
Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Motivation

This chapter tries to explain why coalgebras are interesting structures in

mathematics and computer science. It does so via several examples. The

notation used for these examples will be explained informally, as we proceed.

The emphasis at this stage is not so much on precision in explanation but

on transfer of ideas and intuitions. Therefore, for the time being we define

a coalgebra – very informally – to be a function of the form

S
c

�� · · · S · · · . (1.1)

What we mean is: a coalgebra is given by a set S and a function c with S

as domain and with a ‘structured’ codomain (result, output, the box . . .),

in which the domain S may occur again. The precise general form of these

codomain boxes is not of immediate concern.

Some terminology: We often call S the state space or set of states and say

that the coalgebra acts on S . The function c is sometimes called the transition

function or transition structure. The idea that will be developed is that

coalgebras describe general ‘state-based systems’ provided with ‘dynamics’

given by the function c. For a state x ∈ S , the result c(x) tells us what the

successor states of x are, if any. The codomain . . . is often called the type or

interface of the coalgebra. Later we shall see that it is a functor.

A simple example of a coalgebra is the function

Z
n �→ (n − 1, n + 1)

�� Z × Z

with state space Z occurring twice on the right-hand side. Thus the box or

type of this coalgebra is: (−) × (−) . The transition function n �→ (n − 1, n + 1)

1

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Motivation

may also be written using λ-notation as λn. (n − 1, n + 1) or as λn ∈ Z.

(n − 1, n + 1).

Another example of a coalgebra, this time with state space the set AN of

functions from N to some given set A, is

AN
σ �→ (σ(0), λn. σ(n + 1))

�� A × AN.

In this case the box is A × (−) . If we write σ as an infinite sequence (σn)n∈N

we may write this coalgebra as a pair of functions 〈head, tail〉 where

head
(

(σn)n∈N

)

= σ0 and tail
(

(σn)n∈N

)

= (σn+1)n∈N.

Many more examples of coalgebras will occur throughout this text.

This chapter is devoted to ‘selling’ and ‘promoting’ coalgebras. It does so

by focusing on the following topics.

1. A representation as a coalgebra (1.1) is often very natural, from the

perspective of state-based computation.

2. There are powerful ‘coinductive’ definition and proof principles for

coalgebras.

3. There is a very natural (and general) temporal logic associated with

coalgebras.

4. The coalgebraic notions are on a suitable level of abstraction, so that they

can be recognised and used in various settings.

Full appreciation of this last point requires some familiarity with basic category

theory. It will be provided in Section 1.4.

Remark 1.0.1 Readers with a mathematical background may be familiar

with the notion of coalgebra as comonoid in vector spaces, dual to an algebra as

a monoid. In that case one has a ‘counit’ map V → K, from the carrier space

V to the underlying field K, together with a ‘comultiplication’ V → V ⊗ V .

These two maps can be combined into a single map V → K × (V ⊗ V) of the

form (1.1), forming a coalgebra in the present sense. The notion of coalgebra

used here is thus much more general than the purely mathematical one.

1.1 Naturalness of Coalgebraic Representations

We turn first to an area where coalgebraic representations as in (1.1) occur

naturally and may be useful, namely programming languages – used for

writing computer programs. What are programs, and what do they do? Well,

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Naturalness of Coalgebraic Representations 3

programs are lists of instructions telling a computer what to do. Fair enough.

But what are programs from a mathematical point of view? Put differently,

what do programs mean?1 One view is that programs are certain functions that

take an input and use it to compute a certain result. This view does not cover

all programs: certain programs, often called processes, are meant to be running

forever, like operating systems, without really producing a result. But we shall

follow the view of programs as functions for now. The programs we have in

mind work not only on input, but also on what is usually called a state, for

example for storing intermediate results. The effect of a program on a state

is not immediately visible and is therefore often called the side effect of the

program. One may think of the state as given by the contents of the memory in

the computer that is executing the program. This is not directly observable.

Our programs should thus be able to modify a state, typically via an

assignment like i = 5 in a so-called imperative programming language. Such

an assignment statement is interpreted as a function that turns a state x into

a new, successor state x′ in which the value of the identifier i is equal to 5.

Statements in such languages are thus described via suitable ‘state transformer’

functions. In simplest form, ignoring input and output, they map a state to a

successor state, as in

S
stat

�� S , (1.2)

where we have written S for the set of states. Its precise structure is not

relevant. Often the set S of states is considered to be a ‘black box’ to which

we do not have direct access, so that we can observe only certain aspects. For

instance, the function i : S → Z representing the above integer i allows us to

observe the value of i. The value i(x′) should be 5 in the result state x′ after

evaluating the assignment i = 5, considered as a function S → S , as in (1.2).

This description of statements as functions S → S is fine as first approxima-

tion, but one quickly realises that statements do not always terminate normally

and produce a successor state. Sometimes they can ‘hang’ and continue to

compute without ever producing a successor state. This typically happens

because of an infinite loop, for example in a while statement or because of a

recursive call without exit.

There are two obvious ways to incorporate such non-termination.

1. Adjust the state space. In this case one extends the state space S to a

space S ⊥
def
= {⊥} ∪ S , where ⊥ is a new ‘bottom’ element not occurring in

1 This question comes up frequently when confronted with two programs – one possibly as a
transformation from the other – which perform the same task in a different manner and which
could thus be seen as the same program. But how can one make precise that they are the same?

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Motivation

S that is especially used to signal non-termination. Statements then become

functions:

S ⊥
stat

�� S ⊥ with the requirement stat(⊥) = ⊥.

The side-condition expresses the idea that once a statement hangs it will

continue to hang.

The disadvantage of this approach is that the state space becomes more

complicated and that we have to make sure that all statements satisfy the

side-condition, namely that they preserve the bottom element ⊥. But the

advantage is that composition of statements is just function composition.

2. Adjust the codomain. The second approach keeps the state space S as it is

but adapts the codomain of statements, as in

S
stat

�� S ⊥ where, recall, S ⊥ = {⊥} ∪ S .

In this representation we easily see that in each state x ∈ S the statement

can either hang, when stat(x) = ⊥, or terminate normally, namely when

stat(x) = x′ for some successor state x′ ∈ S . What is good is that there

are no side-conditions anymore. But composition of statements cannot be

defined via function composition, because the types do not match. Thus the

types force us to deal explicitly with the propagation of non-termination:

for these kind of statements s1, s2 : S → S ⊥ the composition s1 ; s2, as a

function S → S ⊥, is defined via a case distinction (or pattern match) as

s1 ; s2 = λx ∈ S .

{

⊥ if s1(x) = ⊥

s2(x′) if s1(x) = x′.

This definition is more difficult than function composition (as used in

point 1 above), but it explicitly deals with the case distinction that is of

interest, namely between non-termination and normal termination. Hence

being forced to make these distinctions explicitly is maybe not so bad at all.

We push these same ideas a bit further. In many programming languages

(such as Java [43]) programs may not only hang, but also terminate ‘abruptly’

because of an exception. An exception arises when some constraint is violated,

such as a division by zero or an access a[i] in an array a which is

a null-reference. Abrupt termination is fundamentally different from non-

termination: non-termination is definitive and irrevocable, whereas a program

can recover from abrupt termination via a suitable exception handler that

restores normal termination. In Java this is done via a try-catch statement;

see for instance [43, 173, 240].

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Naturalness of Coalgebraic Representations 5

Let us write E for the set of exceptions that can be thrown. Then there are

again two obvious representations of statements that can terminate normally or

abruptly or can hang.

1. Adjust the state space. Statements then remain endofunctions2 on an

extended state space:

(

{⊥} ∪ S ∪ (S × E)
) stat

��

(

{⊥} ∪ S ∪ (S × E)
)

.

The entire state space clearly becomes complicated now. But also the side-

conditions are becoming non-trivial: we still want stat(⊥) = ⊥, and also

stat(x, e) = (x, e), for x ∈ S and e ∈ E, but the latter only for non-

catch statements. Keeping track of such side-conditions may easily lead

to mistakes. But on the positive side, composition of statements is still

function composition in this representation.

2. Adjust the codomain. The alternative approach is again to keep the state

space S as it is, but to adapt the codomain type of statements, namely as

S
stat

��

(

{⊥} ∪ S ∪ (S × E)
)

. (1.3)

Now we do not have side-conditions and we can clearly distinguish the

three possible termination modes of statements. This structured output

type in fact forces us to make these distinctions in the definition of the

composition s1 ; s2 of two such statements s1, s2 : S → {⊥} ∪ S ∪ (S × E),

as in

s1 ; s2 = λx ∈ S .

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⊥ if s1(x) = ⊥

s2(x′) if s1(x) = x′

(x′, e) if s1(x) = (x′, e).

Thus, if s1 hangs or terminates abruptly, then the subsequent statement s2 is

not executed. This is very clear in this second coalgebraic representation.

When such a coalgebraic representation is formalised within the typed

language of a theorem prover (as in [265]), the type checker of the theorem

prover will make sure that appropriate case distinctions are made, according

to the output type as in (1.3). See also [240] where Java’s exception

mechanism is described via such case distinctions, closely following the

official language definition [173].

These examples illustrate that coalgebras as functions with structured

codomains . . . , as in (1.1), arise naturally and that the structure of the

2 An endofunction is a function A→ A from a set A to itself.

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Motivation

codomain indicates the kind of computations that can be performed. This idea

will be developed further and applied to various forms of computation. For

instance, non-deterministic statements may be represented via the powerset

P as coalgebraic state transformers S → P(S) with multiple result states.

But there are many more such examples, involving for instance probability

distributions on states.

(Readers familiar with computational monads [357] may recognise similar-

ities. Indeed, in a computational setting there is a close connection between

coalgebraic and monadic representations. Briefly, the monad introduces the

computational structure, like composition and extension, whereas the coalge-

braic view leads to an appropriate program logic. This is elaborated for Java

in [264].)

Exercises

1.1.1 1. Prove that the composition operation ; as defined for coalgebras

S → {⊥} ∪ S is associative, i.e. satisfies s1 ;(s2 ; s3) = (s1 ; s2) ; s3,

for all statements s1, s2, s3 : S → {⊥} ∪ S .

Define a statement skip : S → {⊥} ∪ S which is a unit for

composition ; i.e. which satisfies (skip ; s) = s = (s ; skip), for all

s : S → {⊥} ∪ S .

2. Do the same for ; defined on coalgebras S → {⊥} ∪ S ∪ (S × E).

(In both cases, statements with an associative composition opera-

tion and a unit element form a monoid.)

1.1.2 Define also a composition monoid (skip, ;) for coalgebras S → P(S).

1.2 The Power of the Coinduction

In this section we shall look at sequences – or lists or words, as they are

also called. Sequences are basic data structures, both in mathematics and in

computer science. One can distinguish finite sequences 〈a1, . . . , an〉 and infinite

〈a1, a2, . . .〉 ones. The mathematical theory of finite sequences is well under-

stood and a fundamental part of computer science, used in many programs

(notably in the language Lisp). Definition and reasoning with finite lists is

commonly done with induction. As we shall see, infinite lists require coinduc-

tion. Infinite sequences can arise in computing as the observable outcomes

of a program that runs forever. Also, in functional programming, they can

occur as so-called lazy lists, as in the languages Haskell [71] or Clean [381].

Modern extensions of logical programming languages have support for infinite

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 The Power of the Coinduction 7

sequences [431, 189]. (Logic programming languages themselves can also be

described coalgebraically; see [78, 107, 305, 306, 80, 81].)

In the remainder of this section we shall use an arbitrary but fixed set A

and wish to look at both finite 〈a1, . . . , an〉 and infinite 〈a1, a2, . . .〉 sequences

of elements ai of A. The set A may be understood as a parameter, and our

sequences are thus parametrised by A, or, put differently, are polymorphic in A.

We shall develop a slightly unusual and abstract perspective on sequences. It

treats sequences not as completely given at once but as arising in a local, step-

by-step manner. This coalgebraic approach relies on the following basic fact.

It turns out that the set of both finite and infinite sequences enjoys a certain

‘universal’ property, namely that it is a final coalgebra (of suitable type). We

shall explain what this means and how this special property can be exploited to

define various operations on sequences and to prove properties about them. A

special feature of this universality of the final coalgebra of sequences is that it

avoids making the (global) distinction between finiteness and infiniteness for

sequences.

First some notation. We write A⋆ for the set of finite sequences 〈a1, . . . , an〉

(or lists or words) of elements ai ∈ A, and AN for the set of infinite ones:

〈a1, a2, . . .〉. The latter may also be described as functions a(−) : N→ A, which

explains the exponent notation in AN. Sometimes, the infinite sequences in AN

are called streams. Finally, the set of both finite and infinite sequences A∞ is

then the (disjoint) union A⋆ ∪ AN.

The set of sequences A∞ carries a coalgebra or transition structure, which

we simply call next. It tries to decompose a sequence into its head and tail, if

any. Hence one may understand next as a partial function. But we describe it

as a total function which possibly outputs a special element ⊥ for undefined:

A∞
next

�� {⊥} ∪
(

A × A∞
)

σ
✤

��

{

⊥ if σ is the empty sequence 〈〉

(a, σ′) if σ = a · σ′ with head a ∈ A and tail σ′ ∈ A∞.

(1.4)

The type of the coalgebra is thus {⊥} ∪ (A × (−)) , as in (1.1), with A∞ as

state space that is plugged in the hole (−) in the box. The successor of a state

σ ∈ A∞, if any, is its tail sequence, obtained by removing the head.

The function next captures the external view on sequences: it tells what can

be observed about a sequence σ, namely whether or not it is empty, and if not,

what its head is. By repeated application of the function next all observable

elements of the sequence appear. This ‘observational’ approach is fundamental

in coalgebra.

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Motivation

A first point to note is that this function next is an isomorphism: its inverse

next−1 sends ⊥ to the empty sequence 〈〉 and a pair (a, τ) ∈ A × A∞ to the

sequence a · τ obtained by prefixing a to τ.

The following result describes a crucial ‘finality’ property of sequences that

can be used to characterise the set A∞. Indeed, as we shall see later in Lemma

2.3.3, final coalgebras are unique, up-to-isomorphism.

Proposition 1.2.1 (Finality of sequences) The coalgebra next : A∞ → {⊥} ∪

A × A∞ from (1.4) is final among coalgebras of this type: for an arbitrary

coalgebra c : S → {⊥} ∪ (A × S) on a set S there is a unique ‘behaviour’

function behc : S → A∞ which is a homomorphism of coalgebras. That is, for

each x ∈ S , both

• if c(x) = ⊥, then next(behc(x)) = ⊥.

• if c(x) = (a, x′), then next(behc(x)) = (a, behc(x′)).

Both these two points can be combined in a commuting diagram, namely as

{⊥} ∪ (A × S) ��❴❴❴❴❴❴❴❴❴

id ∪ (id × behc)
{⊥} ∪ (A × A∞)

S

c

��

��❴❴❴❴❴❴❴❴❴❴❴❴❴❴

behc

A∞

� next

��

where the function id ∪ (id×behc) on top maps⊥ to⊥ and (a, x) to (a, behc(x)).

In general, we shall write dashed arrows, like above, for maps that are

uniquely determined. In the course of this chapter we shall see that a general

notion of homomorphism between coalgebras (of the same type) can be defined

by such commuting diagrams.

Proof The idea is to obtain the required behaviour function behc : S → A∞

via repeated application of the given coalgebra c as follows.

behc(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈〉 if c(x) = ⊥

〈a〉 if c(x) = (a, x′) ∧ c(x′) = ⊥

〈a, a′〉 if c(x) = (a, x′) ∧ c(x′) = (a′, x′′) ∧ c(x′′) = ⊥
.
.
.

Doing this formally requires some care. We define for n ∈ N an iterated version

cn : S → {⊥} ∪ A × S of c as

c0(x) = c(x)

cn+1(x) =

{

⊥ if cn(x) = ⊥

c(y) if cn(x) = (a, y).

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 The Power of the Coinduction 9

Obviously, cn(x) � ⊥ implies cm(x) � ⊥, for m < n. Thus we can define

behc(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈a0, a1, a2, . . .〉 if ∀n ∈ N. cn(x) � ⊥, and ci(x) = (ai, xi)

〈a0, . . . , am−1〉 if m ∈ N is the least number with cm(x) = ⊥,

and ci(x) = (ai, xi), for i < m.

We check the two conditions for homomorphism from the proposition above.

• If c(x) = ⊥, then the least m with cm(x) = ⊥ is 0, so that behc(x) = 〈〉, and

thus also next(behc(x)) = ⊥.

• If c(x) = (a, x′), then we distinguish two cases:

◦ If ∀n ∈ N. cn(x) � ⊥, then ∀n ∈ N. cn(x′) � ⊥, and ci+1(x) = ci(x′). Let

ci(x′) = (ai, xi), then

next(behc(x)) = next(〈a, a0, a1, . . .〉)

= (a, 〈a0, a1, . . .〉)

= (a, behc(x′)).

◦ If m is least with cm(x) = ⊥, then m > 0 and m − 1 is the least k with

ck(x′) = ⊥. For i < m − 1 we have ci+1(x) = ci(x′), and thus by writing

ci(x′) = (ai, xi), we get as before:

next(behc(x)) = next(〈a, a0, a1, . . . , am−2〉)

= (a, 〈a0, a1, . . . , am−2〉)

= (a, behc(x′)).

Finally, we still need to prove that this behaviour function behc is the unique

homomorphism from c to next. Thus, assume also g : S → A∞ is such that

c(x) = ⊥ ⇒ next(g(x)) = ⊥ and c(x) = (a, x′) ⇒ next(g(x)) = (a, g(x′)). We

then distinguish:

• g(x) is infinite, say 〈a0, a1, . . .〉. Then one shows by induction that for all n ∈

N, cn(x) = (an, xn), for some xn. This yields behc(x) = 〈a0, a1, . . .〉 = g(x).

• g(x) is finite, say 〈a0, . . . , am−1〉. Then one proves that for all n < m,

cn(x) = (an, xn), for some xn, and cm(x) = ⊥. So also now, behc(x) =

〈a0, . . . , am−1〉 = g(x).

Before exploiting this finality result we illustrate the behaviour function.

Example 1.2.2 (Decimal representations as behaviour) So far we have

considered sequence coalgebras parametrised by an arbitrary set A. In this

example we take a special choice, namely A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the set

of decimal digits. We wish to define a coalgebra (or machine) which generates

www.cambridge.org/9781107177895
www.cambridge.org

Cambridge University Press
978-1-107-17789-5 — Introduction to Coalgebra
Bart Jacobs
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Motivation

decimal representations of real numbers in the unit interval [0, 1) ⊆ R. Notice

that this may give rise to both finite sequences (1
8

should yield the sequence

〈1, 2, 5〉, for 0.125) and infinite ones (1
3

should give 〈3, 3, 3, . . .〉 for 0.333 . . .).

The coalgebra we are looking for computes the first decimal of a real number

r ∈ [0, 1). Hence it should be of the form

[0, 1)
nextdec

�� {⊥} ∪
(

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} × [0, 1)
)

with state space [0, 1). How to define nextdec? Especially, when does it

stop (i.e. return ⊥), so that a finite sequence is generated? Well, the decimal

representation 0.125 may be identified with 0.12500000 . . . with a tail of

infinitely many zeros. Clearly, we wish to map such infinitely many zeros to ⊥.

Fair enough, but it does have as consequence that the real number 0 ∈ [0, 1)

gets represented as the empty sequence.

A little thought brings us to the following:

nextdec(r) =

{

⊥ if r = 0

(d, 10r − d) otherwise, with d ≤ 10r < d + 1 for d ∈ A.

Notice that this function is well defined, because in the second case the

successor state 10r − d is within the interval [0, 1).

According to the previous proposition, this nextdec coalgebra gives rise to

a behaviour function:

[0, 1)
behnextdec

��

(

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
)∞

.

In order to understand what it does, i.e. which sequences are generated by

nextdec, we consider two examples.

Starting from 1
8
∈ [0, 1) we get

nextdec(1
8
) = (1, 1

4
) because 1 ≤ 10

8
< 2 and 10

8
− 1 = 1

4

nextdec(1
4
) = (2, 1

2
) because 2 ≤ 10

4
< 3 and 10

4
− 2 = 1

2

nextdec(1
2
) = (5, 0) because 5 ≤ 10

2
< 6 and 10

2
− 5 = 0

nextdec(0) = ⊥.

Thus the resulting nextdec-behaviour on 1
8

is 〈1, 2, 5〉, i.e. behnextdec(1
8
) =

〈1, 2, 5〉. Indeed, in decimal notation we write 1
8
= 0.125.

Next, when we run nextdec on 1
9
∈ [0, 1) we see that

nextdec(1
9
) = (1, 1

9
) because 1 ≤ 10

9
< 2 and 10

9
− 1 = 1

9
.

The function nextdec thus immediately loops on 1
9
, giving an infinite sequence

〈1, 1, 1, . . .〉 as behaviour. This corresponds to the fact that we can identify 1
9

with the infinite decimal representation 0.11111

www.cambridge.org/9781107177895
www.cambridge.org

