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Chapter 1

Introduction

Fluid flows exhibit rich behavior—regular flow in viscous regime; patterns and

chaos in weakly nonlinear regime; and turbulence in strongly nonlinear

regime. Such complex behavior arises due to nonlinearity. A good understanding

of some of these features, specially turbulence, is still lacking even after sustained

efforts extending over two centuries.

Hydrodynamics broadly deals with the analysis of the Navier–Stokes equations

and their generalization to magnetohydrodynamics, convection, passive scalars,

rotating flows, etc. The large-scale structures in such flows contribute to various

instabilities, patterns, and chaos, but turbulence is governed by structures at all

scales. Researchers have studied these phenomena using the energy exchanges

among various Fourier modes, a topic which has not been studied in great detail.

In this book we attempt to fill this gap by focusing on energy transfers in fluid

flows, and their role in turbulence. Note, however, that energy transfer formalism

developed in the book are general, and they could be applied to study pattern

formation and chaos as well.

The energy transfers in fluid flows are generic, and they arise in linear as well as

in nonlinear systems. A pendulum is an example of a linear system that exhibits a

periodic exchange of kinetic energy and potential energy during its oscillations.

Similar transfers occur in surface gravity waves and in internal gravity waves. Also

note that in the unstable configuration of the pendulum (vertically standing up), it

is the potential energy that drives the kinetic energy and makes the pendulum

unstable. The buoyancy-driven instabilities—thermal instability, Rayleigh–Taylor
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4 Energy Transfers in Fluid Flows

instability—have energy transfers similar to that in the unstable configuration of

the pendulum.

In nonlinear hydrodynamics, the energy transfers among the interacting modes

arise due to quadratic nonlinearities, for example, u ·∇u in fluids, u ·∇T in thermal

convection, ∇ × (u × b) and b · ∇b in magnetohydrodynamics, where u,b, and

T are respectively the velocity, magnetic, and temperature fields. Therefore, we

develop a general formulation to compute the energy transfers that help us formulate

interactions among the participating modes, energy flux, shell-to-shell and ring-to-

ring energy transfers, etc. The energy transfers among the large-scale modes help us

understand patterns and chaos. On the other hand, the energy flux, and the shell-to-

shell and ring-to-ring energy transfers provide useful information about turbulence in

hydrodynamics, magnetohydrodynamics, and buoyancy-driven flows. In this book,

we present these topics thematically, duly emphasizing the common features among

them. Also, the present book focusses on the nonlinear energy transfers.

In the next section we introduce a generic nonlinear equation that contains basic

features of nonlinear energy transfers.

1.1 A Generic Nonlinear Equation

In a nonlinear system, nonlinearity induces interactions among the Fourier modes.

These interactions are illustrated using the following equation:

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) + a[f(x, t)]2, (1.1)

where a is a constant. In this equation, f2 is the nonlinear term. We assume the

field f to be contained in a periodic box of length L. We decompose the field f(x)

into Fourier modes f(k):

f(x, t) =
∑

k

f(k, t) exp(ikx), (1.2)

where k = 2nπ/L with n as an integer. The corresponding inverse transform is

given by

f(k, t) =
1

L

∫ L

0

dxf(x, t) exp(−ikx). (1.3)

Using this definition, we derive an equation for f(k, t) in Fourier space. We start

with
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Introduction 5

∂

∂t

∑

f(k) exp(ikx) =
∂2

∂x2

∑

f(k) exp(ikx)

+a
∑

f(p) exp(ipx)
∑

f(q) exp(iqx). (1.4)

Using the orthogonality relation,

1

L

∫ L

0

dx exp(i(p+ q − k)x) = δp+q,k, (1.5)

we obtain the requisite equation:

d

dt
f(k) = −k2f(k) + a

∑

p

f(p)f(k − p). (1.6)

Note that the nonlinear term has become a convolution in Fourier space.

In the absence of the nonlinear term, Eq. (1.6) reduces to diffusion equation:

d

dt
f(k) = −k2f(k) (1.7)

that has a very simple solution—each Fourier mode decays exponentially as

f(k, t) = f(0) exp(−k2t). (1.8)

However, the nonlinear term, a
∑

p f(p)f(k − p), of Eq. (1.6), couples the Fourier

modes in an intricate manner. In Eq. (1.6), nonlinear interactions involve three

Fourier modes, for example, f(k), f(p), and f(k−p). In general, there is no analytical

solution for Eq. (1.6) because of the nonlinearity. Note however that analytical

solution may be possible for some specific cases.

The modal energy |f(k)|2/2 is the energy of the Fourier mode f(k). By

multiplying Eq. (1.6) with f∗(k) and summing the resulting equation with its

complex conjugate, we obtain an equation for the time evolution of |f(k)|2 as

d

dt

1

2
|f(k)|2 = −2k2

1

2
|f(k)|2 + aℜ

[

∑

p

f(k − p)f(p)f∗(k)

]

, (1.9)

where ℜ(.) stands for the real part of the argument. The last term of Eq. (1.9)

represents the nonlinear energy transfer. The modal energy decays exponentially

in the absence of such transfer. Note, however, that the nonlinear term could

stabilize the modal energy or make it time dependent. We remark that on many
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6 Energy Transfers in Fluid Flows

occasions, energy is more convenient to analyze than the Fourier modes. For

example, |f(k)|2 is real in contrast to complex f(k).

In the aforementioned equation, the decaying term −k2|f(k)|2 provides energy

transfer from coherent energy to heat or dissipation. The nonlinear term ℜ(f(k −

p)f(p)f∗(k)) represents the energy transfers from the modes f(p) and f(k − p) to

f(k). Note that these energy transfers occur among various length scales, and it

differs from the energy transport in real space, for example,
∫

f2dS where dS is an

elemental area.

The aforementioned behavior is a generic feature of nonlinear partial differential

equations including the Navier–Stokes equation. In the present book, we will present

energy transfer formalism for hydrodynamics, magnetohydrodynamics, scalar flows,

buoyancy-driven flows, etc. Most of our discussion will be focused on incompressible

flows.

Before we start our detailed discussion on energy transfers, we outline the

contents of the book.

1.2 Outline of the Book

The book is divided into four parts. Part I contains discussion on various aspects

of hydrodynamics, while Parts II–IV cover more complex applications. Though the

book focuses on energy transfers, we also cover physics of the flows under

consideration—hydrodynamics, scalar flows, magnetohydrodynamics, thermal

convection, etc.

In Part I, Chapters 2 and 3 describe the governing equations of hydrodynamics

in real and Fourier spaces respectively. The formalism of energy transfers in

hydrodynamics is developed in Chapter 4. Chapters 5 and 7 describe

phenomenologies of three-dimensional and two-dimensional hydrodynamic

turbulence respectively. Here we describe energy fluxes and other related

diagnostics. Chapter 6 contains a discussion on enstrophy transfers in turbulent

flows.

In Chapter 8, we describe helical turbulence. Chapter 9 introduces Craya–

Herring and helical basis that are very useful for describing flow properties. In

Chapter 10 we briefly describe field-theoretic treatment of energy transfers. These

computations provide many useful insights into turbulence dynamics. Chapter 11

contains formulation of energy transfer in anisotropic turbulence.

Energy transfers in real space—energy flow from one scale to another—can be

described using structure function. This scheme was first derived by Kolmogorov

(1941a,b,c). In Chapter 12, we describe this formalism, and relate it to the energy
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Introduction 7

transfers in Fourier space. Note, however, that the present book focuses on energy

transfers in Fourier space.

In nature and in engineering, we encounter flows that advect scalar, vector, or

tensor fields along with it. There are many examples of such flows, as listed in

Table 1.1. In subsequent chapters, we will cover properties, especially related to the

energy transfers, of such flows.

Table 1.1 Examples of scalars, vectors, and tensors in flows.

Field Examples

Scalar
Densities of dust particles and pollution, fluid density,

temperature, binary fluid

Vector Magnetic field, flock velocity, dipoles

Tensor Polymer, elastic fluid

In Part II (Chapters 13 to 17), we systematically cover flows with scalars. We

describe properties of passive scalar flows, stably stratified flows, and thermal

convection. We also cover binary fluid mixture in this part.

In Part III (Chapters 18 to 25), we describe flows with vectors that include passive

vector flows, magnetohydrodynamics (MHD), and electron MHD. The topics covered

are energy transfers in MHD, turbulence phenomenologies, dynamo, etc.

In Part IV (Chapters 26 and 31), we include miscellaneous topics that go beyond

scalar and vector flows. These topics include tensor flows, rotating turbulence, shell

model of turbulence, Burgers turbulence, and compressible turbulence. The last two

topics in this part are on compressible hydrodynamics—an exception to the theme

of the book. We conclude in Chapter 32.

There are a large number of excellent textbooks and reviews on various kinds of

turbulent flows (hydrodynamic, magnetohydrodynamic, buoyancy-driven). In

Table 1.2 we list some of the important references, especially those connected to

our discussion. The present book attempts to highlight common features in the

aforementioned flows using energy transfers, energy fluxes, etc., and show that

energy transfer formalism provides important insights into turbulent flows.
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8 Energy Transfers in Fluid Flows

Table 1.2 Key references.

Hydrodynamic turbulence

Leslie (1973); McComb (1990, 2014); Frisch (1995);

Mathieu and Scott (2000); Pope (2000);

Davidson (2004); Lesieur (2008);

Kraichnan (1959); Alexakis and Biferale (2018)

Craya–Herring basis Sagaut and Cambon (2008); Lesieur (2008)

Buoyancy-driven turbulence
Manneville (2014); Verma (2018);

Lohse and Xia (2010); Verma et al. (2017)

MHD turbulence Biskamp (2003); Davidson (2017); Verma (2004)

Shell model
Ditlevsen (2010); Plunian et al. (2012);

Verma and Kumar (2016)

Anisotropy Davidson (2013); Verma (2017, 2018)
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