Contents

Preface
page xi

1 Mixing and Its Role in the Ocean
1.1 Overview
1.2 How is Mixing Studied?
1.3 The Meridional Overturning Circulation
1.4 Kinetic Energy and Scalar Variance Budgets

2 Thermodynamics and Seawater Properties
2.1 Overview
2.2 Parameterizing Seawater
2.3 First and Second Laws of Thermodynamics
2.4 Molecular Fluxes and Diffusivities
2.5 Equilibrium and Well-Mixed States
2.6 Equation of State and Its Derivatives
2.7 Buoyancy Flux and Potential Energy
2.8 Temperature–Salinity Diagrams and Spiciness
2.9 Neutral Surfaces, Thermobaricity, and Cabbeling
2.10 Water Mass Transformation

3 Turbulence
3.1 Overview
3.2 Dimensional and Scale Analysis
3.3 Energetics
3.4 Scalar Variances
3.5 Production
3.6 The Kolmogorov Energy Cascade
3.7 The Advective Scalar Cascade
3.8 The Horizontal Cascade in Strong Stratification

© in this web service Cambridge University Press
www.cambridge.org
Contents

3.9 Evolution and Decay

3.10 Intermittence and Statistics

3.11 Estimating Diapycnal Turbulent Fluxes

3.12 Mixing Efficiency

3.13 Perspectives

4 Double Diffusion

4.1 Overview

4.2 Double-Diffusive Convection

4.3 Salt Fingering

4.4 Salt Fingering Staircases

4.5 Diffusive Layering

4.6 Diffusive Staircases

4.7 Thermohaline Intrusions

4.8 Perspectives

5 Sampling Mixing and Its Environment

5.1 Overview

5.2 Dissipation-Scale Sensors

5.3 Energy-Scale and Finestructure Sensors

5.4 Profilers

5.5 Towed Bodies and Self-Propelled Vehicles

5.6 Moorings and Fixed Platforms

5.7 Remote Sensing

5.8 Tracers

5.9 Perspectives

6 Internal Waves and the Vortical Mode

6.1 Overview

6.2 Observations

6.3 Linear Waves in a Steady Unsheared Flow

6.4 Linear Waves in Horizontal Shear

6.5 Linear Waves in Vertical Shear

6.6 Eulerian Spectra

6.7 The Vortical Mode

6.8 Perspectives

7 Interactions and Dissipation of Internal Waves and the Vortical Mode

7.1 Overview

7.2 Generation by Wind Stress

7.3 Topographic Generation
Contents

7.4 Generation by Geostrophic Adjustment of Balanced Flows 244
7.5 Wave–Wave Interactions 245
7.6 Testing Dissipation Scaling Based on Shear and Strain 252
7.7 Nonlinearity 266
7.8 The Saturated Range 277
7.9 Perspectives 281

8 Mixing in the Stratified Interior 283
8.1 Overview 283
8.2 Vertical Structure of Stratification 284
8.3 Finestructure 286
8.4 Global Mixing Patterns 291
8.5 Mixing Patches and Overturns from Breaking Internal Waves 298
8.6 Double Diffusion in the Pycnocline 302
8.7 The Southern Ocean 306
8.8 The Arctic 310
8.9 Ocean Ridges 313

Appendix A Glossary 321
A.1 English Symbols 321
A.2 Greek Symbols 323

Appendix B The GM79 Internal Wave Spectrum, Prepared with R.-C. Lien 325
B.1 Energy Density and Two-Dimensional Spectra 325
B.2 Wave Functions 327
B.3 Horizontal Velocity 328
B.4 Vertical Shear of Horizontal Velocity 329
B.5 Vertical Displacement 332
B.6 Vertical Velocity 333
B.7 Vertical Strain 334
B.8 Shear-to-Strain Ratio 334

Bibliography 336
Index 365

Color plates can be found between pages 180 and 181