Index

Aberdeen Birth Cohort. See Scottish Mental Surveys (SMS)
Ability, 139–40
Ache people, 143
Achievement tests, 231
Acquired domain-specific mechanisms, 95–96. See also Expert performance
ACT

generally, 135
gender differences in intelligence in, 36
Successful Intelligence Theory and, 311–12
Actuality versus potentiality, 1, 3, 6–8
Adelman, Clifford, 189
Adolescent intelligence, 4–5
Adult intelligence
aff ective traits and, 10
conative traits and, 10
direct assessment of knowledge components, 6–8
future research, 12–13
gender differences in intelligence in, 8–9, 11–12
Gf in adults, 5–8, 12
“historical” Gc in adults, 6–8, 12
middle-aged adults, 6
non-ability traits and, 1, 9–12
potentiality versus actuality, 1, 6–8
specialization and, 5
stabilization of, 154
young adults, 6
Advanced Placement (AP) tests, Successful Intelligence Theory and, 313
Advances in the Psychology of Human Intelligence (Sternberg), xi–xii
Affective traits, adult intelligence and, 10
African-Americans, 109
Age differences
decline of intelligence with age, 58–59
neuroimaging and, 174
in Scottish Mental Surveys (SMS), 74–75
Allison, J., 199
American Psychological Association (APA), 231
Anderson, Giles, 220–21
Andrescu, T., 363, 4
Angeles Quiroga, M., 56
Antecol, Heather, 43
Aptitude tests, 231
Aristotle, 3
Armed Services Vocational Aptitude Test Battery (ASVAB), 135
Armstrong, P., 44
Army Alpha, 87, 198
Army Beta, 198
Artifi cial intelligence, measurement of intelligence and, 210
Assessment of Higher Education Learning Outcomes, 190
Assessment of intelligence. See Measurement of intelligence
Associative learning, 217–18
Austin, E. J., 280
Autonomy, intelligence and, 111–12, 114
Barber, N., 259–60, 264
Bartholomew, D. J., 17
Basic intelligences, 280
Beatty, Roger, 225
Beilock, L. S., 43
The Bell Curve (Herrnstein and Murray), 116, 207
Benbow, Camilla P., 233, 248
Benson, V. E., 219
Bian, L., 42
Big Five personality traits, 192, 279
Binet, Alfred, 1, 2, 86, 198, 210
Binet-Simon intelligence test, 64–65, 69, 86–87, 198
© in this web service Cambridge University Press
More Information
Biological differences, gender differences in intelligence and, 32–33
Blackwell, Lisa S., 42–43
Blatt, S. J., 199
Boake, C., 87
Boas, Franz, 19
Bodily-kinesthetic intelligence, 119
Bologna Process, 190
Boring, Edwin G., 55, 116
Bower, Gordon, xi
Bracken, Bruce, 208
Brain-efficiency hypothesis, 174
Briley, D. A., 154
Broad intelligences
overview, 271–72
basic intelligences, 280
emotional intelligence as, 277–78
excessive number of intelligences, 280
people-centered intelligence (See People-centered intelligence)
personal intelligence as, 277–78
subject-oriented intelligences, 280
thing-centered intelligence (See Thing-centered intelligence)
Brown, Jaimie, 219–20
Brown, Roger, 116
Brown University, 171
Buchsbaum, Monte, 171
Burhan, N. A. S., 263
Burks, Barbara, 20
Burt, Cyril, 19
“Burt Affair,” 19
Cacchio, M., 161i.4
Call, J., 273
Cambridge Handbook of Intelligence (Sternberg & Kaufman, eds.), xii
Cantor, N., 243–54
Carnegie Mellon University, 216–17
Carroll, John B.
generally, xii, 22, 230
on ability, 139–40
on g, 217
hierarchical model of, 152–53, 274
structural equation modeling (SEM) and, 271–72
Successful Intelligence Theory and, 310
Cattell, Raymond B., §, 133, 197–98, 288
Cattell-Horn-Carroll (CHC) model
generally, 272, 274
overview, 271–72
emotional intelligence and, 277–78
factors in, 49–50
Gf and, 287
problems with, 272
thing-centered intelligence and, 272
Central auditory processing disorder (CAPD), 215
Cerebral specialization theory, 200, 202
Chase, Bill, 87–89
Christiansen, G. B., 264–65
Cimpian, A., 42
Cirullo, B. A., 96
CogniMed, 56
CogniFit, 56
Cognitive Abilities Test Nonverbal Battery, 37
Cognitive access to health care, 147–49
Cognitive achievement, national intelligence and, 260
Cognitive epidemiology, 67, 76
Cognitive training, 56–57, 59
Cohen, J., 199–200
Complexity in social structure
ability and, 139–40
deceptive science and, 145–46
democratic dilemma and, 144
denial of consequential biological facts and, 144
evolution of g in pre-technological human groups and, 141–43
functional literacy and, 142
“too good to be true” tests and, 146
Complexity of intelligence, 152–53
Computer technology, measurement of intelligence and, 209–10
Conative traits, adult intelligence and, 10
Construct validity, 184–85
Contextual nature of intelligence, 1
Cornell University, 313
Correlated vectors, 103–04, 108–09
Corruption Perception Index, 261
Cosmides, L., 16
Cribari-Neto, F., 258
Crime, national intelligence and, 265
Critical thinking
overview, 183–84
assessment of, 189–92
Big Five personality traits and, 192
cognitive skills involved in, 186
constructed responses, assessment using, 191
defined, 185
dispositional aspect of, 186–87
empirical research regarding, 187–89
forced responses, assessment using, 191
Halpern Critical Thinking Assessment (HCTA), 188, 190–93
human behavior predictability and, 193
as missing from IQ tests, 184–85
multiple-choice responses, assessment using, 191
practical intelligence and, 185
rational intelligence and, 184–85
real-life settings and, 185, 192–94
recognition responses, assessment using, 191
in schools, 187–89
situational judgment tests and, 191–92
use in conjunction with IQ, 185
Cronbach, Lee J., xi, 231, 273–74, 287
Crystallized intelligence (Ge)
generally, 5
in adults, 6–8, 12
future research, 12–13
Gf compared, 287–88, 296–97
Process Overlap Theory (POT) and, 50–51
Cummings, Jack, 208
Current Topics in Human Intelligence
(Detterman), xii
Cvencek, D., 42
Cvoric, J., 264–65
Dama, M. S., 262
Darwin, Charles, 15–16, 23n1
De Bruin, W. B., 192
Deary, Ian J., 66–69, 263
DeCaro, M. S., 292
Deceptive science, 145–46
Default mode network, 225
Definition of intelligence
epigenetics and, 152–53
g and, 168
Gardner on, 117–18
Gottfredson on, 15, 64, 131–34, 270–71, 308
Jensen on, 113
Kaufman on, 202–03
measurability and, 202–03
Meelh on, 230–31
need for precision in, 113
in Oxford Dictionary, 85
people-centered versus thing-centered intelligence, in context of, 280
problems with, 132–33
Process Overlap Theory (POT) and, 55
Sternberg on, 185, 308
successful intelligence, 223, 308
Democratic dilemma, 144
Denmark Adoption Studies of Schizophrenia, 170–71
Detterman, Douglas K., xii, 96, 234–35
Development of intelligence
by cognitive training, 56–57, 59
epigenetics and, 153–54, 159
exceptional intelligence, 248–49
fully exploiting maximal capacity, 136–37
Gf, 300–01
measurement of intelligence and, 204
people-centered intelligence, 278
preventing needless decline in maximal capacity, 137
Process Overlap Theory (POT) and, 56–57, 59
in Successful Intelligence Theory, 315–17
thing-centered intelligence, 278
working memory capacity, 300–01
Diabetes management, 147–49
Dickens, Bill, 109
Dickens-Flynn model, 109–12
Digit-span test
generally, 87
overview, 86
Digit Span Backward, 101–02
Digit Span Forward, 101–02
short term memory, changeability with practice, 88–92
DISCOVER, 121
Disengagement mechanisms
Gf and, 289–91, 294–98, 299t18.1
misattribution of, 299t18.1
working memory capacity and, 299t18.1
Divergent-thinking ability, 225
DNA methylation, 154–59
Doing Business Index, 261
Dorfman, Donald, 19
Dual-Process Theory, 217–20
overview, 215
associative learning and, 217–18
implicit cognition and, 219
implicit learning and, 218–19
Duke University, 237
Dweck, Carl S., 42–43
Dynamic nature of intelligence, 2–3, 153, 310
Dynamic pairs, 276
Ebbinghaus, Hermann, 86
Ecker, U.K.H., 292
Economic Freedom in the World Index, 261
Economic growth, national intelligence and, 258
Edinburgh research. See Scottish Mental Surveys (SMS)
Education Department, 136
Educational issues regarding intelligence
critical thinking and, 187–89
denial of consequential biological facts, 144
educational attainment, national intelligence and, 259
educational input, national intelligence and, 259–60
Educational issues regarding intelligence (cont.)

Multiple Intelligences Theory (MI) and, 121–27
neuroimaging and, 177–78
people-centered intelligence and, 281
policy failures, use of g to predict, 144–45
Process Overlap Theory (POT) and, 58
Scottish Mental Surveys (SMS) and, 76–77
selective schooling, 76
Successful Intelligence Theory and, 311, 315–17
“too good to be true” tests, 146
Educational Testing Services, 277–78
Electroencephalogram (EEG), 167
Ellison, G., 36f3.4, 38
Else-Quest, N., 38
Emotional intelligence
overview, 120, 274
Big Five personality traits and, 279
as broad intelligence, 277–78
Cattell-Horn-Carroll (CHC) model and, 277–78
Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), 277–79
measurement of, 275f17.1
personal intelligence versus, 277
Engle, R. W., 293–96, 299–300
ENIGMA, 177
Environmental contributions to intelligence, 153
Epigenetics
overview, 152
context- versus genome-based hypotheses of intelligence, 153–54
correlation with intelligence, 155–56
definition of intelligence and, 152–53
development of intelligence and, 153–54
developmental stages, variance in intelligence across, 153–54
DNA methylation and, 154–59
epigenetic clock and, 156
epigenetic variation, 154–55
individuals, variance in intelligence across different contexts, 153–54
measurement of intelligence and, 153
metastable epialleles and, 156–57
modifiability, 159
neuroepigenetics, 157–58
research regarding, 158, 159
stabilization of adult intelligence, 154
Eppig, C., 264
Epstein, Nate, 171
Equitable intelligence assessments
overview, 197, 204–08
artificial intelligence and, 210
computer technology and, 209–10
Kaufman Assessment Battery for Children (K-ABC) and, 206–08
punishment of children and, 204–05
Q-interactive approach and, 209–10
racial differences and, 207, 208
Ericsson, K. Anders, 89, 92, 96
Ethnic differences in intelligence. See Racial differences in intelligence
Exceptional intelligence
overview, 249–50
discussion of, 247
empirical fi ndings regarding, 233
GRE and, 251n3
horizontal analysis of, 249
nurturing of, 248–49
SMPY and (See Study of Mathematically Precocious Youth (SMPY))
spatial ability and, 247
vertical analysis of, 249
Excessive number of intelligences, 280
Executive attention
GF and, 291, 299, 300
positive psychology and, 225
Process Overlap Theory (POT) and, 49, 51–55, 57–58
working memory capacity and, 291, 299, 300
Existential intelligence, 120
Experience-Producing Drives (EPD) theory, 22–23
Expert performance
overview, 85–87, 97
acquired domain-specifi c mechanisms and, 95–96
basic cognitive abilities, role of, 95–96
data collection, 93–94
empirical research, 93
identification of subjects, 92
intelligence, role of, 95–96
intelligence tests and, 87
IQ and, 95–96
short term memory, changeability with practice, 88–92
Factor analysis
overview, 101–02
Faculty psychology, 16
“Fadeout eff ect,” 23n3
Failed State Index, 261
Falone, Steve, 88–90
Fay, Anne, 216, 217
Fertility, national intelligence and, 265
Fierros, M., 34, 36–37
Fincher, C. L., 264
Fischhoff, B., 192
Index

Fletcher-Janzen, Elaine, 207
Fluid intelligence (Gf)
in adults, 5–8, 12
Cartell-Horn-Carroll (CHC) model and, 287
correlation with working memory capacity, 288–89, 291, 294–96, 300
development of, 300–01
disengagement mechanisms and, 289–91, 294–98, 299t18.1
dissociation from working memory capacity, 292–93
executive attention and, 291, 299, 300
extreme-groups research, limitations of, 298–300
g and, 113
Gc compared, 287–88, 296–97
knowledge acquisition and, 298
Process Overlap Theory (POT) and, 50–52, 56
Raven’s Progressive Matrices and, 103
vocabulary learning and, 296–98
Flynn effect, 104–08, 112
Forgear, Marie, 224
Fragile X syndrome, 155
Frames of Mind (Gardner), 119
Freud, Sigmund, 199
Frey, M. C., 234–35
Frontal lobes, 172, 174
Fryer, Roland G., Jr., 34
Functional literacy, 142
Functional magnetic resonance imaging (fMRI), 173, 176–77
g. See General factor g
Galton, Francis, 15–16, 231n1, 197
Gardner, Howard. See also Multiple Intelligences Theory (MI)
generally, 217, 223–24
on criteria of intelligences, 118–19
on definition of intelligence, 117–18
on education, 121–22
on other possible intelligences, 120
Successful Intelligence Theory and, 311
thought experiment of, 117
Gates, Bill, 251n3
Gc. See Crystallized intelligence (Gc)
Geary, D. C., 37
Gelade, G. A., 260
Gender differences in intelligence overview, 30
in ACT, 36
in adult intelligence, 8–9, 11–12
biological differences and, 32–33
Dickens-Flynn model and, 112
Flynn effect and, 112
future research, 43–44
in GEEMP fields, 30–32, 44
in GRE-Q, 32, 42
growth mindset and, 42–43
interests, differences in, 44
in IQ, 8–9
in kindergarten, 34
in LPS fields, 30–32
in mathematical ability, 32–39
in middle school, 33–34
neuroimaging and, 174
paradox of, 42–43
in quantitative fields, 30–32
racial differences and, 38
regional variation and, 38
at right tail, 34–39, 44
in SAT, 36, 37, 42
in Scottish Mental Surveys (SMS), 74
in spatial ability, 39–42
Stanford-Binet intelligence test and, 8–9
in spatial ability, 11–12, 30–32, 44
stereotypes and, 44
variance ratios and, 38
General Aptitude Test Battery (GATB), 145, 146
General factor g
generally, 16, 197
background, 130–31
Carroll on, 217
defined, 133–34
definition of intelligence and, 168
evolution in pre-technological human groups, 141–43
as formulative latent variable, 52–53
Gf and, 113
g loading, 101–02, 139–42
Gould on, 16–17
implicit cognition and, 219
IQ versus, 103–04, 108–09
Jensen on, 135–36
as latent construct, 133–34
non-g theory versus, 65–66
policy failures, use of to predict, 144–45
as population-dependent, 52
Successful Intelligence Theory and, 310, 317
as task-dependent, 52
Genetics
effect on lifetime changes in intelligence differences, 70
genetic contributions to intelligence, 153
Genome-wide association studies (GWAS), 72–73, 76–77
Genotypic intelligence, individual differences in, 146
Geoscience, engineering, economics, math/computer science, and physical sciences (GEEMP), gender differences in intelligence in, 30–32, 44
Gf. See Fluid intelligence (Gf)
Goddard, Henry, 197
Goldberg, E., 34, 36–37
Goleman, D., 120
Gottfredson, Linda, 15, 64, 131–34, 270–71, 308
Gould, Stephen J., 16–17, 19
Graduate Management Admission Test (GMAT), 32
Graduate Record Examination (GRE) exceptional intelligence and, 251n3
Gender differences in intelligence in, 32, 42
limitations of, 5
Greenwald, A., 42
Grissom, W. S., 96
Growth mindset, 42–43
Guilford, J. P., 197–98, 200
Gustafsson, J., 22
Gutman, L., 16
Hafer, R. W., 263
Halpern, Diane F., 38, 186, 187; See also Critical thinking
Halpern Critical Thinking Assessment (HCTA), 188, 190–93
Happiness, national intelligence and, 263
“Hard work” versus intelligence, 18
Harrison, Patti, 208
Harrison, T. L., 292, 294–96, 299, 300
Hartman, M., 293–94
Haswell, C., 264
Health factors
cognitive access to health care, 147–49
cognitive epidemiology and, 76
diabetes management, 147–49
effect on lifetime changes in intelligence differences, 70–72
in national intelligence, 263–65
Hebb, Donald O., 287–88
Hedges, L. V., 34
Hedlund, J., 280
Hereditary Genius (Dalton), 15–16, 23n1
Heritability of intelligence generally, 204
Galton on, 15–16
Gould on, 19
in Scottish Mental Surveys (SMS), 72–73
twins and, 18–19
Herrnstein, Richard, 116, 207, 265
Hogan, Robert, 170

Homework, 9
Hopkins Study of Mathematically and Scientifically Precocious Youth, 170
Horn, John, xii, 133
Human Connectome Project, 176–77
Human Intelligence (Hunt), 230
Humphreys, Lloyd, 145
Hunt, Earl B., xi–xiii, 224, 230
Hunt, J. McV., 197
Hunter, J. E., 249
Hyde, J. S., 33–34, 36, 36f3.4, 38

Ice Age thesis, 112–13
IMAGEN, 177
Implicit cognition, 219
Implicit learning, 218–19
Income inequality, national intelligence and, 258–59
Indian Institute of Technology, 251n3
Inequality (Jencks), 257
Institute for Higher Education Policy, 189
Instrumentalism, 113
Intelligence (journal), 270
Intelligence quotient (IQ)
achievement tests versus aptitude tests, 231
African-Americans and, 109
“Burt Affair” and, 19
creativity and, 203
critical thinking as missing from tests of, 184–85
dependent performance, 95–96
 Flynn effect, 104–08
future research, 12–13, 114
 g versus, 103–04, 108–09
gender differences in, 8–9
historical background, 116
Ice Age thesis and, 112–13
increases in over time, 104–08
in Japan, 256
Jensen on, 167–68
national intelligence (See National intelligence)
neuroimaging, correlation with, 176–77
norming samples and, 2, 6
other tests versus, 87
performance IQ (P-IQ), 205–06
potentiality versus actuality, 1, 3
cognitive tests and, 168
rational differences in, 167–68
real-life settings, correlation with, 185
in Singapore, 256
social class and, 23n4
Sternberg on, 203
Theory of Personal Intelligence and, 221–22
twin studies and, 102, 169
Index

329

Kan, K.-J., 53–54, 59
Kanazawa, S., 238–39, 262
Karanian, J., 121
Kaufman, Nadeen, 202–06, 208
Kaufman, Scott Barry, xii. See also Dual-Process Theory; Theory of Personal Intelligence (Kaufman)
Kaufman Assessment Battery for Children (K-ABC), 201–03, 206–10
Kell, H. J., 244
Kelley, T. L., 131
KEYMATH3- Numeration tests, 41
Kievit, R. A., 53–54
Kihlstrom, J. F., 233–24
Kintsch, W., 89
Knowledge acquisition, 278
Kornhaber, M. L., 124, 125
Krechovsky, M., 124
Kuncel, R. N., 17
Kurniawan, Y., 263

Labor Department, 138
Lakin, J. M., 34, 37
Lee, J. J., 17
Legree, P. J., 277–78
Leslie, S. J., 42
Levey, S., 16
Levitt, Steven D., 34
Lewin, Kurt, 121, 149
Life satisfaction, national intelligence and, 263
Lifesciences, psychology, and social sciences (LPS), 30–32
Lifestyle factors, effect on lifetime changes in intelligence differences, 70–72
Linguistic intelligence, 119
Lippa, R., 44
Logical-mathematical intelligence, 119
Lohman, D. F., 34, 37
Long-term working memory (LTWM), 89

Looking Down on Human Intelligence (Deary), 66
Lothian Birth Cohort. See Scottish Mental Surveys (SMS)
Lubinski, David, 233
Lumosity, 56
Luria, A. R., 106, 200, 202
Lv, Z., 258, 260–64
Lynn, Richard, 216–18, 260–61, 263–65
MacCann, C., 277–78
Mackintosh, Nicholas J., xii, 58, 217, 218
Magnetic resonance imaging (MRI), 169, 172, 173–74
Makel, M., 363.4
Marin, L., 187

in UK, 256–57
in US, 256
use in conjunction with critical thinking, 183
verbal IQ (V-IQ), 209–06
Wechsler IQ tests, 102, 108, 109, 135
Intelligence tests. See also Measurement of intelligence; specific test
achievement tests, 231
aptitude tests, 231
construct validity of, 184–85
evolution of, 197–200
expert performance and, 87
neuroimaging, correlation with, 176–77
for people-centered intelligence, 274–77
psychometric tests, 168, 174
"too good to be true" tests, 146
Intelligent testing approach, 200–01, 206
Intelligent Testing with the WISC-R (Kaufman), 200–01, 206
International Math and Science Study (TIMSS), 30–37, 259
International Mathematical Olympiad (IMO), 260
Interpersonal intelligence, 119
Intrapersonal intelligence, 119
Investment theory, 296–98
IQ, See Intelligence quotient (IQ)
IQ and Human Intelligence (Mackintosh), 217
Ishikuma, Toshinori, 208
"Jangle fallacy," 231
Japan, IQ in, 256
Jencks, Christopher, 257
Jensen, Arthur
generally, xii, 230
overview, 101
on complexity, 140
on correlated vectors, 103–04, 108–09
on definition of intelligence, 113
on factor analysis, 101–02
on g, 133–36
on IQ, 167–68
on Raven’s Progressive Matrices, 103
on twin studies, 102
Jiménez, Luis, 218
Johnson, S. P., 41
Johnson, Wendy, 65
Jones, G., 262–63
Jung, Bex, 174
Kaleidoscope Project, 311–12
Kamin, Leon, 19
Kamphaus, Randy, 208

© in this web service Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin, J. D., 296–98</td>
</tr>
<tr>
<td>Mathematical ability, gender differences in, 32–39</td>
</tr>
<tr>
<td>Matrix Reasoning, 198–99</td>
</tr>
<tr>
<td>Mayer, John D., 120, 121, 223–24, 274, 279.</td>
</tr>
<tr>
<td>See also Personal intelligence (Mayer)</td>
</tr>
<tr>
<td>Mayer-Salovey-Caruso Emotional Intelligence Test (MSCET), 277–79</td>
</tr>
<tr>
<td>McCabe, J., 293–94</td>
</tr>
<tr>
<td>McCullum, Steve, 208</td>
</tr>
<tr>
<td>McNemar, Quinn, 13, 18, 249</td>
</tr>
<tr>
<td>Measurement of intelligence. See also</td>
</tr>
<tr>
<td>Intelligence tests: specific test overview, 86–87</td>
</tr>
<tr>
<td>artificial intelligence and, 210</td>
</tr>
<tr>
<td>computer technology and, 209–10</td>
</tr>
<tr>
<td>development of intelligence and, 204</td>
</tr>
<tr>
<td>emotional intelligence, 275f17.1</td>
</tr>
<tr>
<td>epigenetics and, 113</td>
</tr>
<tr>
<td>evolution of, 197–200</td>
</tr>
<tr>
<td>high-tech methods as unnecessary, 64–65</td>
</tr>
<tr>
<td>people-centered intelligence, 274–77</td>
</tr>
<tr>
<td>personal intelligence, 275f17.1</td>
</tr>
<tr>
<td>Process Overlap Theory (POT) and, 36</td>
</tr>
<tr>
<td>in professional practice, 135</td>
</tr>
<tr>
<td>Q-interactive approach and, 209–10</td>
</tr>
<tr>
<td>in research, 135–36</td>
</tr>
<tr>
<td>in Successful Intelligence Theory, 311–15</td>
</tr>
<tr>
<td>by video games, 56</td>
</tr>
<tr>
<td>Wechsler on, 198–200</td>
</tr>
<tr>
<td>working memory capacity, 201–92, 301–02</td>
</tr>
<tr>
<td>Mechl, Paul E., 17–18, 210, 249</td>
</tr>
<tr>
<td>Meisenberg, G., 258–62, 264, 265</td>
</tr>
<tr>
<td>Melzoff, A. N., 42</td>
</tr>
<tr>
<td>Mertz, J., 34, 38</td>
</tr>
<tr>
<td>Messick, S., 232</td>
</tr>
<tr>
<td>Metaphysics (Aristotle), 3</td>
</tr>
<tr>
<td>Metastable epialleles, 116–17</td>
</tr>
<tr>
<td>ML. Srv Multiple Intelligences Theory (MI)</td>
</tr>
<tr>
<td>MIDAS, 121</td>
</tr>
<tr>
<td>Miller, D. I., 31–32, 38</td>
</tr>
<tr>
<td>Mini-Mental State Examination, 73</td>
</tr>
<tr>
<td>Minnesota Study of Twins Reared Apart (MISTRa), 20–22, 2405</td>
</tr>
<tr>
<td>Miyake, A., 102</td>
</tr>
<tr>
<td>Mohamad, M. R., 263</td>
</tr>
<tr>
<td>Moore, D. S., 41</td>
</tr>
<tr>
<td>Moray House Test (MHT), 66–67, 69, 75, 76</td>
</tr>
<tr>
<td>More, Elise, 109</td>
</tr>
<tr>
<td>Morse, S., 260</td>
</tr>
<tr>
<td>Mortality, intelligence and, 67–68</td>
</tr>
<tr>
<td>Mullis, I. M., 34, 36–37</td>
</tr>
<tr>
<td>Multiple Intelligences Theory (MI) overview, 116–17, 127–28</td>
</tr>
<tr>
<td>arts and, 126–37</td>
</tr>
<tr>
<td>bodily-kinesthetic intelligence, 119</td>
</tr>
<tr>
<td>children and development, knowledge of, 122</td>
</tr>
<tr>
<td>collaboration in, 126</td>
</tr>
<tr>
<td>criteria of intelligences, 118–19</td>
</tr>
<tr>
<td>definition of intelligence and, 117–18</td>
</tr>
<tr>
<td>educational issues, 121–27</td>
</tr>
<tr>
<td>emotional intelligence, 120</td>
</tr>
<tr>
<td>as empirical theory, 120–21</td>
</tr>
<tr>
<td>existential intelligence, 120</td>
</tr>
<tr>
<td>individuation in, 121</td>
</tr>
<tr>
<td>interpersonal intelligence, 119</td>
</tr>
<tr>
<td>intrapersonal intelligence, 119</td>
</tr>
<tr>
<td>linguistic intelligence, 119</td>
</tr>
<tr>
<td>logical-mathematical intelligence, 119</td>
</tr>
<tr>
<td>as means rather than goal, 126</td>
</tr>
<tr>
<td>musical intelligence, 119</td>
</tr>
<tr>
<td>naturalist intelligence, 120</td>
</tr>
<tr>
<td>not deemed experimental theory, 120–21</td>
</tr>
<tr>
<td>pedagogical intelligence, 120</td>
</tr>
<tr>
<td>pluralization in, 121</td>
</tr>
<tr>
<td>school culture and, 126</td>
</tr>
<tr>
<td>in schools, 121–27</td>
</tr>
<tr>
<td>Schools Using MI Theory (SUMIT), 125</td>
</tr>
<tr>
<td>scientific implications of, 120–24</td>
</tr>
<tr>
<td>spatial intelligence, 119</td>
</tr>
<tr>
<td>subject matter and curriculum goals, knowledge of, 122–23</td>
</tr>
<tr>
<td>Successful Intelligence Theory compared, 311</td>
</tr>
<tr>
<td>teachers, use by, 124–27</td>
</tr>
<tr>
<td>teaching and assessment, knowledge of, 123–24</td>
</tr>
<tr>
<td>Theory of Personal Intelligence compared, 223</td>
</tr>
<tr>
<td>thought experiment regarding, 117</td>
</tr>
<tr>
<td>time allowed for new ideas, 126</td>
</tr>
<tr>
<td>Murray, C. A., 207, 265</td>
</tr>
<tr>
<td>Musical intelligence, 119</td>
</tr>
<tr>
<td>Naglieri, Jack, 208</td>
</tr>
<tr>
<td>National Adult Reading Test (NART), 64–65, 75</td>
</tr>
<tr>
<td>National Assessment of Educational Progress (NAEP), 36, 42</td>
</tr>
<tr>
<td>National Institute of Mental Health (NIMH), 170–71</td>
</tr>
<tr>
<td>National Institutes of Health, 160</td>
</tr>
<tr>
<td>National intelligence overview, 256–58, 266</td>
</tr>
<tr>
<td>cognitive achievement and, 260</td>
</tr>
<tr>
<td>crime and, 265</td>
</tr>
<tr>
<td>economic growth and, 258</td>
</tr>
<tr>
<td>educational attainment and, 259</td>
</tr>
<tr>
<td>educational input and, 259–60</td>
</tr>
<tr>
<td>fertility and, 265</td>
</tr>
<tr>
<td>happiness and, 263</td>
</tr>
</tbody>
</table>
health and, 263–65
income inequality and, 258–59
life satisfaction and, 263
personality and, 262–63
political institutions and, 260–61
National Research Council (NRC), 145–46
National Science Foundation (NSF), Survey of Doctorate Recipients (2010), 30
Naturalist intelligence, 120
Nespodzany, A. L., 296
Neuroepigenetics, 157–58
Neuroimaging
age differences and, 174
brain-efficiency hypothesis and, 174
correlation with intelligence tests, 176–77
educational issues regarding, 177–78
electroencephalogram (EEG) and, 167
evolution of, 167–68
frontal lobes and, 172, 174
functional magnetic resonance imaging (fMRI), 173, 176–77
future research, 113–14
gender differences and, 174
location of intelligence in brain, 171–74
magnetic resonance imaging (MRI), 169, 172–74
parieto-frontal integration theory (P-FIT), 174–76
Positron emission tomography (PET), 169, 171–74
psychometric tests and, 168, 174
racial differences and, 167–68
SAT and, 172–73
Scottish Mental Surveys (SMS) and, 77–78
twin studies and, 169–70
voxel-based morphometry (VBM), 173–74
Neuropsychological processing approach, 200, 202
The Neuroscience of Intelligence (Haier), 169
Nix, Samantha, 42–43
No Child Left Behind (NCLB) Act of 2001, 144
Non-ability traits, adult intelligence and, 1, 9–12
Normative construct, intelligence as, 2
Norming samples, 2, 6
Nowell, A., 34
Oberauer, K., 294
Occupational hierarchy, 138–39
Oklahoma State University, 312
Openness to experience, 225
OperationARA!, 188–89
OperationARIES!, 188–89
Organization for Economic Cooperation and Development (OECD), 190
Organization of intellectual abilities, 232–33
Osgood, C. E., 200
Otis, Arthur, 198
Panorama Project, 311–12
Paret, M., 34
Parieto-frontal integration theory (P-FIT), 174–76
Park, G., 235
Parker, A. M., 192
Pearlberg, S. L., 218
Pearson, Inc., 209
Pedagogical intelligence, 120
Pehaherrera, M. A., 265
Penner, A. M., 34
People-centered intelligence generally, 280
overview, 273–74, 281
conceptual units and, 276
correlation with thing-centered intelligence, 278–79
course performance, predictability of, 279
definition of intelligence in context of, 280
development of, 278
dynamic pairs and, 276
educational implications of, 281
interpersonal relationships, predictability of, 279–80
measurement of, 274–77
operators and, 276
primate cognition and, 273
problem-solving domains and, 274–76
question formulation, 276–77
test development process, 274–77
Perez-Felkner, Lara, 42–43
Performance IQ (P-IQ), 205–06
Personal intelligence (Mayer). See also Theory of Personal Intelligence (Kaufman)
overview, 274
Big Five personality traits and, 279
as broad intelligence, 277–78
course performance, predictability of, 279
emotional intelligence versus, 277
interpersonal relationships, predictability of, 279–80
measurement of, 275f17.1
SAT and, 279
Personality, national intelligence and, 262–63
P-FIT (Parieto-frontal integration theory), 174–76
Phenotypic intelligence
group differences in, 147
individual differences in, 146
Index

332

Philosophy, intelligence and, 113
Piaget, J., 119
Piffer, D., 265
Political institutions, national intelligence and, 260–61
Positive manifold, 49, 271
Positive psychology, 224–27
Positron emission tomography (PET), 169, 171–74
Potentiality, actuality versus, 1, 3, 6–8
in theory of personal intelligence, 233
Powell, J. S., 298
Practical intelligence, 185
Predictability of intelligence, 185
Premorbid intelligence, Scottish Mental Surveys (SMS) and, 75
Primate cognition, 273
Prior intelligence, Scottish Mental Surveys (SMS) and, 75
Process Overlap Theory (POT), overview, 49
ability differentiation and, 52
complexity and, 52
definition of intelligence and, 55
development of intelligence and, 56–57, 59
domain-general processes, 51–52
domain-specific processes, 51–52
educational issues, 58
empirical support for, 53–55, 57–58
executive attention and, 49, 51–55, 57–58
future research, 58–59
Gc and, 50–51
Gf and, 50–52, 56
internal consistency of, 53–54
measurement of intelligence and, 56
non-additive processes, 52
working memory capacity, 51
worst performance rule and, 52
Program for International Student Assessment (PISA), 37, 42, 259
Psychology, intelligence and, 130–31
Psychometric tests, 168, 174
Putallaz, M., 361f.4
Q-interactive approach, 209–10
Race-norming of intelligence tests, 145–46
Racial differences in intelligence, equitable intelligence assessments and, 207, 208
gender differences in intelligence and, 38
in IQ, 167–68
neuroimaging and, 167–68
Radex model, 232–33
Rainbow Project, 311–12
Rational intelligence, 184–85
Raven, John C., 17, 198–99
Raven’s Progressive Matrices, 50–51, 69, 103
Readiness for engagement, 223
Real-life settings, critical thinking and, 185, 192–94
IQ, correlation with, 185
Reeve, C. I., 264–65
Relative construct, intelligence as, 2
“Replication crisis,” 232
Research Institute—Beijing, 251n3
Rett syndrome, 155
Reynolds, Cecil, 208
Rindermann, H., 259–65
Rosen, V., 299–300
Rosenthal, David, 170–71
Rounds, J., 44
Rushton, J. P., 264–65
Ruthsatz, J., 96
Ruthsatz, K., 96
Sailer, S., 260
Salkofskie, D. H., 280
Salovey, Peter, 120, 223–24, 274
SAT, generally, 135
gender differences in intelligence in, 36, 37, 42
historical background, 116
limitations of, 5
neuroimaging and, 172–73
personal intelligence and, 279
SMPY and, 234–37
Successful Intelligence Theory and, 311–13
Schmidt, F. L., 249
Schools Using MI Theory (SUMIT), 125
Scott, J. P., 20
Scottish Council for Research in Education (SCRE), 66–67
Scottish Mental Surveys (SMS), generally, 66
age differences in, 74–75
data from, 66–67
educational and social issues regarding intelligence and, 76–77
epidemiological samples in, 75–76
future research, 77–78
gender differences in, 74
genetics, effect on lifetime changes in intelligence differences, 70
health factors, effect on lifetime changes in intelligence differences, 70–72
heritability of intelligence in, 72–73
lifestyle factors, effect on lifetime changes in intelligence differences, 70–72
lifetime stability of intelligence differences, 68–69
mortality, intelligence and, 67–68
neuroimaging and, 77–78
premorbid intelligence and, 75
prior intelligence and, 75
structural magnetic resonance brain imaging and, 73–74
Seaforth, Carl Emil, 248
Selective combination, 298
Selective comparison, 298
Selective encoding, 298
Selective schooling, 76
Seligman, Martin, 224
Sex differences in intelligence. See Gender differences in intelligence
Shatz, S. M., 265
Shea, D. L., 243, 244
Shearer, B., 121
Sherratt, T. N., 264
Shipstead, Z., 293, 294–96, 299, 300
Short term memory (STM), changeability with practice, 88–92
Sidek, A. H., 263
Simon, Herbert, 217
Simon, Theodore, 1, 86
Simonton, D. K., 18
Singapore, IQ in, 256
Situational judgment tests, 191–92
Skinnyhorn, William, 278, 279
Smith, J., 92
SMPY. See Study of Mathematically Precocious Youth (SMPY)
SMS. See Scottish Mental Surveys (SMS)
Snow, C. P., 245–47
Snow, Richard E., 231
Social intelligence, 120, 273–74
Social issues regarding intelligence and genome-wide association studies (GWAS) and, 76–77
Scottish Mental Surveys (SMS) and, 76–77
Socioeconomic status (SES), intelligence and, 20
Sociology, intelligence and, 130–31
Souza, T. C., 258
Spatial ability
exceptional intelligence and, 247
gender differences in intelligence in, 39–42
as “orphan ability,” 243
SMPY and, 243–46
Spatial intelligence, 119
Spearman, Charles, 65, 168, 271
Spearman’s g. See General factor g
Special education, 215–16
Specialization, adult intelligence and, 5
Sperry, R. W., 200, 202
Stabilization of adult intelligence, 134
Stanford-Binet intelligence test generally, 135, 201, 208
gender differences in intelligence and, 8–9
Thomson and, 66–67
Stanley, Julian C., 170, 233, 248
Stanovich, K. E., 184–85
Start, J. M., 263
STEM fields
gender differences in intelligence in, 11–12, 30–32, 44
SMPY and, 235–37, 244
Stephens, K. R., 96
Sternberg, Karin, 313
Sternberg, Robert J. See also Successful Intelligence Theory
generally, xii, 216–17
on definition of intelligence, 185, 308
on excessive number of intelligences, 280
on IQ tests, 203
on Kaufman Assessment Battery for Children (K-ABC), 203, 210
on knowledge-acquisition, 298
Sternberg Triarchic Abilities Test, 315
Stoet, G., 37
Stolarshi, M., 262
Strand, S., 34
Stratford, J., 263
Stratum I abilities, 132–33
Stratum II abilities, 132–33, 134
Stratum III abilities, 132–33
“Strong inference,” 22
Structural equation modeling (SEM), 271–72
Structural magnetic resonance brain imaging, 73–74
Structure of intellect model, 200
Study of Mathematically Precocious Youth (SMPY)
overview, 233–34
ability level, 234–35
ability pattern, 235–37
profoundly gifted youth, 237–43
SAT and, 234–37
spatial ability, 243–46
STEM fields and, 236fs.2, 244
Talent Identification Program (TIP) versus, 237, 241fs.1
Su, R., 44
Subject-oriented intelligences, 280
Substitution tests, 86
Successful Intelligence Theory
ACT and, 311–42
analytical abilities in, 308–10, 313–16
Successful Intelligence Theory (cont.)

AP tests and, 313
aptitude-treatment interaction in, 316
best teaching practices and, 317
Carroll and, 310
creative abilities in, 308–09, 314–16
development of intelligence in, 315–17
dynamic nature of intelligence in, 310
educational implications of, 311
empirical studies, 315–17
evolution of, 309
future research, 317
g and, 310, 317
Gardner and, 311
GMAT and, 312
Kaleidoscope Project, 311–12
knowledge-acquisition components, 308
measurement of intelligence in, 311–15
metacomponents, 308
Multiple Intelligences Theory (MI) compared, 311
other theories compared, 309–11
Panorama Project, 311–12
performance components, 308
practical abilities in, 308–09, 314–16
Rainbow Project, 311–12
SAT and, 311–13
in schools, 315–17
sociocultural context, 310–11
Sternberg Triarchic Abilities Test and, 315
successful intelligence defined, 223, 308
transparency in, 317
updating assessments, 317
wisdom-based abilities in, 308–09, 315
Swanson, A., 363f.4, 38

Talent Identification Program (TIP), 237, 241n.1
Templer, D. L., 265
Templeton Foundation, 224, 250
Tenjevic, L., 264–65
terman, Lewis, 8–9, 86–87, 198, 249–50
Test of Premorbid Function, 64–65, 71
tetris (game), 172
Theory-based tests, 201–02
Theory of communication, 200

Theory of Personal Intelligence (Kaufman), 220–24
overview, 215
conceptualization versus operationalization, 221
evolution of, 220–21
focus of, 223–24
individual differences level versus personal level, 222–23

IQ and, 221–22
Multiple Intelligences Theory (MI) compared, 223
potentiality in, 223
readiness for engagement in, 223
Thiennonk, K., 219

Thing-centered intelligence
generally, 280
overview, 281
Cattell-Horn-Carroll (CHC) model and, 272
correlation with people-centered intelligence, 278–79
course performance, predictability of, 279
definition of intelligence in context of, 280
development of, 278
interpersonal relationships, predictability of, 279–80
Thomas, Kirby, 42–43
Thompson, J., 260
Thomson, Godfrey H., 31–52, 65–67. See also Scottish Mental Surveys (SMS)
Thordurk, Edward L., 273
Thornhill, R., 264

Thought and Knowledge (Halpern), 186
Three-stratum model. See Cattell-Horn-Carroll (CHC) model
Threshold effect, 18
Thordurk, Robert, 198
Thurstone, L. L., 197–98, 231
Tomasello, M., 273
Tooby, J., 16
“Too good to be true” tests, 146
Torrence, E. Paul, 223
Trait complexes, 10
Tredoux, G., 19
Trzniewski, Kali H., 42–43
Tucker-Drob, E. M., 154
Tufts University, 312
Twin studies
Dickens-Flynn model and, 109–10
heritability of intelligence and, 18–19
IQ and, 102, 169
Jensen on, 102
Minnesota Study of Twins Reared Apart (MISTRA), 20–22, 2405
neuroimaging and, 169–70

UK Biobank, 68, 73
Ungifted: Intelligence Defined (Kaufman), 220–21, 224
United Kingdom, IQ in, 256–57
United States Army Research Institute, 277–78
United States Employment Service (USES), 145, 146

© in this web service Cambridge University Press
www.cambridge.org
Index

United States Military Academy, 278
University of California, Irvine, 171
University of Edinburgh, 66–67
University of Georgia, 208
University of Pennsylvania, 226
Unrelated individuals reared together (UTR), 20
van der Maas, H. L. J., 53–54
Vanderbilt University, 233, 250
Vanhanen, Tatu, 257–58, 260–61, 263–65
Verbal, Perceptual, Rotation (VPR) model, 22, 249
Verbal IQ (V-IQ), 205–06
Verleye, G., 259
Video games, 56
Voracek, M., 261, 263
Voxel-based morphometry (VBM), 173–74
Vygotsky, L. S., 183, 203, 208–09
Wai, J., 31–32, 365.4
Wall Street Journal, 270
Wechsler, David. See also specific test
generally, 202, 205, 210, 232
Japan, tests in, 256
Kaufman Assessment Battery for Children (K-ABC) and, 206–07
on measurement of intelligence, 198–200
on personality, 221, 226
on potentiality and actuality, i, 3
Wechsler Adult Intelligence Scale (WAIS), 69, 87, 173–74, 198–99, 221
Wechsler-Bellevue Intelligence Scale, 198–99
Wechsler Intelligence Scale for Children (WISC), 198–99, 200, 202, 205–07, 209, 223
Wechsler IQ tests, 104, 108, 109, 115

Wesman, Alexander, 200
Whalley, Lawrence, 66, 67, 263
Williams, B. A., 218
Wilson effect, 19–20
Winner, Ellen, 217
Wonderlic Personnel Test (WPT), 135
Woodcock-Johnson Applied Problems, 41, 135
Woodcock-Johnson Psycho-Educational Battery—Revised, 201
Woodley, M. A., 263–65
Working memory capacity overview, 287
AX-CPT task and, 296
correlation with Gf, 288–89, 291, 294–96, 300
defined, 288
development of, 300–01
disengagement mechanisms and, 299t18.1
dissociation from Gf, 292–93
executive attention and, 291, 293, 300
extreme-groups research, limitations of, 298–300
long-term working memory (LTWM), 89
maintenance and, 291, 292, 294, 297–98
measurement of, 291–92, 301–02
proactive interference and, 292–94, 296
Process Overlap Theory (POT) and, 51
3-back task and, 293–94

Xu, T., 258, 260–64
Yale University, 311–12
Zajenkowski, M., 262
“Zeal” versus intelligence, 18
Zimet, C. N., 199
Zone of proximal development, 183, 203