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Preface

The origins of this book lie in an extended visit that I made in the Spring of 2008 to
MSRI in Berkeley, California as the Simons Professor for the programme on Rep-
resentation Theory of Finite Groups and Related Topics. Jon Carlson and Julia
Pevtsova were there for a large part of this time, and Eric Friedlander passed
through town several times. Through numerous conversations and lectures, they
ignited my interest in the theory of modules of constant Jordan type. At first, I was
reluctant to be drawn in. But then I managed to prove one of the conjectures from
a paper of Carlson, Friedlander and Pevtsova [81], and I was hooked. This work
has been published [42] and appears here as Section 5.12.

After that initial success, I started working with Julia Pevtsova on the vector bun-
dles on projective space associated to modules of constant Jordan type. We refined
a previous definition of Friedlander and Pevtsova, and proved a realisation theo-
rem. This work has also been published [53] and appears here as Theorem 8.1.1,
Sections 8.2–8.9 and Section 10.2.

I wrote several other papers soon after that, and soon it was getting to the point
where I had so much material that it made sense to make a book based on the
resulting series of papers as well as a great deal of other unpublished work. This is
that book.

My thanks go to MSRI for its hospitality in 2008 and 2013 while parts of this
work were being written; David Eisenbud for sharing his knowledge of vector
bundles on projective spaces; Jon Carlson, Eric Friedlander and Julia Pevtsova
for numerous conversations; Serge Bouc, Radu Stancu and Jon Carlson for their
extensive feedback on earlier versions of the text; Jeremy Rickard for various
interesting comments and questions, and particularly for formulating Conjecture
5.13.1; Andrew Granville for helping me with some number theoretic questions,
and especially for formulating and supplying a proof of a statement similar to
Lemma 12.10.1. I’d also like to thank Jesse Burke, Jon Carlson, Claudia Miller,
Julia Pevtsova and Greg Stevenson for enlightening conversations and feedback
related to Chapter 11, and Mark Walker for giving a talk at a conference in Seattle
that stimulated my interest in Orlov’s correspondence.
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Introduction

Let us begin with an example. Consider the following 30×30 matrices with entries
in an algebraically closed field k of characteristic two.
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Blank entries are taken to be zero (there are two blank rows at the top and two blank
columns on the right). These matrices, for different values of a, b, c, d, e, f ∈ k,
all commute and square to zero. Furthermore, as long as a, b, c, d, e, f are not
all zero, the matrix has rank exactly 14. So the kernel modulo the image is a
two-dimensional vector space. This means that we have assigned to each point
(a : b : c : d : e : f ) ∈ P

5 a vector space of dimension two. This gives us a

xiii
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xiv Introduction

rank two algebraic vector bundle on projective 5-space, which happens to be the
indecomposable Tango bundle.

On the other hand, if we add the identity to the six matrices obtained by setting
one of the variables equal to 1 and the rest equal to 0, we obtain six commuting
matrices which square to the identity. In other words, we have a k E-module, where
E ∼= (Z/2)6 is an elementary abelian 2-group of rank six. This module has constant

Jordan type [2]14[1]2, meaning that the matrices above all have the same Jordan
canonical form with 14 blocks of length two and two blocks of length one.

This illustrates the connection between modules of constant Jordan type for ele-
mentary abelian p-groups and vector bundles on projective space in characteristic
p investigated in this book. Because the people studying these two subjects are
almost disjoint, I have tried to include plenty of introductory material. The reader
should feel free to skip this if appropriate.

So what are modules of constant Jordan type? Among all modules, they are
analogous to the vector bundles among the sheaves.

As Dade put it in [97], “There are just too many modules over p-groups!” More
explicitly, the group algebra of a finite p-group in characteristic p usually has wild

representation type, as we explain in Section 1.2. For a more general finite group,
the Sylow p-subgroup controls the representation type. It follows that in general we
do not hope to classify all the finite-dimensional indecomposable representations
of a finite group.

The theory of varieties for modules was developed by Carlson and others [24, 73,
74, 75] as a way of getting at module structure without making such a classification.
Many aspects of this theory are controlled by the elementary abelian p-subgroups.
So it makes sense to study modules for an elementary abelian p-group as a subject
in its own right. We concentrate on modules of constant Jordan type. For these
modules the variety gives essentially no information, so the theory supplements
the now well-established variety theory. Modules of constant Jordan type are still
wild whenever the representation type of the group is wild, as we show in Section
5.5. These modules are much more rigidly behaved than the general module, but
the theory is nonetheless surprisingly rich.

The formal definition of constant Jordan type is as follows. Let E =

〈g1, . . . , gr 〉 ∼= (Z/p)r be an elementary abelian p-group and let k be an
algebraically closed field of characteristic p. We set

X i = gi − 1 ∈ k E

for 1 ≤ i ≤ r , so that X
p

i = 0. If α = (λ1, . . . , λr ) ∈ A
r (k), we define

Xα = λ1 X1 + · · · + λr Xr ∈ k E .

If α 	= 0 then gα = 1 + Xα is a unit of order p in k E .
A cyclic shifted subgroup of E is a subgroup of the group algebra k E of the form

Eα = 〈gα〉 for 0 	= α ∈ A
r (k). A finitely generated k E-module is said to have

constant Jordan type if the Jordan canonical form of Xα on M is independent of α

for 0 	= α ∈ A
r (k).
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Introduction xv

We are far from understanding what Jordan types occur for a module M of
constant Jordan type. Of course if r = 1 then the problem is trivial. So let us
assume that r ≥ 2. We write [a1] . . . [at ] for a Jordan type with blocks of lengths
a1, . . . , at , each of which is an integer between 1 and p. We often wish to ignore
Jordan blocks of length p, and the stable Jordan type is the same list with the length
p blocks omitted. The first important theorem in the subject is Dade’s lemma, from
his 1978 paper [98], which states that if the stable Jordan type is empty, in other
words if M has constant Jordan type [p]n for some n ≥ 0, then M is projective. In
particular, n is divisible by pr−1. Using this, it is not hard to show that a module
M of stable constant Jordan type [1] or [p − 1] is endotrivial, in the sense that
M ⊗k M∗ is trivial plus projective. Dade’s classification of endotrivial modules for
an elementary abelian p-group then implies that M is isomorphic to �n(k) plus a
projective for some n ∈ Z.

In the paper of Carlson, Friedlander and Pevtsova [81], it is conjectured that for
r ≥ 2 and p ≥ 5 there is no module of stable constant Jordan type [2]. In other
words, there is no module with the property that every Xα acts with Jordan blocks
all of length p except for a single block of length two. In Section 5.12 we prove the
more general statement that for r ≥ 2 and 2 ≤ a ≤ p −2 there is no k E-module of
stable constant Jordan type [a]. This completes the analysis of modules of constant
Jordan type with one non-projective Jordan block. For larger stable Jordan types,
our knowledge is much more limited. The following conjectures appear in Sections
5.13 and 5.15. We continue to assume that E has rank r ≥ 2.

Conjecture (Rickard) If a k E-module of constant Jordan type has no Jordan
blocks of length j then the total number of Jordan blocks of length larger than
j (including the blocks of length p) is divisible by p.

In Section 5.13 we prove the cases j = 1 and j = p − 1 of Rickard’s conjec-
ture. The proof involves the notion of generic kernel for modules over rank two
elementary abelian groups, developed by Carlson, Friedlander and Suslin [82].

Conjecture (Suslin) If a k E-module of constant Jordan type has Jordan blocks of
length j then it also has to have Jordan blocks of length either j + 1 or j − 1. In
other words, there are no isolated lengths.

Conjecture (Carlson, Friedlander and Pevtsova) If M is a k E-module of stable
constant Jordan type [2][1] j then j ≥ r − 1.

In Section 10.4 we prove a weak version of the conjecture of Carlson, Friedlan-
der and Pevtsova, on modules of stable constant Jordan type [2][1] j . Namely we
prove that j ≥ r −2 if p is large enough. The proof of this uses the theory of Chern
classes for vector bundles on projective space, a subject which we discuss in detail
in Chapter 7.
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xvi Introduction

When we talk of vector bundles, we are referring to algebraic vector bundles,
namely locally free sheaves of modules over the structure sheaf. In the case of
projective space P

r−1, the only rank one vector bundles (line bundles) are twists
of the structure sheaf O(a). There are plenty of indecomposable vector bundles of
every rank at least r − 2 if r ≥ 3, but very little is known about vector bundles
whose rank s is in the range 2 ≤ s ≤ r − 3. The only values of r and s in this
range for which we know of indecomposable vector bundles are r = 5, s = 2
(Horrocks–Mumford), r = 6, s = 3 (Horrocks), and in characteristic two r = 6,
s = 2 (Tango). A vector bundle in this range with other values of r and s will be
referred to as a new low rank vector bundle on projective space.

Part of the point of Chapters 6 and 7 is to give an account of the theory of vector
bundles on projective space, leading quickly and efficiently to the definition of
Chern classes and a proof of the Hirzebruch–Riemann–Roch theorem in this case.
This will greatly facilitate the discussion of restrictions on Jordan type coming
from Chern classes.

If M is a k E-module of constant Jordan type, then we associate to M vector bun-
dles F1(M), . . . ,Fp(M) on projective space P

r−1 in such a way that the rank of
Fi (M) is equal to the number of Jordan blocks of length i on a cyclic shifted sub-
group of k E . The way that projective space enters the game is that points in P

r−1

correspond to cyclic shifted subgroups of k E (up to a scalar). In some sense, Fi (M)

associates to each point of projective space the socle of the sum of the Jordan
blocks of length i of the restriction of M to the corresponding cyclic shifted sub-
group. The twists Fi (M), Fi (M)(1), . . . , Fi (M)(i − 1) associate to each point on
projective space the successive socle layers of the length i blocks of the restriction.

At this point, an interesting question arises. What vector bundles occur this way?
The answer to this question is quite different for p = 2 and p odd, as we shall see
in Section 8.9. For p = 2, given any vector bundle F of rank s on P

r−1, there
exists a k E-module M of stable constant Jordan type [1]s such that F1(M) ∼= F.
The same construction with p odd only shows that given F, there is a k E-module
M of stable constant Jordan type [1]s such that F1(M) ∼= F∗(F), the pullback of F

through the Frobenius map F on P
r−1. And indeed, it turns out that without pulling

back through the Frobenius map, there are restrictions coming from Chern classes.
In Section 10.3 we show that if M has stable constant Jordan type [1]s then the
Chern numbers c1(F1(M)), . . . , cp−2(F1(M)) are divisible by p.

Further congruences on Chern numbers come from the Hirzebruch–Riemann–
Roch theorem. For example, in Section 10.8 we prove the following. Let E ∼=

(Z/2)r . If M is a k E-module of constant Jordan type [2]n[1]m and n is not con-
gruent to one of the integers 0,−1, . . . ,−m modulo 2r−1 then F1(M) is a vector
bundle on P

r−1 which is not a sum of line bundles. In particular, if r > 6 and
m ≤ r − 3 then F1(M) is a new low rank vector bundle on projective space.
The Tango bundle example from the beginning of the introduction shows why the
restriction r > 6 is necessary.
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Introduction xvii

Finally, the last chapter is a bit more speculative. We investigate the general
question of how to construct small modules with interesting properties. The con-
structions are basically the same as those used to construct modules of constant
Jordan type, but we see that the applicability of the methods is much wider. Again,
p = 2 behaves quite differently from p odd. So, for example, we shall see that
a module of Loewy length p can have an arbitrary hypersurface as its variety if
p = 2 but only finite unions of hyperplanes can be realised when p is odd.
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