Energy Transfers in Fluid Flows

Turbulence remains an unsolved problem due to the complex nonlinear interactions among a large number of multiscale structures. For hydrodynamic turbulence, Kolmogorov’s theory provides quantitative measures of energy contents of the fluid structures and energy flux. However, this theory based on real space description does not quantify various scale-by-scale energy transfers. In addition, generalisations of Kolmogorov’s theory to more complex system—magnetohydrodynamic and buoyancy-driven turbulence, anisotropic flows, etc.—are quite involved. Fortunately, spectral or Fourier space description, which is the theme of this monograph, overcomes some of these deficiencies.

To quantify energy transfers in turbulence, Verma and his collaborators developed a set of important spectral tools: mode-to-mode energy transfers, various energy fluxes, shell-to-shell and ring-to-ring energy transfers, variable energy flux, etc. These diagnostics are quite general, and they do not require the flows to be homogeneous or isotropic, as is assumed in Kolmogorov’s theory. Researchers have used the above tools to compute important quantities for various turbulent systems. This analysis provides many valuable insights, e.g., energy transfers responsible for the magnetic energy growth in astrophysical bodies, dynamics of turbulent thermal convection.

In this monograph, Verma systematically describes various techniques of energy transfers in turbulence. These tools include mode-to-mode transfers, fluxes, shell-to-shell and ring-to-ring transfers of energy, as well as enstrophy, kinetic helicity, and magnetic helicity. After developing the framework, the author employs them to turbulence in hydrodynamics, magnetohydrodynamics, passive scalar, buoyancy-driven flows, rotating flows, active scalar and vector, compressible flows, etc. The book describes energy transfers in both real and Fourier space, but the focus is on the latter. The energy transfer diagnostics provide many valuable insights, which have been described throughout the book.

Mahendra K. Verma is a leading researcher in the field of turbulence. Presently he is a Professor at the Physics Department of Indian Institute of Technology Kanpur, India. He is a recipient of Swarnajayanti fellowship, INSA Teachers Award, and Dr APJ Abdul Kalam Cray HPC Award. In addition to this book, he has authored Introduction to Mechanics and Physics of Buoyant Flows: From Instabilities to Turbulence. His other research interests include nonlinear dynamics, high-performance computing, and non-equilibrium statistical physics.
Energy Transfers in Fluid Flows

Multiscale and Spectral Perspectives

Mahendra K. Verma
To the seekers of knowledge, who guide the world
To the workers of the world, who run the world
and
To the commoners of the world, who keep humanity alive
Contents

Preface xi
Acknowledgments xiii

Part I
FORMALISM OF ENERGY TRANSFERS

1 Introduction 3
 1.1 A Generic Nonlinear Equation 4
 1.2 Outline of the Book 6

2 Basics of Hydrodynamics 9
 2.1 Governing Equations of Incompressible Flows 9
 2.2 Vorticity and its Equation 11
 2.3 Quadratic Quantities in Hydrodynamics 12
 2.4 Conservation Laws in Hydrodynamics 16
 Further Reading 22
 Exercises 22

3 Fourier Space Description of Hydrodynamics 23
 3.1 Fourier Transform and its Properties 23
 3.2 Flow Equations in Fourier Space 27
 3.3 Vorticity, Kinetic Helicity, and Enstrophy 29
 Further Reading 41
 Exercises 41
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Energy Transfers in Hydrodynamic Flows</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Mode-to-mode Energy Transfers in Hydrodynamics</td>
<td>44</td>
</tr>
<tr>
<td>4.1.1</td>
<td>A physical argument</td>
<td>48</td>
</tr>
<tr>
<td>4.1.2</td>
<td>A mathematical argument based on tensor analysis</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Energy Transfers in the Presence of Many Triads</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Energy Transfers and Equations of Motion for a Two-dimensional Flow</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Spectral Energy Flux</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Variable Energy Flux</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Equivalence between Various Formulas of Energy Flux</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Shell-to-shell Energy Transfers</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Turbulent Energy Flux and Arrow of Time</td>
<td>71</td>
</tr>
<tr>
<td>4.9</td>
<td>Spectral Decomposition, Energy Transfers, and Amplitude Equations</td>
<td>72</td>
</tr>
<tr>
<td>4.10</td>
<td>Numerical Simulations Using Spectral Method</td>
<td>73</td>
</tr>
<tr>
<td>4.11</td>
<td>Computation of Energy Transfers Using Data</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Energy Spectrum and Flux of 3D Hydrodynamics</td>
<td>79</td>
</tr>
<tr>
<td>5.1</td>
<td>Kolmogorov’s Theory for 3D Hydrodynamic Turbulence in Spectral Space</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Insights from Kolmogorov’s Theory of Turbulence</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Numerical Verification of Kolmogorov’s Theory</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>Limitations of Kolmogorov’s Theory of Turbulence</td>
<td>89</td>
</tr>
<tr>
<td>5.5</td>
<td>Energy Spectrum of Turbulent Flow in the Dissipative Regime</td>
<td>91</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Pao’s model for the inertial–dissipation range of turbulence</td>
<td>92</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Pope’s model for the inertial–dissipation range of turbulence</td>
<td>93</td>
</tr>
<tr>
<td>5.6</td>
<td>Energy Spectrum and Flux for Laminar Flows</td>
<td>95</td>
</tr>
<tr>
<td>5.7</td>
<td>Heisenberg’s Theory of Turbulence</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Enstrophy Transfers in Hydrodynamics</td>
<td>101</td>
</tr>
<tr>
<td>6.1</td>
<td>Mode-to-mode Enstrophy Transfers in Hydrodynamics</td>
<td>101</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Derivation of mode-to-mode enstrophy transfer $S_{\omega}(k'</td>
<td>p</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Derivation of mode-to-mode enstrophy transfer $S_{\omega}(k'</td>
<td>p</td>
</tr>
<tr>
<td>6.2</td>
<td>Mode-to-mode Enstrophy Transfers in 2D Hydrodynamics</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Enstrophy Transfers for Many Triads</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Enstrophy Fluxes</td>
<td>111</td>
</tr>
</tbody>
</table>
Contents

6.5 Shell-to-shell Enstrophy Transfer
6.6 Numerical Results on Enstrophy Fluxes

Further Reading
Exercises

7 Two-dimensional Turbulence
7.1 Conservation Laws; Energy and Enstrophy Transfers in 2D Hydrodynamics
7.2 Kraichnan’s Theory for 2D Hydrodynamic Turbulence
7.3 Subtleties in Energy and Enstrophy Fluxes
7.4 Verification of 2D Hydrodynamic Turbulence Models Using Numerical Simulations

Further Reading
Exercises

8 Helical Turbulence
8.1 Mode-to-mode Kinetic Helicity Transfers in Hydrodynamics
8.2 Flux and Shell-to-shell Transfers of Kinetic Helicity
8.3 Phenomenology of Helical Turbulence
8.4 Numerical Verification of Kinetic Helicity Spectrum and Flux

Further Reading
Exercises

9 Craya–Herring and Helical Basis
9.1 Craya–Herring Basis for Hydrodynamics
9.2 Equations of Motion in Craya–Herring Basis
9.3 Energy Transfer Functions in Craya–Herring Basis
9.4 Fluxes in Craya–Herring Basis
9.5 Helical Decomposition
9.6 Helical Modes

9.6.1 The helical mode u_+
9.6.2 The helical mode u_-
9.6.3 Mixture of u_+ and u_-

9.7 Equations of Motion in Helical Basis
9.8 Mode-to-mode Transfer Functions in Helical Basis
9.9 Fluxes and Shell-to-shell Energy Transfers in Helical Basis

Further Reading
Exercises
10 Field-theoretic Treatment of Energy Transfers

10.1 Correlation Functions in Homogeneous and Isotropic Turbulence

10.2 Field-theoretic Treatment of Mode-to-mode Kinetic Energy Transfers and Flux

10.2.1 Computation of \(\Im \langle u_1(q,t)u_1(p,t)u_1(k',t) \rangle \)

10.2.2 Computation of \(\Im \langle u_1(q,t)u_2(p,t)u_2(k',t) \rangle \)

10.2.3 Computation of kinetic energy flux and shell-to-shell kinetic energy transfer

10.2.4 Energy transfers for absolute equilibrium turbulence or Euler turbulence

10.3 Energy and Enstrophy Transfers in 2D Hydrodynamic Turbulence

10.4 Kinetic Energy and Helicity Transfers in Helical Turbulence

Further Reading

Exercises

11 Energy Transfers in Anisotropic Flows

11.1 Ring Spectrum for Spherical Rings

11.2 Ring Spectrum for Cylindrical Rings

11.3 Ring-to-ring Energy Transfers

11.4 Anisotropic Energy Fluxes, and \(u_\parallel \leftrightarrow u_\perp \) Energy Exchange

Further Reading

12 Turbulence Properties in Real Space and K41 Theory

12.1 Second Order Correlation Functions

12.2 Third Order Correlation and Structure Functions

12.3 Kolmogorov’s Theory of Turbulence: Four-fifth Law

12.4 Another Derivation of Four-fifth Law—Frisch (1995)

12.5 Comparison with Spectral Theory

12.6 Higher Order Structure Functions of Hydrodynamic Turbulence

Further Reading

Part II

FLOWS WITH SCALARS

13 Energy Transfers in Flows with Scalars

13.1 Governing Equations

13.2 Mode-to-mode Scalar Energy Transfers
Contents

13.2.1 A physical argument 220
13.2.2 A mathematical argument 220
13.3 Flux and Shell-to-shell Transfers for Scalar Turbulence 222
13.4 Variable Scalar Energy Flux 223
13.5 Scalar Field in Craya–Herring Basis 225

Exercises 228

14 Flows with a Passive Scalar 229
14.1 Governing Equations 229
14.2 Phenomenology of Passive Scalar Turbulence 230
14.3 Various Regimes of a Passive Scalar Flow 231
 14.3.1 Turbulent regime I: Re ≫ 1; Pe ≫ 1; Sc ≤ 1 232
 14.3.2 Laminar regime: Re ≲ 1; Pe ≲ 1 233
 14.3.3 Mixed regime I: Re ≫ 1; Pe ≲ 1 234
 14.3.4 Mixed regime II: Re ≲ 1; Pe ≫ 1 235
 14.3.5 Turbulent regime II: Re ≫ 1; Pe ≫ 1; Sc ≫ 1 235
14.4 Numerical Simulations of Passive Scalar Turbulence 237
 14.4.1 Sc ≈ 1 237
 14.4.2 Sc ≪ 1 238
 14.4.3 Sc ≫ 1 238
14.5 Third Order Structure Function for Passive Scalar Turbulence: Four-third Law 239
14.6 Field-theoretic Treatment of Passive Scalar Turbulence 243
 Further Reading 243
 Exercises 244

15 Stably Stratified Turbulence 245
15.1 Governing Equations in Real Space 245
15.2 Governing Equations in Fourier Space 249
15.3 Energy Transfers and Fluxes for Stably Stratified Turbulence 251
15.4 Various Regimes of Stably Stratified Turbulence 252
15.5 Stably Stratified Turbulence with Moderate Buoyancy 253
 15.5.1 Bolgiano–Obukhov phenomenology 253
 15.5.2 Modified Bolgiano–Obukhov scaling 256
 15.5.3 Numerical results on moderately stratified turbulence 259
15.6 Stably Stratified Turbulence with Strong Buoyancy 261
 Further Reading 261

16 Thermal Convection 262
16.1 Governing Equations 262
Contents

16.2 Governing Equations in Fourier Space, Energy Transfers, and Fluxes 265

16.3 Structure of Temperature Field in Thermal Convection 268

16.4 Phenomenology of Turbulent Thermal Convection 269

16.5 Structure Functions of Turbulent Thermal Convection 273

16.6 Numerical Verification of the Phenomenology of Turbulent Thermal Convection 275

16.6.1 Kinetic energy spectrum and flux; Scalar energy flux 276

16.6.2 Scalar energy or temperature spectrum 277

16.6.3 Structure functions 278

16.6.4 Shell-to-shell energy transfers 279

16.7 Forcing, Energy Dissipation, and Drag Reduction in Turbulent Convection 280

16.8 Anisotropy in Turbulent Thermal Convection 281

16.9 Various Regimes of Thermal Convection 283

16.9.1 $Re \gg 1; Pe \gg 1; Pr \approx 1$ 283

16.9.2 $Re \gg 1; Pr = 0$ 284

16.9.3 $Re \gg 1; \text{Small } Pr$ 284

16.9.4 $Pe \gg 1; Pr = \infty$ 286

16.10 Two-dimensional Turbulent Thermal Convection 287

Further Reading 288

17 A More Complex Example of an Active Scalar: Binary Fluid Mixture 290

17.1 Dynamics of a Binary Fluid Mixture 290

Part III

18 Energy Transfers in Flows with Vectors 295

18.1 Governing Equations 295

18.2 Mode-to-mode Vector Energy Transfers and Energy Fluxes 298

18.3 Variable Vector Energy Flux 300

18.4 Vector Flow in Craya–Herring Basis 301

18.5 Energy Transfers in Craya–Herring and Helical Basis 301

19 Flow with a Passive Vector 305

19.1 Governing Equations 305

19.2 Phenomenology of a Passive Vector Turbulence 306

19.3 Various Regimes of a Passive Vector Flow 307
Contents

20 Magnetohydrodynamics: Formalism

20.1 Governing Equations in Real Space 308
20.2 Conservation Laws 312
20.3 Governing Equations in Fourier Space 316
20.4 Alfvén Waves 320
20.5 MHD Equations in Craya–Herring Basis 321
20.6 MHD Equations in Helical Basis 325
20.7 Nondimensionalized MHD Equations 327

Further Reading 328
Exercises 328

21 Energy Transfers in MHD

21.1 Combined Energy Transfers in MHD 329
21.2 Mode-to-mode Energy Transfers in MHD 331
21.3 Mode-to-mode Transfers for Elsëser Variables 336
21.4 Miscellaneous Transfers in MHD 338

21.4.1 Mode-to-mode magnetic helicity transfers in MHD 338
21.4.2 Mode-to-mode kinetic helicity transfers in MHD 340
21.4.3 Mode-to-mode transfers of E_A in 2D 341
21.5 Transfers for Many Triads and Fluxes 342
21.6 Variable Energy Fluxes and Conserved Fluxes of MHD Turbulence 347

21.6.1 Kinetic and magnetic energy fluxes 348
21.6.2 Fluxes for Elsëser fields and magnetic helicity 350
21.7 Shell-to-shell Transfers in MHD 351
21.8 Energy Transfers in Craya–Herring Basis 353
21.9 Energy Transfers in Helical Basis 354

Further Reading 356
Exercises 357

22 Models of MHD Turbulence

22.1 Models of MHD Turbulence 358

22.1.1 Kraichnan and Iroshnikov’s model—$E(k) \propto k^{-3/2}$ 358
22.1.2 Dobrowonly et al.’s model 359
22.1.3 Model based on energy fluxes 361
22.1.4 Goldreich and Sridhar—$E(k_\perp) \sim k_\perp^{-5/3}$ 362
22.1.5 Verma—Effective mean magnetic field and $E(k) \propto k^{-5/3}$ 363
22.1.6 Galtier et al.—Weak turbulence and $E(k_\perp) \propto k_\perp^{-2}$ 364
22.1.7 Boldyrev et al.—Dynamic alignment yields $k^{-3/2}$ spectrum 364
22.2 Third Order Structure Function: Four-third Law 365
22.3 Higher Order Structure Functions of MHD Turbulence 370
22.4 Scaling of Cross Helicity and Magnetic Helicity 370
 22.4.1 Scaling of cross helicity 371
 22.4.2 Scaling of magnetic helicity 372
22.5 MHD Turbulence for Small and Large Prandtl Numbers 373
 22.5.1 Energy spectra of small Pm MHD 374
 22.5.2 Energy spectra of large Pm MHD 376
22.6 Validation Using Solar Wind 377
22.7 Validation Using Numerical Simulations 380
22.8 MHD Turbulence in the Presence of a Mean Magnetic Field 383

Further Reading 385

23 Dynamo: Magnetic Field Generation in MHD 386
 23.1 Definitions 387
 23.2 Anti-dynamo Theorems 387
 23.3 Energetics of a Dynamo 389
 23.4 Kinematic Dynamos 389
 23.4.1 Six-mode model—Verma et al. (2008) 389
 23.4.2 Roberts dynamo 391
 23.4.3 A 2D3C helical dynamo model? 392
 23.4.4 A tetrahedron helical dynamo model—Stepanov and Plunian (2018) 393
 23.5 Dynamic Dynamos 397
 23.5.1 Six-mode model—Verma et al. (2008) revisited 397
 23.6 Dynamo Transition and Bifurcation Analysis 397
 23.7 Energy Transfers in Turbulent Dynamos 399
 23.7.1 Small Pm dynamos 401
 23.7.2 Large Pm dynamos 403
 23.7.3 Large-scale dynamo with forcing at intermediate scale 405
 23.8 Role of Helicities in Dynamos 407
 23.9 Analogy between the Vorticity and Magnetic Fields 408
 23.10 Turbulent Drag Reduction in MHD 408
 Further Reading 409
 Exercises 409

24 Phenomenology of Quasi-Static MHD Turbulence 410
 24.1 Governing Equations 410
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2</td>
<td>Distribution and Spectrum of Kinetic Energy</td>
<td>413</td>
</tr>
<tr>
<td>24.3</td>
<td>Energy Transfers in Quasi-Static MHD</td>
<td>418</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>419</td>
</tr>
<tr>
<td>25</td>
<td>Electron Magnetohydrodynamics</td>
<td>420</td>
</tr>
<tr>
<td>25.1</td>
<td>Governing Equations</td>
<td>420</td>
</tr>
<tr>
<td>25.2</td>
<td>Fourier Space Description</td>
<td>422</td>
</tr>
<tr>
<td>25.3</td>
<td>Phenomenology of EMHD Turbulence</td>
<td>423</td>
</tr>
<tr>
<td>25.3.1</td>
<td>$kd_e \ll 1$</td>
<td>423</td>
</tr>
<tr>
<td>25.3.2</td>
<td>$kd_e \gg 1$</td>
<td>424</td>
</tr>
<tr>
<td>25.4</td>
<td>Simplified Version</td>
<td>424</td>
</tr>
<tr>
<td>25.4.1</td>
<td>Governing equations and conservation laws</td>
<td>424</td>
</tr>
<tr>
<td>25.4.2</td>
<td>Energy transfers in EMHD</td>
<td>425</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>426</td>
</tr>
<tr>
<td>Part IV</td>
<td>MISCELLANEOUS FLOWS</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Rotating Turbulence</td>
<td>429</td>
</tr>
<tr>
<td>26.1</td>
<td>Governing Equations</td>
<td>429</td>
</tr>
<tr>
<td>26.2</td>
<td>Properties of Linear Rotating Hydrodynamics</td>
<td>431</td>
</tr>
<tr>
<td>26.2.1</td>
<td>Taylor–Proudman theorem</td>
<td>431</td>
</tr>
<tr>
<td>26.2.2</td>
<td>Inertial waves in rotating flows</td>
<td>432</td>
</tr>
<tr>
<td>26.3</td>
<td>Nonlinear Regime in Rotating Flows</td>
<td>433</td>
</tr>
<tr>
<td>26.4</td>
<td>Phenomenology of Rotating Turbulence</td>
<td>434</td>
</tr>
<tr>
<td>26.4.1</td>
<td>Zeman’s phenomenology</td>
<td>434</td>
</tr>
<tr>
<td>26.4.2</td>
<td>Zhou’s phenomenology</td>
<td>435</td>
</tr>
<tr>
<td>26.4.3</td>
<td>Smith and Waleffe’s phenomenology</td>
<td>435</td>
</tr>
<tr>
<td>26.4.4</td>
<td>Kuznetsov–Zakharov–Kolmogorov spectrum</td>
<td>436</td>
</tr>
<tr>
<td>26.4.5</td>
<td>Inferences from the energy transfers in rotating turbulence</td>
<td>437</td>
</tr>
<tr>
<td>26.5</td>
<td>Experimental and Numerical Results on Rotating Turbulence</td>
<td>437</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>442</td>
</tr>
<tr>
<td>27</td>
<td>Flow with a Tensor</td>
<td>443</td>
</tr>
<tr>
<td>27.1</td>
<td>Governing Equations</td>
<td>443</td>
</tr>
<tr>
<td>27.2</td>
<td>Mode-to-mode Tensor Energy Transfer and Tensor Energy Flux</td>
<td>445</td>
</tr>
<tr>
<td>27.3</td>
<td>Energy Spectrum and Flux in a Passive Tensor</td>
<td>447</td>
</tr>
<tr>
<td>27.4</td>
<td>Flow with an Active Tensor Field: FENE-p Model</td>
<td>448</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.4.1</td>
<td>Governing equations</td>
<td>448</td>
</tr>
<tr>
<td>27.4.2</td>
<td>Energy spectra and fluxes in the FENE-p model</td>
<td>449</td>
</tr>
<tr>
<td>27.5</td>
<td>Turbulent Drag Reduction in Polymeric Flows</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>451</td>
</tr>
<tr>
<td>28</td>
<td>Shell Models of Turbulence</td>
<td>452</td>
</tr>
<tr>
<td>28.1</td>
<td>Shell Model for Hydrodynamic Turbulence</td>
<td>452</td>
</tr>
<tr>
<td>28.1.1</td>
<td>Shell model</td>
<td>452</td>
</tr>
<tr>
<td>28.1.2</td>
<td>Energy transfers in the shell model</td>
<td>454</td>
</tr>
<tr>
<td>28.2</td>
<td>Shell Model for Scalar, Vector, and Tensor Flows</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>460</td>
</tr>
<tr>
<td>29</td>
<td>Burgers Turbulence</td>
<td>461</td>
</tr>
<tr>
<td>29.1</td>
<td>Governing Equations</td>
<td>461</td>
</tr>
<tr>
<td>29.2</td>
<td>Energy Transfers in Burgers Turbulence</td>
<td>463</td>
</tr>
<tr>
<td>29.3</td>
<td>Phenomenology of Burgers Turbulence</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>466</td>
</tr>
<tr>
<td>30</td>
<td>Compressible Turbulence</td>
<td>467</td>
</tr>
<tr>
<td>30.1</td>
<td>Governing Equations</td>
<td>467</td>
</tr>
<tr>
<td>30.2</td>
<td>Linear Compressible Flow; Sound Waves</td>
<td>470</td>
</tr>
<tr>
<td>30.3</td>
<td>Nearly Incompressible Flow</td>
<td>471</td>
</tr>
<tr>
<td>30.4</td>
<td>Fully Compressible Turbulence: Burgers Turbulence Revisited</td>
<td>472</td>
</tr>
<tr>
<td>30.5</td>
<td>Equation of Motion of a Compressible Flow in Craya–Herring Basis</td>
<td>473</td>
</tr>
<tr>
<td>30.6</td>
<td>Energy Transfers in Compressible Flows</td>
<td>476</td>
</tr>
<tr>
<td>30.6.1</td>
<td>Equations for modal kinetic and internal energies</td>
<td>477</td>
</tr>
<tr>
<td>30.6.2</td>
<td>Triadic interactions in a compressible flow?</td>
<td>478</td>
</tr>
<tr>
<td>30.6.3</td>
<td>Energy fluxes in compressible turbulence</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>480</td>
</tr>
<tr>
<td>31</td>
<td>Miscellaneous Applications of Energy Transfers</td>
<td>481</td>
</tr>
<tr>
<td>31.1</td>
<td>Variable Enstrophy Flux in 2D Turbulence with Ekman Friction</td>
<td>481</td>
</tr>
<tr>
<td>31.2</td>
<td>Energy Transfers in Gyrokinetic Plasma Turbulence</td>
<td>483</td>
</tr>
<tr>
<td>31.3</td>
<td>Energy Transfers in Spherical Geometry</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>488</td>
</tr>
</tbody>
</table>
Contents

32 Conclusions 489

Appendix A Power Law Physics 491
 Further Reading 492

Appendix B Wealth Distribution and Cascade in an Economy 493
 Further Reading 496

Appendix C Renormalization Group Analysis of Hydrodynamic Turbulence 497
 Further Reading 502

Notation 503

References 508

Subject Index 527
The Navier–Stokes equations, first formulated in 1822, still remain unsolved in the turbulent regime. Over time, scientists and engineers have been studying turbulence in more complex systems, such as thermal convection, scalar flows, flows in magnetofluids, boundary layers, flow across bluff bodies, etc. Turbulent flows have many complex issues—boundary layers, inhomogeneity and anisotropy, multiscale complex structures, spatiotemporal correlations among various fields, etc. In this book we address several fundamental issues of turbulence such as energy transfers in hydrodynamic, magnetohydrodynamic, scalar, compressible, anisotropic, and other forms of turbulence; variable energy flux; effects of enstrophy and kinetic helicity on turbulence.

Kolmogorov (1941) formulated a theory of hydrodynamic turbulence according to which the energy flux that flows from large scales to small scale is related to the third order structure function. This real-space formulation is applicable to isotropic and homogeneous turbulence, and its extension to anisotropic turbulence is difficult. On the other hand, such computations are relatively easier in spectral space. In 1959, Kraichnan derived a formula for the combined energy transfer for a wavenumber triad of hydrodynamic turbulence. This formalism is useful, but its scope is limited. For example, the combined energy transfer formula does not yield the energy transfers that are responsible for the generation of the large-scale magnetic field in dynamos. Curiously, most research works on turbulence report energy spectrum, but energy transfers such as energy flux have not been discussed often.

We (Gaurav Dar, Vinayak Eswaran, and I) started to work on quantifying energy transfers in magnetohydrodynamic (MHD) turbulence way back in 1999–2000. During the investigation, we discovered a very nice formalism called
mode-to-mode energy transfer that helped us quantify all the energy transfers, energy fluxes, and shell-to-shell transfers in hydrodynamic and MHD turbulence, as well as in dynamos. After publication of this work (with some difficulties) in 2001, we extended this formalism to the following systems and obtained many interesting insights (also see Acknowledgments):

- Passive scalar turbulence
- Helical turbulence
- Buoyancy-driven turbulence—stably stratified turbulence and turbulent thermal convection
- Large-scale and small-scale dynamos
- Anisotropic turbulence
- Rotating turbulence
- Quasi-static MHD turbulence
- Field-theoretic computation of energy transfers, in particular, energy fluxes
- Role of energy transfers in pattern formation

In addition, Daniele Carati and Olivier Debliquy performed energy transfer computations of MHD turbulence using large-resolution data; Bogdan Teaca, Franck Jenko, and coworkers extended this formalism to gyrokinetic plasma turbulence; and Rodion Stepanov and Franck Plunian employed similar techniques to shell models of turbulence.

Several research groups have computed the energy fluxes in various turbulent systems using the numerical procedure of Dar et al. and Frisch. Yet, the underlying formalism of mode-to-mode energy transfer has remained somewhat unnoticed. This book is an attempt to present this powerful formalism and its applications to a variety of turbulent flows in a coherent and general framework so as to reach the turbulence and fluid community. In the monograph I present the fluxes, shell-to-shell and ring-to-ring transfers of kinetic energy, kinematic helicity, enstrophy, etc., for hydrodynamic, MHD, and scalar turbulence. I also describe popular turbulence phenomenologies, and their verification using numerical simulations and experiments. The earlier derivation of mode-to-mode formalism by Dar et al. had an uncomfortable issue of circulating energy transfer. In the present book, using tensor analysis and the structure of the nonlinear terms, I show that the circulating energy transfer is zero, thus resolving the ambiguity of the earlier derivation. The present monograph illustrates the usefulness of the energy transfers for understanding turbulence.

In addition to the earlier works (listed above) on the energy transfers, the book contains several new works on energy transfers, which are as follows:
Preface

xix

• Derivation of mode-to-mode transfer formulas for kinetic helicity, magnetic helicity, and enstrophy
• Energy transfers in compressible turbulence
• Energy transfers in electron MHD
• Energy transfers in Craya–Herring and helical basis
• Energy transfers in tensor flows, and in spherical flows
• Field-theoretic computation of energy transfers in Craya–Herring basis

The presentations on compressible turbulence, electron MHD, and flows on a sphere are quite elementary and nascent. I believe that a lot more can be done in these areas.

For a thematic presentation, the book is divided into four parts. The first part deals with hydrodynamic flows—two-dimensional and three-dimensional turbulence, helical turbulence, enstrophy transfers, Craya–Herring and helical basis, and Kolmogorov theory of turbulence. In the second part, flows with a scalar that includes passive scalar, stably stratified flows, thermal convection, and binary fluid are covered. The third part is dedicated to flows with vectors, namely MHD and electron MHD. In the last part, compressible and Burgers turbulence, shell model, flows in spherical geometry, etc., have been discussed. The monograph includes works of many researchers, including those of my collaborators, who are listed in Acknowledgments. Yet, many important works could not be included due to lack of space.

Though the book focuses on energy transfers in fluid flows, one can observe that energy transfers would be useful for studying the nature of interactions in other nonequilibrium systems. For example, we expect the detailed balance to be broken in a generic nonequilibrium system, which would lead to directional energy transfers in time, space, and across scales. These transfers also yield direction to time in terms of evolution of the system. We believe that such analysis would be very useful for studying many nonequilibrium systems—quantum turbulence, financial market, coarsening in material science, etc. I do hope that the ideas of energy transfers would be employed to these systems.

Lastly, I hope that the book will be useful to students and researchers. I would greatly welcome comments, criticisms, and ideas on the contents of the book at my email mkv@iitk.ac.in.

Mahendra Verma
IIT Kanpur
The present monograph includes research works of many of my collaborators. It is great pleasure to acknowledge their contributions.

The *mode-to-mode energy transfer* formalism was discovered in collaboration with Gaurav Dar and Vinayak Eswaran around 1999. This work became part of Garav’s PhD thesis in which he analyzed energy transfers in 2D MHD turbulence. I am very grateful to Gaurav and Eswaran for this collaboration.

Daniele Carati and Olivier Debliquy performed numerical computation of energy fluxes for 3D MHD turbulence. Later, Bogdan Teaca, Bernard Knaepen, and Thomas Lessinnes joined this collaboration, and we worked out energy transfers in anisotropic MHD turbulence, shell model, dynamo, etc. We also developed ring spectrum and ring-to-ring energy transfers for anisotropic turbulence. Arvind Ayyer, Amar Chandra, and V. Avinash collaborated with me to employ field-theoretic techniques to analyze helical turbulence and locality in turbulence.

Abhishek Kumar and I worked out energy transfers in stably stratified turbulence and turbulent thermal convection. Using variable energy flux we could show that stably stratified turbulence with moderate stratification shows Bolgiano–Obukhov scaling, while thermal convection is closer to Kolmogorov’s scaling for hydrodynamic turbulence. I thank Abhishek Kumar for this collaboration. For thermal convection, I also collaborated with Ambrish Pandey, Pankaj Mishra, Mani Chandra, Anando Chatterjee, Dinesh Nath, Shashwat Bhattacharjee, Sumit Vashishtha, Krishna Kumar, Supriyo Paul, Pinaki Pal, and Roshan Samuel. I also benefited by my collaboration with Jai Sukhatme, Anirban Guha, and Shadab Alam on stably stratified turbulence.
The energy transfer studies on quasi-static MHD turbulence was performed in collaboration with Sandeep Reddy and Raghwendra Kumar, while those on dynamo and dynamo transition was with Rohit Kumar, Ravi Samtaney, and Rakesh Yadav. In recent times, I collaborated with Manohar Sharma, Sagar Chakraborty, and Abhishek Kumar on rotating turbulence, and with Rohith Jayaraman and Akanksha Gupta on two-dimensional turbulence. In addition, I worked with Alex Alexakis and Sita Sundar on anisotropic MHD turbulence.

Recently, I collaborated with Rodion Stepanov, Peter Frick, Valeriy Titov, Andrei Teimurazov, Andrei Sukhanovskii, Franck Plunian, Shubhadeep Sadhukhan, Abhishek Kumar, Satyajit Barman, and Ravi Samtaney under an Indo-Russian project. During this project we developed the framework of kinetic helicity, magnetic helicity, cross helicity, and enstrophy transfers, and performed numerical computations of these quantities in hydrodynamic, MHD, and convective turbulence. We also performed a very high resolution hydrodynamic turbulence simulation, and analyzed energy spectra and fluxes in the inertial–dissipation range.

I started my research career under the mentorship of Melvyn Goldstein and Aaron Roberts. Many thanks to them. I am grateful to Daniele Carati, Ravi Samtaney, Franck Plunian, and Rodion Stepanov for long-term and fruitful collaborations, and camaraderie. I also thank Stephan Fauve, Katepalli Sreenivasan (Sreeni), and Jayant Bhattacharya for many interesting suggestions, encouragement, and constant help throughout my career.

I am very grateful to my other friends and collaborators—William Matthaeus, Jörg Schumacher, G. Ravindra Kumar, Mustansir Barma, Arnab Rai Choudhuri, Arul Lakshminarayan, Edgar Knobloch, Peter Davidson, Detlef Lohse, K.-Q. Xia, Maurice Rossi, Jaywant Arakari, Supratik Banerjee, Avinash Khare, Amita Das, and Shayak Bhattacharya—for many useful ideas and discussions. In addition, I thank my family members—my parents, sisters, and brothers-in-law—and friends—Anurag Gupta, Reema Mittal, Vishal Garg, Vivek Garg—for encouragement and kind comments on the manuscript. A large body of the monograph was written in CCD at IIT Kanpur, and I owe a great deal to the CCD staff for kind hospitality and an excellent environment. I also thank all the members of our turbulence group for proof reading, and Manmohan Dewbanshi for assistance on printing, etc. I thank Abhishek Kumar, Mohammad Anas, Manohar Sharma, Shubhadeep Sadhukhan, Shashwat Bhattacharya, Shadab Alam, Akanksha Gupta, and Roshan Bhaskaran for preparing several figures of the book. I also thank the editors of Cambridge University Press for constant support in editing and various suggestions.

All the energy transfer algorithms are implemented in our spectral software TARANG. Anando Chatterjee and other group members of our turbulence group
Acknowledgments

contributed to the development and testing of this software, for which I am greatly indebted to them. I am thankful to King Abdullah University of Science and Technology (KAUST) for providing computational access on SHAHEEN I and SHAHEEN II through project K1052. Some of the numerical simulations were also performed on HPC2010, HPC2013, CHAOS clusters of IIT Kanpur, and PARAM YUVA of CDAC.

I gratefully acknowledge the financial and computational support from research projects—Swaranajayanti fellowship from Department of Science and Technology; PLANEX/PHY/2015239 from ISRO; SERB/F/3279/2013-14 from Science and Engineering Research Board; Indo-Russian project (DST-RSF) INT/RUS/RSF/P-03 and RSF-16-41-02012; and research grants from DoRD and DoRA, IIT Kanpur. I benefited from the participation in the scientific meetings: Summer school and discussion meeting on Buoyancy-driven Flows and Turbulence from Angstorms to light held at ICTS Bengaluru in 2017, and Turbulence Mixing and Beyond 2017 held at ICTP Trieste; I thank ICTS and ICTP for the same.

Mahendra Verma
IIT Kanpur