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Modular Representations and Elementary

Abelian Groups

1.1 Introduction

This chapter introduces background material on the relevant aspects of modular

representation theory of finite elementary abelian p-groups. We work over an alge-

braically closed field k of characteristic p, and we only consider finitely generated

modules, even when some statements are true more generally.

Since the group algebra of an elementary abelian 2-group is just an exterior

algebra, many of the methods we describe apply equally well to modules over

exterior algebras in any characteristic. So to some extent we develop the theory of

exterior algebras in parallel to that of elementary abelian p-groups.

In the representation theory of elementary abelian p-groups, we often have to

describe separately the cases p = 2 and p odd. In the case of exterior algebras,

usually no such separation of cases is necessary.

1.2 Representation Type

The trichotomy theorem (Drozd [107], Crawley–Boevey [96]) partitions finite-

dimensional algebras over an algebraically closed field into three mutually disjoint

classes:

(i) Finite representation type: in this case there are only a finite number of

isomorphism classes of finitely generated indecomposable modules.

(ii) Tame representation type: in this case there are infinitely many isomorphism

classes of finitely generated indecomposables, but in any given dimension they

come in one-parameter families, with finitely many exceptions. For algebras of

tame representation type, one usually hopes to write down a complete classification

of the finitely generated indecomposable modules.

(iii) Wild representation type: an algebra A has wild representation type if there

is a finitely generated A-k〈X, Y 〉-bimodule B, free as a right k〈X, Y 〉-module,

such that the functor B ⊗k〈X,Y 〉 − from finite-dimensional k〈X, Y 〉-modules to

finite-dimensional A-modules preserves indecomposability and reflects isomor-

phisms.
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2 Modular Representations and Elementary Abelian Groups

Broadly speaking, this means that a classification of finite-dimensional indecom-

posable A-modules would entail the classification of pairs of square matrices under

simultaneous conjugation. This problem is thought to be unsolvable.

Group algebras of finite groups are almost always of wild representation type.

Theorem 1.2.1 (Bondarenko and Drozd [57]; see also Ringel [220]) Let G be a

finite group and k have characteristic p.

(i) If the Sylow p-subgroups of G are cyclic then kG has finite representation

type.

(ii) If p = 2 and the Sylow p-subgroups of G are dihedral, semidihedral or

generalised quaternion, then kG has tame representation type.

(iii) In all other cases kG has wild representation type.

Looking in particular at an elementary abelian p-group E , this says that finite

representation type happens when E has rank one, tame representation type

happens only for (Z/2)2, and otherwise the representation type is wild.

In the rank one case, the classification follows easily from the theory of the

Jordan canonical form. There is one indecomposable module for each size of

Jordan block between 1 and p. In the case of (Z/2)2, the classification follows

from Kronecker’s classification of matrix pencils, see for example Section 4.3

of [39].

Next we discuss exterior algebras. Let � = �(X1, . . . , Xr ) be an exterior alge-

bra over a field k on generators X1, . . . , Xr . We can either consider this as an

ungraded algebra, and look at ungraded modules over it, or we can consider it as

a graded algebra, and look at graded modules. In the latter case, we put the gener-

ators X i in degree one. The relations satisfied by the X i are X2
i = 0 (1 ≤ i ≤ r )

and X i X j = −X j X i (1 ≤ i < j ≤ r ).

Theorem 1.2.2 If � = �(X1, . . . , Xr ) is an exterior algebra over a field k on

generators X1, . . . , Xr , then the representation type of � either as an ungraded or

as a graded algebra is as follows:

(i) finite if r = 1,

(ii) tame if r = 2, and

(iii) wild if r ≥ 3.

In case (i), if � is graded, we really mean that there are finitely many isomor-

phism classes of indecomposable modules up to shift in degree. In fact, there are

only two isomorphism classes of indecomposables, of dimensions one and two,

and shifts of them in the graded situation. If r = 2 then again the classification

of the indecomposables follows from Kronecker’s classification. For r ≥ 3, wild-

ness follows for example from Ringel [220], or from the wildness of the quiver

• ��
��

��

• .
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1.3 Shifted Subgroups 3

Given that we usually do not hope to classify the indecomposable k E-modules or

the indecomposable �-modules, there are several approaches to making progress.

One approach is to make classifications that are less refined. For example, the clas-

sification of thick subcategories of the stable module category is achieved in [49].

Another is to find general properties of modules, short of their classification. Exam-

ples of theorems in this direction are Dade’s lemma 1.9.5 and Carlson’s theory of

rank varieties, discussed in Section 1.9, both of which we shall make use of in these

notes. A third way to make progress is to restrict the class of modules under con-

sideration. That is the approach taken in these notes. We shall concentrate largely

on modules of constant Jordan type. There are many other interesting subclasses

of the class of all finitely generated k E-modules, and we are in no way suggesting

that this is the most important class.

1.3 Shifted Subgroups

We begin with a discussion of shifted subgroups of an elementary abelian p-group

E . These are certain subgroups of the group algebra k E .

The notation that we use throughout this book is as follows. A finite group E

is said to be an elementary abelian p-group if it is abelian and has exponent p.

Equivalently, E is isomorphic to a direct product of r copies of a cyclic group of

order p for some r ≥ 0:

E = 〈g1, . . . , gr 〉 ∼= (Z/p)r

where [gi , g j ] = 1 for 1 ≤ i, j ≤ r and g
p
i = 1 for 1 ≤ i ≤ r .

We begin with the definition of shifted subgroup. Let

X i = gi − 1 ∈ k E

for 1 ≤ i ≤ r . Since we are in characteristic p we have

X
p
i = (gi − 1)p = g

p
i − 1p = 0

in k E . The images of X1, . . . , Xr form a basis for J (k E)/J 2(k E), where J (k E)

denotes the Jacobson radical of k E . If α = (λ1, . . . , λr ) is an element of affine

space A
r (k), we define

Xα = λ1 X1 + · · · + λr Xr ∈ k E .

This is an element of J (k E) which again satisfies X
p
α = 0. It follows that (1 +

Xα)p = 1. So if α 	= 0 then gα = 1 + Xα is an element of order p in the group of

units of the group algebra k E .

Definition 1.3.1 A cyclic shifted subgroup of E is a subgroup Eα of the group

of units of k E generated by such an element gα = 1 + Xα with α 	= 0. More

generally, a shifted subgroup is a subgroup E ′ of the group of units in k E generated

by elements gα1
, . . . , gαs where α1, . . . , αs are linearly independent elements of
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4 Modular Representations and Elementary Abelian Groups

A
r (k). This linear independence condition is equivalent to the statement that the

induced map ρ : k E ′ → k E is injective. If this is the case then k E is free as a

module over the image of ρ.

A maximal shifted subgroup is a shifted subgroup E ′ of the same rank as E . The

induced map ρ : k E ′ → k E is then an isomorphism. Choosing a basis of E ′ allows

us to identify it with E and obtain an automorphism ρ of k E .

This notion of a cyclic shifted subgroup is dependent on the choice of generators

for E . For a different choice of generators, if we make the corresponding linear

transformation on A
r (k), the resulting element Xα with respect to the new basis

differs from the old one by an element of J 2(k E).

Let us illustrate this by example. If E = 〈g1, g2〉 ∼= (Z/p)2 and X1 = g1 − 1,

X2 = g2 − 1, then a multiplicative basis change on E using the matrix

(
1 0

1 1

)

gives new generators E = 〈g1g2, g2〉. Now we have

g1g2 − 1 = X1 + X2 + X1 X2.

So modulo the square of the radical, we have the additive base change on X1 and

X2 given by the same matrix. However, the linear span of g1g2 −1 and g2 −1 is not

the same as the linear span of X1 and X2, so the definition of a shifted subgroup

is basis dependent. In Chapter 4, we shall make a systematic study of the effect of

adding an element of J 2(k E).

The following is immediate from the definitions.

Theorem 1.3.2 The group algebra k E is a truncated polynomial ring:

k E = k[X1, . . . , Xr ]/(X
p

1 , . . . , X
p
r ).

We define the rank variety of E to be the affine space V rk
E

∼= A
r (k) obtained by

taking the linear span in J (k E) of the elements

X1 = g1 − 1, . . . , Xr = gr − 1.

Thus V rk
E is a complement in J (k E) of J 2(k E). This is the home for the theory of

rank varieties, as described in Section 1.9.

Warning 1.3.3 It is easy fall into the trap of thinking that the definitions

X i = log(gi ) = (gi − 1) − 1
2
(gi − 1)2 + · · ·

Xα = λ1 X1 + · · · + λr Xr

gα = exp(Xα) = 1 + Xα + 1
2! X2

α + · · ·
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1.4 The Language of π -Points 5

give a more invariant definition of shifted subgroups. The problem is that it is not

true that

log(gh) = log(g) + log(h).

For example, in characteristic two we have log(g) = 1+g, log(g)+log(h) = g+h

and log(gh) = 1 + gh.

The existence of an invariant definition of shifted subgroups would imply the

existence of a non-zero GL(r, Fp)-invariant homomorphism φ : E → J (k E).

Such a homomorphism exists if and only if E is either cyclic or isomorphic to

(Z/2)2.

To see this, we use the following argument, due to Serge Bouc. Let φ be such a

homomorphism and write

φ(g) =
∑

h∈E
h 	=1

φh(g)(h − 1).

Invariance amounts to the statement that for α ∈ GL(r, Fp) we have φh(α(g)) =

φα−1(h)(g). The group GL(r, Fp) is transitive on pairs of elements g, h such that g

is not in 〈h〉. So φh(g) is a constant a, independent of h and g, provided g 	∈ 〈h〉.

If E is neither cyclic nor isomorphic to (Z/2)2 then we can find linearly indepen-

dent elements g and h such that 〈g〉, 〈h〉 and 〈gh〉 do not exhaust E . Then the

statement that φ(gh) = φ(g) + φ(h) implies first that 2a = a, so that a = 0,

and then that φ = 0 since φ(gh), φ(g) and φ(h) have supports intersecting in the

identity.

The discussion of rank varieties for exterior algebras is essentially the same.

Let � = �(X1, . . . , Xr ) be an exterior algebra on generators X1, . . . , Xr . If α =

(λ1, . . . , λr ) ∈ A
r (k), we define

Xα = λ1 X1 + · · · + λr Xr ∈ �.

This is an element of J (�) which satisfies X2
α = 0. The rank variety of � is the

affine space V rk
�

∼= A
r (k) obtained by taking the linear span of X1, . . . , Xr in

J (�). It is a complement to J 2(�) in J (�). Details can be found in the paper of

Aramova, Avramov and Herzog [12].

1.4 The Language of π -Points

Much of the modern literature on Jordan type for finite group schemes [80, 81, 82,

118, 124, 125, 126, 127, 128] is written in the language of π-points. It is worth

making a few remarks on the translation between this and the language of cyclic

shifted subgroups, in the case of an elementary abelian p-group. Understanding

this section is not logically necessary for the rest of the book, but will help reconcile

it with the rest of the literature.
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6 Modular Representations and Elementary Abelian Groups

Giving a finite group scheme G over k is equivalent to giving a finite-

dimensional cocommutative Hopf algebra kG over k. For example, if G is a finite

group then kG is just its group algebra in the normal sense. Other examples include

the restricted universal enveloping algebra of a finite-dimensional p-restricted Lie

algebra. In this example the underlying variety of the group scheme has only one

point, but the local ring at that point contains all the information – it is just the dual

Hopf algebra.

If G is a finite group scheme then a π-point of G is defined to be a flat homo-

morphism of algebras K [t]/(t p) → K G over some extension field K of k, which

factors through some unipotent abelian subgroup scheme of K G.

To say that a homomorphism K [t]/(t p) → K G is flat means that K G is flat as a

module over K [t]/(t p), which is equivalent to each one of the following adjectives:

free, projective, injective.

An equivalence relation is put on π -points as follows. Two π -points are said

to be equivalent if for every finitely generated kG-module M , the restriction of

K ⊗k M along one is free if and only if the restriction along the other is free.

This condition is difficult to work with in practice, since it is expressed in terms

of all finitely generated modules, but can be reduced to an easier cohomological

condition. See for example Theorem 3.6 of [125].

In the case where G = E is a finite elementary abelian p-group, K E is unipo-

tent, so the second condition is automatically satisfied. The flatness condition is

equivalent to the statement that the image of t lies in J (K E) but not in J 2(K E).

The equivalence relation in this case is as follows. By Lemma 6.4 of Carlson [76],

two such homomorphisms give equivalent π -points if and only if the differences

between the images of t lies in J 2(K E). Thus the set of equivalence classes of

π-points over K is in bijection with A
r (K ) \ {0}. With respect to a given choice of

generators of E , in each equivalence class there is a unique representative which is

given by a cyclic shifted subgroup.

Note that an exterior algebra in characteristic not equal to two is not an example

of a finite group scheme. Nonetheless, the notion of π -point makes perfect sense

in this context, if defined as a flat embedding K [t]/(t2) → K ⊗k �.

1.5 The Stable Module Category

In general, if G is a finite group the cohomology ring H∗(G, k) is defined to be

Ext∗kG(k, k). By a theorem of Evens [115] and Venkov [242] (or an earlier theorem

of Golod [136] in the case of finite p-groups), this is a finitely generated graded

commutative algebra over k.

The module category mod(kG) is the category of finitely generated kG-modules

and module homomorphisms. The stable module category stmod(kG) has the

same objects as mod(kG) but its arrows are given by

HomkG(M, N ) = HomkG(M, N )/PHomkG(M, N ),
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1.5 The Stable Module Category 7

where PHomkG(M, N ) is the linear subspace of HomkG(M, N ) consisting

of homomorphisms that factor through some projective kG-module. Whereas

mod(kG) is an abelian category, stmod(kG) is a triangulated category.

If M is a finitely generated kG-module, we define �(M) to be the kernel of the

projective cover of M and �−1(M) to be the cokernel of the injective hull of M . It

follows from the fact that kG is self-injective that �(�−1(M)) and �−1(�(M))

are naturally isomorphic to M in the stable module category stmod(kG). If M has

no projective summands, this implies that they are isomorphic to M in the module

category mod(kG), but the isomorphism is not natural. If n > 0 we have

ExtnkG(M, N ) ∼= HomkG(�n(M), N ), (1.1)

and in particular since PHomkG(�n(k), k) = 0 we have

Hn(G, k) ∼= ExtnkG(k, k) ∼= HomkG(�n(k), k).

If ζ ∈ Hn(G, k), we write ζ̂ for the corresponding homomorphism �n(k) → k. If

ζ 	= 0 then ζ̂ is surjective, and the Carlson module Lζ is defined to be the kernel

of ζ̂ . We shall study these modules further in Sections 1.10 and 12.4.

Tate cohomology is defined by extending (1.1) from positive degrees to all

degrees:

Êxt
n
kG(M, N ) ∼= HomkG(�n(M), N ) (n ∈ Z).

The Tate cohomology ring of G is defined to be

Ĥ∗(G, k) = Êxt
∗
kG(k, k)

with multiplication given by shifting and composing. This makes it into a graded

commutative k-algebra with the ordinary cohomology H∗(G, k) as the subalge-

bra of non-negative degree elements. The k-algebra Ĥ∗(G, k) is finitely generated

if and only if it is periodic, which in turn happens if and only if all abelian

p-subgroups of G are cyclic.

Tate duality (see for example Cartan and Eilenberg [83], section XII.6) states

that for n ∈ Z there are natural vector space isomorphisms

(Ĥ−n−1(G, M))∗ ∼= Êxt
n
kG(M, k).

In particular, Ĥ−n−1(G, k) is the vector space dual of Ĥn(G, k).

If H is a subgroup of G, then transfer in Tate cohomology from H to G is Tate

dual to restriction from G to H .

Exactly the same definitions make sense in the case of an exterior algebra.

If � = �(X1, . . . , Xr ) is an exterior algebra over k then the cohomology ring

H∗(�, k) = Ext∗�(k, k) is a polynomial ring k[Y1, . . . , Yr ]. If � is regarded here

as an ungraded algebra, then the Yi are in cohomological degree one. So if k does

not have characteristic two and r > 1 then H∗(�, k) is not a graded commutative

ring, because the Yi do not commute with each other in the graded sense. On the

other hand, if � is regarded as a graded algebra with the X i in degree one, then
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8 Modular Representations and Elementary Abelian Groups

H∗(�, k) is bigraded, with the Yi in degree (1, 1). The total degree is two, so the

cohomology ring is graded commutative in this case.

Tate cohomology and Tate duality for exterior algebras works in the same way

as for group algebras.

1.6 The Derived Category

If A is an abelian category, we write Db(A) for the bounded derived category of

A. Its objects are the bounded chain complexes of objects and arrows in A. The

morphisms are the homotopy classes of degree preserving chain maps, with the

quasi-isomorphisms inverted; a quasi-isomorphism is a morphism that induces an

isomorphism in homology. Thus a morphism C → D in Db(A) is given by an

equivalence class of diagrams of chain complexes

where “qi” denotes a quasi-isomorphism. Two such diagrams C
qi

←− C′ → D and

C
qi

←− C′′ → D are equivalent if there is a third C
qi

←− C′′′ → D that maps to both

of them to make a commutative diagram

To compose arrows we form a pullback:

The distinguished triangles in Db(A) are the triangles isomorphic to

C
f

−→ D → M f → C[1]

where M f is the mapping cone of f .

The derived categories we shall be interested in are Db(kG) = Db(mod(kG)),

the derived category of kG-modules, and Db(Coh(X)), the derived category of

coherent OV -modules for a variety V .
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1.6 The Derived Category 9

Next we describe the construction of a functor

R : Db(kG) → stmod(kG).

This functor appeared in the late 1980s in the work of several people, see Buch-

weitz [66], Keller and Vossieck [176], Rickard [219, Theorem 2.1]. We shall use

this construction in Section 8.9 as part of the proof of the realisation theorem.

Definition 1.6.1 A perfect complex is an object in Db(kG) which is isomorphic

to a bounded complex of projective modules. We write perf(kG) for the full

subcategory of Db(kG) whose objects are the perfect complexes.

The quotient category Db(kG)/perf(kG) has the same objects as Db(kG). The

arrows are formed by inverting arrows whose mapping cone is in perf(kG).

Theorem 1.6.2 The quotient category Db(kG)/perf(kG) is equivalent to the

stable module category stmod(kG).

Proof (sketch). We begin with the functor mod(kG) → Db(kG) which takes a

module M to the complex which consists of M in degree zero and the zero module

in all other degrees. The composite of this with the quotient functor

Db(mod(kG)) → Db(kG)/perf(kG)

takes projective modules to zero, and so it factors through mod(kG) →

stmod(kG) to give a well-defined functor

stmod(kG) → Db(kG)/perf(kG).

One can check that this functor takes distinguished triangles to distinguished trian-

gles. It is also full, and takes non-zero objects to non-zero objects. To prove that it is

an equivalence, it therefore remains to prove that every object in Db(kG)/perf(kG)

is isomorphic to an object in the image of this functor.

Given a bounded chain complex of finitely generated kG-modules C, we can

resolve it to give a quasi-isomorphism

where the Pi are projective modules, and without loss of generality we can take

s > 0. Now take an injective resolution of K . Then there is a quasi-isomorphism

(1.2)
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10 Modular Representations and Elementary Abelian Groups

Then modulo perf(kG) the original complex is isomorphic to K in degree s + 1,

which is in turn isomorphic to the top row and then the bottom row of (1.2). The

latter is in the image of stmod(kG).

Definition 1.6.3 We write R for the functor

R : Db(kG) → stmod(kG)

whose existence is guaranteed by the theorem. This functor takes distinguished

triangles in Db(kG) to distinguished triangles in stmod(kG).

The proof of the theorem shows that the image of a complex under this

functor is obtained by resolving, taking the kernel, and then shifting it back

to degree zero. It is possible, but tedious to check directly that this process is

functorial.

It follows from the theorem that an object in Db(kG) goes to zero in stmod(kG)

if and only if it is a perfect complex.

In the case of the exterior algebra �, there are two versions of the derived cate-

gory and of the stable module category, according to whether we are talking about

ungraded modules or graded modules. In both cases, the discussion of the derived

category and its relationship with the stable module category works in the same

way as above. More generally, it works for any finite-dimensional ungraded or

graded self-injective algebra.

1.7 Singularity Categories

As a generalisation of the equivalence stmod(kG) ≃ Db(kG)/perf(kG) of The-

orem 1.6.2, we have the following definition, which will become important in

Chapter 11.

Definition 1.7.1 Let R be a ring. Then the singularity category of R is the Verdier

quotient

Dsg(R) = Db(R)/perf(R).

Likewise, if R is a graded ring, we denote by Db(R) the bounded derived category

of finitely generated graded R-modules and Dsg(R) the quotient by the perfect

complexes of graded modules.

Warning 1.7.2 In commutative algebra, this definition is much better behaved

for Gorenstein rings than for more general commutative Noetherian rings. For a

Gorenstein ring, the singularity category is equivalent to the stable category of

maximal Cohen–Macaulay modules (Buchweitz [66]), but the following example

is typical of the behaviour for non-Gorenstein rings.
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