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Formulating Geodynamic Model Problems:

Three Case Studies

An ideal geodynamic model respects two distinct criteria: it is sufficiently simple

that the essential physics it embodies can be easily understood, yet sufficiently

complex and realistic that it can be used to draw conclusions about the earth. It is

seldom easy to satisfy both criteria together, and so most geodynamicists tend to

emphasize one or the other, according to temperament and education.

However, there is a way to overcome this dilemma: to investigate not just a single

model, but rather a hierarchical series of models of gradually increasing complexity

and realism. Such an investigation – whether carried out by one individual or by

many – is a cumulative one in which the initial study of highly simplified models

provides the physical understanding required to guide the formulation and inves-

tigation of more complex models. In many cases, the simpler models in such a

series can be solved analytically, whereas the subsequent more realistic models

require numerical or experimental approaches. To illustrate how the hierarchical

approach works in practice, I have chosen three exemplary geodynamic phenomena

as case studies: heat transfer from magma diapirs, subduction and the interaction of

mantle plumes with the lithosphere. The following discussions emphasize models

at the simpler end of the spectrum that are amenable to analytic methods and omit

mathematical detail to keep the focus on the conceptual structure of the hierarchical

approach.

1.1 Heat Transfer from Mantle Diapirs

Our first example is the ascent of a hot blob or diapir of magma through the

lithosphere, a possible mechanism for the formation of island-arc volcanoes (Marsh

and Carmichael, 1974; Marsh, 1978). The goal of this model is to determine how

far the diapir can move through the colder surrounding material before losing so

much of its excess heat that it solidifies. Figure 1.1 illustrates a series of model

problems that can be used to investigate this question.

1

www.cambridge.org/9781107174467
www.cambridge.org


Cambridge University Press
978-1-107-17446-7 — Theoretical Mantle Dynamics
Neil M. Ribe 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Formulating Geodynamic Model Problems
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Figure 1.1 Models for the heat transfer from an ascending magma diapir (§ 1.1).
(a) Original model in spherical geometry. A spherical diapir of radius a and
constant temperature T0 ascends in an infinite fluid with density ρ, kinematic
viscosity ν, thermal diffusivity κ and temperature T∞ far from the diapir. The
viscosity of the fluid inside the diapir is supposed ≪ ν. The figure is drawn in
the reference frame of the diapir, so that the fluid far from it moves downward
with a constant speed −U. The colatitude measured from the leading stagnation
point (SP) is θ , and the components of the velocity in the colatitudinal and radial
directions are u and v, respectively. In the limit Ua/κ ≫ 1, temperature variations
in the hemisphere θ ≤ π/2 are confined to a BL of thickness δ ≪ a. The viscosity
ν may be constant (Marsh, 1978) or temperature-dependent (Morris, 1982). (b)
Stagnation flow model of Morris (1982). The surface of the hot sphere is replaced
by the plane z = 0, and the far-field streaming velocity −U is imposed as a
boundary condition at z = a.
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1.1 Heat Transfer from Mantle Diapirs 3

Probably the simplest model that still retains much of the essential physics

(Marsh, 1978) can be formulated by assuming that (1) the diapir is spherical and

has a constant radius; (2) the diapir’s interior temperature is uniform and (3) does

not vary with time; (4) the ascent speed and (5) the temperature of the lithosphere

far from the diapir are constants; (6) the lithosphere is a uniform viscous fluid with

constant physical properties and (7) the viscosity of the diapir is much less than that

of the lithosphere. The result is the model shown in Figure 1.1a, in which an effec-

tively inviscid fluid sphere with radius a and temperature T0 ascends at constant

speed U through a fluid with constant density ρ, thermal diffusivity κ , kinematic

viscosity ν and constant temperature T = T∞ ≡ T0 − �T far from the sphere.

An analytical solution for the rate of heat transfer q from the diapir (§ 6.2.2) can

now be obtained if one makes the additional (and realistic) assumption (8) that the

Péclet number Pe ≡ Ua/κ ≫ 1, in which case the temperature variations around

the leading hemisphere of the diapir are confined to a thin boundary layer (BL) of

thickness δ ≪ a (Figure 1.1a). One thereby finds (see § 2.3 for the derivation)

q ∼ kca�TPe1/2, (1.1)

where kc is the thermal conductivity.

While the model just described provides a first estimate of how the heat transfer

scales with the ascent speed and the radius and excess temperature of the diapir, it is

far too simple for direct application to Earth. A more realistic model can be obtained

by relaxing assumptions (3) and (5), allowing the temperatures of the diapir and the

ambient lithosphere to vary with time. If these variations are slow enough, the heat

transfer at each instant will be described by a law of the form (1.1), but with a

time-dependent excess temperature �T(t). A model of this type was proposed by

Marsh (1978), who obtained a solution in the form of a convolution integral for the

evolving temperature of a diapir ascending through a lithosphere with a prescribed

far-field temperature Tlith(t).

A different extension of the simple model of Figure 1.1a, also suggested by

Marsh (1978), begins from the observation that the viscosity of mantle materials

decreases strongly with increasing temperature. A hot diapir will therefore be

surrounded by a thin BL of softened lithosphere, which will act as a lubricant and

increase the diapir’s ascent speed. The effectiveness of this mechanism depends

on whether the BL is thick enough and/or has a viscosity low enough, to carry

a substantial fraction of the volume flux ∼ πa2U that the sphere must displace

in order to move. Formally, this model is obtained by replacing the constant

viscosity ν in Figure 1.1a by one that depends exponentially on temperature as

ν = ν0 exp(−T/�Tr), where �Tr is a rheological temperature scale.

While this new variable-viscosity model is more realistic and dynamically

richer than the original model, its spherical geometry makes an analytical solution
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4 Formulating Geodynamic Model Problems

difficult. However, closer examination reveals that the spherical geometry is not

in fact essential: all that matters is that the flow outside the softened BL varies

over a characteristic length scale a that greatly exceeds the BL thickness. This

recognition led Morris (1982) to study a simpler model in which the flow around

the sphere is replaced by a stagnation flow between two planar boundaries z = 0

and z = a (Figure 1.1b). The model equations now admit 1-D solutions T = T(z)

and v = v(z) for the temperature and the vertical velocity, respectively, which

can be determined using the method of matched asymptotic expansions (§ 6.3)

in the limit of large viscosity contrast �T/�Tr ≫ 1 (Morris, 1982). Because the

general scaling relationships revealed by the 1-D solution apply equally well to

the original spherical geometry, they can be exploited to simplify the governing

equations in spherical coordinates, which can then be solved analytically for certain

limiting cases (Morris, 1982; Ansari and Morris, 1985). Further discussion of these

problems will be found in § 6.5.2.

1.2 Subduction

Our second example is the subduction of oceanic lithosphere. Faced with the task of

devising the simplest possible model for subduction, it makes sense to begin with a

purely kinematic approach in which flow is driven by imposed boundary velocities.

A minimal list of parameters for such a model comprises a parameter to specify

the overall geometry and a velocity to characterize the motion of the slab and

the oceanic plate. Figure 1.2a shows an influential model of this type proposed by

McKenzie (1969). This ‘corner flow’ model comprises two wedge-shaped regions

containing fluid with a constant viscosity, bounded by rigid surfaces that meet at a

corner. The dip of the surface representing the subducting slab is α. The slab and the

oceanic plate move away from and towards the corner, respectively, with speed U0.

The overriding plate is motionless. The lines with arrows are typical streamlines for

the flow in the two wedges.

An unrealistic aspect of the Newtonian corner flow model is that the stress in

the fluid has a nonintegrable singularity ∝ r−1 at the corner, implying that an

infinite force is required to drive subduction. This can be remedied by extending

the model to non-Newtonian shear-thinning fluids in which the viscosity decreases

with increasing stress. Fenner (1975) showed that corner flows with non-Newtonian

rheology can be determined analytically in certain cases. Subsequently, Tovish et al.

(1978) extended Fenner’s results to the subduction geometry of Figure 1.2a. While

the stress is still singular at the corner, the singularity is now integrable. Solutions

for non-Newtonian corner flows are derived in § 4.3.3.

Despite their simplicity, corner flow models have been widely used in geody-

namic studies where an analytical expression for the subduction-induced mantle
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Figure 1.2 Models for the subduction of oceanic lithosphere (§ 1.2). (a) Kine-
matic corner flow model of McKenzie (1969). (b) Vertical cutaway view of the
laboratory configuration studied by Bellahsen et al. (2005). Only the portion of
the sheet behind the vertical symmetry plane is shown. The flat portion of the
sheet is prevented from sinking by surface tension between the honey and the
air acting across a meniscus. (c) Vertical cutaway view of the three-dimensional
model of Li and Ribe (2012). Sinking of the flat portion of the sheet is prevented
by the presence of a lubrication layer of thickness d between the sheet and the
upper free-slip surface.
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6 Formulating Geodynamic Model Problems

flow is needed. Nevertheless, they have a number of obvious shortcomings, includ-

ing their two-dimensionality, the oversimplified geometry of the slab, the stress

singularity at the corner and the neglect of the driving buoyancy force and of the

viscous force that resists the bending of the plate. The decisive step forward that

overcame all these shortcomings was taken in the context of laboratory experi-

ments, using the setup shown schematically in Figure 1.2b (Bellahsen et al., 2005).

Earth’s upper mantle is represented by a layer of honey ≈ 11 cm thick in a trans-

parent tank, and the plate is represented by a thin (≈ 1 cm) sheet of denser silicone

putty. The sheet is initially placed flat on top of the honey, where it is prevented

from sinking by the surface tension between the honey and the air acting across a

meniscus. The experiment is launched by pushing one edge of the sheet down into

the honey and letting it subduct freely.

Inspired by these experiments, Li and Ribe (2012) proposed a model (Figure

1.2c) in which surface tension is replaced by a thin lubrication layer of mantle fluid

above the sheet. Lubrication theory (§ 7.1) states that the normal stress in the thin

layer greatly exceeds the tangential stress. Accordingly, the lubrication layer serves

the same purpose as surface tension, which is to prevent the flat part of the sheet

from sinking while allowing it to move sideways freely in response to the pull of

the slab. However, the advantage of the lubrication layer from a theoretical point

of view is that it removes the three-phase (air + honey + putty) contact line. The

model then becomes amenable to solution by the semi-analytical boundary-element

method (§ 4.6.4). The model of Figure 1.2c will be discussed in more detail in § 8.2.

1.3 Plume–Lithosphere Interaction

Plume–lithosphere interaction refers to the processes that occur after a rising mantle

plume impinges on the base of the lithosphere. Because the plume fluid is buoyant

relative to its surroundings, it will spread beneath the lithosphere, eventually form-

ing a shallow pool whose lateral dimensions greatly exceed its thickness.

Figure 1.3 shows a series of fluid dynamical models that have been used to study

plume–lithosphere interaction, beginning with the kinematic model of Sleep (1987)

(Figure 1.3a). Sleep’s insight was that the flow associated with a plume rising

beneath a moving plate can be regarded as the sum of two parts: a (horizontal) radial

flow representing buoyant plume fluid emanating from a steady localized source at

the top of the plume conduit and an ambient mantle wind in the direction of the plate

motion. Fluid from the source can travel only a finite distance upstream against the

wind before being blown back downstream again, leading to the formation of a

stagnation point (labelled SP in Figure 1.3a) at which the wind speed just equals

the speed of radial outflow from the source. The stagnation streamline that passes

through this point (heavy line in Figure 1.3a) divides the (x, y) plane into an inner
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Figure 1.3 Models for plume–lithosphere interaction (§ 1.3). (a) Steady stream-
lines for the 2-D kinematic model of Sleep (1987). The source is indicated by the
black circle, the heavy solid line is the stagnation streamline and d is the distance
between the source and the stagnation point SP. (b) Spreading of a pool of buoyant
plume fluid supplied at a volumetric rate Q beneath a rigid lithosphere moving at
speed U relative to the plume stem (Olson, 1990). The plume fluid has viscosity
ηp and density ρ − �ρ, where ρ is the density of the ambient mantle. (c) Same as
(b), but beneath two plates separated by a spreading ridge with half-spreading rate
U (Ribe et al., 1995).

region containing fluid from the source and an outer region containing fluid brought

in from upstream by the wind. The stagnation streamline resembles the shape of the

topographic swell around the Hawaiian Island chain (Richards et al., 1988).

While the model of Sleep (1987) nicely illustrates the kinematics of plume–

plate interaction, it neglects the (driving) buoyancy force and (resisting) viscous

force that control the spreading of the plume pool. We now seek the simplest

possible model that embodies these dynamics. We first replace the continuous vari-

ation of fluid properties by a two-fluid structure, comprising a plume-fed pool with

thickness h(x, y), viscosity ηp and density ρ − �ρ spreading in an ambient fluid

with viscosity ηm and density ρ. We suppose that the plume stem supplies fluid

at a constant volumetric flux Q, at a point (the hotspot) that is fixed relative to a

plate moving at a constant speed U. Finally, we assume that ηm/ηp, while large, is

nevertheless small enough that the resistance of the ambient mantle to the spreading

of the pool can be neglected. The result is the ‘refracted plume’ model of Olson

(1990) (Figure 1.3b). Olson’s model is in essence a dynamically self-consistent
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8 Formulating Geodynamic Model Problems

extension of the kinematic model of Sleep (1987). The refracted plume model can

be generalized still further while retaining its analytical character by allowing the

plume material to have a more realistic non-Newtonian (shear-thinning) rheology

(Asaadi et al., 2011).

As a final illustration, Figure 1.3c shows a further extension of the refracted

plume model in which the uniform plate is replaced by two plates separated by a

spreading ridge. Despite the increased complexity of this plume-ridge interaction

model, some analytical results can still be obtained by scaling analysis (Ribe et al.,

1995). Plume–plate and plume–ridge interaction models are discussed in more

detail in § 7.2.

www.cambridge.org/9781107174467
www.cambridge.org

