, B = {(H,3),(T,3)}, and C = {(T,6)}. What is the
(joint) probability of observing heads and 3? The probability of observing
heads is P(A) = 1

2
. Additionally, if heads is observed, then the experimenter

rolls a fair four-sided die, so the probability of observing 3 given that heads
has been observed is P(B|A) = 1

4
. So, by the Multiplicative Law of Probability,

P(A + B) = P(B|A)P(A) =
1

4
·
1

2
=

1

8
.

Likewise, the probability of observing tails and 3 is

P
�

AC + B
�

= P
�

B
�

�AC
�

P
�

AC
�

=
1

6
·
1

2
=

1

12
.
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12 Probability

Since the experimenter can never roll a 6, if the coin comes up heads, the
probability of observing heads and 6 is

P(A + C) = P(') = 0.

The conditional probability of observing 3 given that heads (or tails) was
observed is relatively straightforward, as we see above. But suppose we wanted
to know the conditional probability that heads was observed given that 3 is
observed. This is where Bayes’ Rule is useful. We want to know P(A|B). We
know P(B|A) and P(A). What is P(B)? From countable additivity,

P(B) = P(A + B)+ P
�

AC + B
�

=
1

8
+

1

12
=

5

24
.

Thus, by Bayes’ Rule,

P(A|B) =
P(B|A)P(A)

P(B)
=

1
4
· 1

2
5
24

=
3

5
. �

The “trick” used above to calculate P(B) is actually a special case of another
important theorem, the Law of Total Probability. To state this theorem, we
require the following definition.

Definition 1.1.12. Partition
If A1,A2,A3, ... * S are nonempty and pairwise disjoint, and � = A1 *A2 *

A3 * ..., then {A1,A2,A3, ...} is a partition of �.

A partition divides the sample space into mutually exclusive and exhaustive
categories or “bins.”12 Every outcome in � is contained in exactly one Ai, so
exactly one event Ai in the partition occurs for any draw from (�,S,P).

Theorem 1.1.13. Law of Total Probability
If {A1,A2,A3, ...} is a partition of � and B * S, then

P(B) =
"

i

P(B + Ai).

If we also have P(Ai) > 0 for i = 1,2,3, ..., then this can also be stated as

P(B) =
"

i

P(B|Ai)P(Ai).

Proof: If {A1,A2,A3, ...} is a partition of �, then "i  = j,

(B + Ai)+ (B + Aj) = (B + B)+ (Ai + Aj) = B + (Ai + Aj) = B +' = '.

12 The number of bins may be finite or countably infinite.
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