

Classical and Quantum Thermal Physics

Thermal physics deals with interactions of heat energy and matter. It can be divided into three parts: the kinetic theory, classical thermodynamics, and quantum thermodynamics or quantum statistics.

This book begins by explaining fundamental concepts of kinetic theory of gases, viscosity, conductivity, diffusion and laws of thermodynamics. It then goes on to discuss applications of thermodynamics to problems of physics and engineering. These applications are explained with the help of P-V and P-s-h diagrams. A separate section/chapter on the application of thermodynamics to the operation of engines and to chemical reactions, makes the book especially useful to students from engineering and chemistry streams. An introductory chapter on the thermodynamics of irreversible processes and network thermodynamics provides readers a glimpse into this evolving subject.

Simple language, stepwise derivations, large number of solved and unsolved problems with their answers, graded questions with short and long answers, multiple choice questions with answers, and a summary of each chapter at its end, make this book a valuable asset for students.

R. Prasad was professor at the Physics Department, Aligarh Muslim University, Aligarh, India. For over 43 years he taught courses on nuclear physics, thermal physics, electronics, quantum mechanics and modern physics. He also worked at the Institute for Experimental Physics, Hamburg, Germany; at the Swiss Institute of Nuclear Research, Switzerland; at Atom Institute, Wien (Vienna), Austria; at Abduls Salam International Centre for Theoretical Physics, Italy; and at the Variable Energy Cyclotron Centre (VECC), Calcutta, India. His area of specialization is experimental nuclear physics.

Classical and Quantum Thermal Physics

R. Prasad

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, vic 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107172883

© R. Prasad 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Prasad, R. (Emeritus Professor of Physics), author.

Title: Classical and quantum thermal physics / R. Prasad.

Description: Daryaganj, Delhi, India: Cambridge University Press, [2016] | Includes bibliographical references and index.

Identifiers: LCCN 2016030572| ISBN 9781107172883 (hardback; alk. paper) | ISBN 1107172888 (hardback; alk. paper)

Subjects: LCSH: Thermodynamics. | Quantum theory. | Kinetic theory of gases. Classification: LCC QC311 .P78 2016 | DDC 536/.7--dc23 LC record available at https://lccn.loc.gov/2016030572

ISBN 978-1-107-17288-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to my parents

Late Smt. Mithlesh Mathur

&

Late Shri Ishwari Prasad Mathur

Contents

Figi	ures		xiii
Tab	les		xix
Prej	face		xxi
Ack	nowl	edgments	xxiii
1.	The	Kinetic Theory of Gases	1
	1.0	Kinetic Theory, Classical and Quantum Thermodynamics	1
	1.1	Kinetic Theory of Gases	2
	1.2	Test of the Kinetic Theory	23
	1.3	Velocity Distribution of Gas Molecules	27
	1.4	Isothermal and Adiabatic Processes	33
	Solv	ed Examples	36
	Prob	lems	42
	Shor	rt Answer Questions	42
	Long	g Answer Questions	43
	Mul	tiple Choice Questions	43
	Ans	wers to Problems and Multiple Choice Questions	45
	Revi	sion	46
2.	Idea	l to a Real Gas, Viscosity, Conductivity and Diffusion	49
	2.0	The Ideal Gas	49
	2.1	Difference between an Ideal Gas and The Real Gas	49
	2.2	Modification of Ideal Gas Equation: Van der Waals Equation of State	51
	2.3	Virial Equation of State	57
	2.4	Compressibility Factor	58
	2.5	Collisions Between Real Gas Molecules	59
	2.6	The Survival Equation	63
	2.7	Average Normal Distance (or Height) \overline{y} above or below an Arbitrary Plane	
		at which a Molecule made its Last Collision before crossing the Plane	66
	2.8	Transport Properties of Gases	67
	2.9	Application of Kinetic Theory to Free Electrons in Metals: Success and Failure	74
	Solv	ed Examples	77
	Prob	lems	84

viii Contents

	Short Answer Questions	85
	Long Answer Questions	85
	Multiple Choice Questions	86
	Answers to Numerical and Multiple Choice Questions	87
	Revision	88
3.	Thermodynamics: Definitions and the Zeroth Law	93
	3.0 Introduction	93
	3.1 System, Boundary and Surroundings	93
	3.2 State Parameters or Properties that define a System	94
	3.3 Some State Functions	97
	3.4 Equilibrium	107
	3.5 Processes	108
	3.6 The Work	111
	3.7 Equations of State and <i>P</i> – <i>v</i> – <i>T</i> Surfaces	119
	3.8 Motion on <i>P</i> – <i>v</i> – <i>T</i> Surface and Differential Calculus	123
	Solved Examples	125
	Problems	134
	Short Answer Questions	135
	Long Answer Questions	136
	Multiple Choice Questions	136
	Answers to Numerical and Multiple Choice Questions	138
	Revision	139
4.	First Law of Thermodynamics and some of its Applications	143
	4.0 Introduction	143
	4.1 Adiabatic Work between Two States of Same Bulk Energies	143
	4.2 First Law of Thermodynamics and The Internal Energy	144
	4.3 Non-adiabatic Work and Heat Flow	146
	4.4 Phase Transition and Heat of Transformation: the Enthalpy	148
	4.5 Heat Flow at Constant Pressure and at Constant Volume	151
	4.6 Heat Capacities at Constant Pressure C_P and at Constant Volume C_V	151
	4.7 Systems with Three State Variables P , v and T	153
	4.8 Gay-Lussac–Joule Experiment	157
	4.9 Internal Energy of an Ideal Gas	159
	4.10 Joule–Thomson or Porous Plug Experiment	160
	4.11 Reversible Adiabatic Process for an Ideal Gas	163
	4.12 Carnot Cycle	164
	4.13 Thermodynamic Temperature	170
	Solved Examples	172
	Problems	186
	Short Answer Questions	187
	Long Answer Questions	188
	Multiple Choice Questions	189
	Answers to Numerical and Multiple Choice Questions	191
	Revision	191

			Contents	ix
5.	Seco	nd Law of Thermodynamics and some of its Applications		197
	5.0	Need of a System Variable that determines the direction in which an		
		Isolated System will proceed spontaneously		197
	5.1	Second Law of Thermodynamics in Terms of Entropy		199
	5.2	Equilibrium State of an Isolated System and its Entropy		199
	5.3	Entropy of a Non-isolated System		199
	5.4	Quantitative Measure of Entropy		200
	5.5	Representing a Reversible Cyclic Process by a Cascade of Carnot Cycles	S	201
	5.6	Quantitative Definition of Entropy		202
	5.7	Change in Entropy in Reversible and Irreversible Processes: the Principl	e	
		of Increase of Entropy of the Universe		204
	5.8	Physical Significance of the Principle of the Increase of Entropy		205
	5.9	Other Statements of the Second Law		206
	5.10	Calculating the change of Entropy in some processes		213
	5.11	Schematic Representation of Processes in different Two Dimensional Plants	anes	220
	Solve	ed Examples		221
	Prob	lems		232
	Shor	t Answer Questions		233
	Long	g Answer Questions		234
	Mult	iple Choice Questions		234
	Ansv	wers to Numerical and Multiple Choice Questions		236
	Revi	sion		236
6.	Tds 1	Equations and their Applications		239
	6.0	Introduction		239
	6.1	The Tds Equations		240
	6.2	Application of Tds Equations		244
	6.3	Temperature Entropy Diagram		249
	6.4	Analysis of Joule and Joule-Thomson Experiments		249
	6.5	Axiomatic Thermodynamics: Caratheodory Principle		252
	Solve	ed Examples		254
	Prob	lems		263
	Shor	t Answer Questions		265
	Long	g Answer Questions		265
		iple Choice Questions		266
	Ansv	wers to Numerical and Multiple Choice Questions		267
	Revi	sion		268
7.	Ther	modynamic Functions, Potentials, Maxwell's Equations, the Third La	w and	
	_	ilibrium		271
	7.0	Introduction		271
	7.1	The Helmholtz Function		271
	7.2	The Gibbs Function		274
	7.3	The Characteristic Variables		275
	7.4	Thermodynamic Potentials		276
	7.5	Gibbs–Helmholtz Relations		278

x Contents

	The Generalized Functions	278
	7 Maxwell Relations	279
	B The Third Law of Thermodynamics	280
	The Concept of Perpetual Motion	283
	10 Thermodynamics of Open Systems	285
	1 The Equilibrium	287
	olved Examples	293
	oblems	304
	nort Answer Questions	306
	ong Answer Questions	307
	ultiple Choice Questions	307
	nswers to Numerical and Multiple Choice Questions	309
	evision	310
8.	ome Applications of Thermodynamics to Problems of Physics and Engineering	317
	O Introduction	317
	1 The Blackbody Radiation	317
	2 Thermodynamics of Paramagnetic System	322
	Thermodynamics of Interface or Surface Films: Surface Tension	329
	Thermodynamics of an Elastic Rod under Tension	336
	5 Some Engineering Applications of Thermodynamics	338
	olved Examples	346
	roblems	358
	nort Answer Questions	360 360
	ong Answer Questions ultiple Choice Questions	361
	nswers to Problems and Multiple Choice Questions	363
	evision	363
•		
у.	pplication of Thermodynamics to Chemical Reactions On Introduction	368 368
	olved Example	369
	Work at Constant Pressure	370
	2 Work at Constant Volume	371
	Relation between ΔQ_P and ΔQ_V for Ideal Gas	371
	4 Standard State	371
	The Standard Enthalpy Change, $\Delta H_{rea}^{\varnothing}$, in a Chemical Reaction	371
	5 Standard Molar Enthalpy of Formation (Heat of Formation)	372
	olved Example	372
	7 Relation between the Enthalpy Change in a Reaction	312
	and the Enthalpies of Formations of Reactants and Reaction Products	373
	olved Examples	373
	B Hess's Law	375
	olved Examples	375
	Heat Capacities	376
	10 Temperature Dependence of Heat of Reaction	377

	Conte	nts xi
	9.11 Bond Energies	378
	Solved Examples	379
	9.12 The Explosion and the Flame Temperatures	380
	Solved Example	380
	Application of First and Second Laws Together	381
	9.13 Change of Entropy in Chemical Reactions	381
	9.14 Spontaneity of a Chemical Reaction	382
	9.15 Other State Functions and Changes in their Values	382
	Solved Examples	383
	9.16 Standard Gibbs Energy of Formation	384
	9.17 Phases in Equilibrium	384
	Solved Example	386
	9.18 Thermodynamics of Electrochemical Cell	386
	Problems	391
	Short Answer Questions	392
	Long Answer Questions	392
	Multiple Choice Questions	393
	Answers to Numerical and Multiple Choice Questions	394
	Revision	394
10.	Quantum Thermoynamics	397
	10.0 Introduction	397
	10.1 Application of Quantum Statistics (Statistical Mechanics) to an Assembly	
	of Non-interacting Particles	398
	10.2 Energy Levels, Energy States, Degeneracy and Occupation Number	398
	10.3 Quantum Thermodynamic Probability of a Macrostate	405
	10.4 Relation between Entropy and Thermodynamic Probability	412
	10.5 The Distribution Function	415
	10.6 Significance of Partition Function: A Bridge from Quantum to Classical	
	Thermodynamics	423
	Solved Examples	427
	Problems	444
	Short Answer Questions	445
	Long Answer Questions	446
	Multiple Choice Questions	446
	Answers to Problems and Multiple Choice Questions	449
	Revision	450
11.	Some Applications of Quantum Thermodynamics	453
	11.0 Introduction	453
	11.1 Quantum Thermodynamic Description of a Monatomic Ideal Gas	453
	11.2 Classical Thermodynamic Functions for the Quantum Ideal Gas	457
	11.3 Speed Distribution of Ideal Gas Molecules	459
	11.4 The Equipartition Theorem	467
	11.5 Heat Capacity of Polyatomic Gas Molecules	469

xii Contents

	11.6 Assembly of Quantum Oscillators and the Thermal Capacity of Polyatomic Gases	474
	11.7 Application of Quantum Statistics to Crystalline Solids	477
	11.8 Contribution of Free Electrons of a Metal to the Heat Capacity	483
	11.9 Energy Distribution of Blackbody Radiations: Application of Quantum Statistics	489
	11.10 Quantum Thermodynamics of a Paramagnetic Salt in External Magnetic Field	494
	11.11 Population Inversion and Temperature beyond Infinity: The Concept of	
	Negative Temperature	500
	Solved Examples	501
	Problems	522
	Short Answer Questions	524
	Long Answer Questions	525
	Multiple Choice Questions	526
	Answers to Problems and Multiple Choice Questions	528
	Revision	529
12.	Introduction to the Thermodynamics of Irreversible Processes	536
	12.0 Introduction	536
	12.1 Entropy Generation in Irreversible Processes	536
	12.2 Matter and/or Energy Flow in Irreversible Processes: Flux and Affinity	538
	12.3 Linear Irreversible Process	539
	12.4 Onsager's Theorem	540
	12.5 Prigogine's Theorem of Minimum Entropy Generation in Steady State	541
	12.6 Order of a Steady State	542
	12.7 Matrix Representation of Coupled Linear Phenomenological Relations	542
	12.8 Application of Onsager's Method for Linear Irreversible Processes to	
	Thermoelectricity	543
	12.9 The Network Thermodynamics	546
	Short Answer Questions	554
	Long Answer Questions	555
	Multiple Choice Questions	555
	Answers to Multiple Choice Questions	556
	Revision	556
Ind	lex	567

Figures

1.1	(a) shows the velocity vectors for some molecules of the gas in a container.	
	In Fig. 1.1 (b) these velocity vectors are transported parallel to themselves	
	to the origin O, which is the center of a sphere of radius r. The velocity	
	vectors cut the surface of the sphere either themselves or on extension	
	(dotted lines) at points $P_1, P_2, P_3, \dots P_N$, each of which gives the direction	
	of motion of a gas molecule. The directions of motion of gas molecules	
	will be uniformly distributed in space if the points of intersection are	
	uniformly distributed on the surface of the sphere.	2
1.2	Definition of an element of area in spherical polar coordinates	4
1.3	Bunch of molecules moving in direction θ and $(\theta + \Delta \theta)$, φ and $(\varphi + \Delta \varphi)$	
	with velocities between v and $(v + \Delta v)$	(
1.4	(a) Gas molecules crossing an imaginary area inside the volume	7
1.4	(b) All molecules moving in direction θ , φ with velocity ν contained in the	
	cylindrical volume will cross the area ΔS in time Δt	7
1.5	Gas molecules moving with velocity v in direction θ are elastically scattered	
	by the unit area at the wall of the container	10
1.6	Experimental data on the variation of $\frac{P\mathbb{V}}{T}$ with pressure P for CO_2 at three	
	different temperatures $T_1 > T_2 > T_3$	12
1.7	(a) The moment of inertia of the dumbbell shaped diatomic molecule is	
	negligible for its rotation about aa' axis as compared to the rotations about	
	bb' and cc' axes.	16
1.7	(b) Vibration of atoms in a diatomic molecule	16
1.8	Ideal gas contained in an insulated container fitted with smooth and	
	frictionless insulating piston moving outward with velocity, v_p	18
1.9		
	container and is separated by a diaphragm from the vacuum on the other	
	side. The gas undergoes free expansion if a hole is made in the diaphragm.	20
1.10	Cloud of points in velocity space representing the velocities of different	
	molecules of the gas	28
1.11	1	32
1.12	Most probable, the mean and the root-mean-square speeds	33

xiv Figures

	Curves representing isothermal and adiabatic changes Box containing N_x , N_y and N_z molecules of the gas moving in X , Y and Z directions	34 36
2.1	Origin of Van der Waals force	50
	Van der Waals potential	50
2.3	Two successive adjacent layers of molecules each of unit area	52
2.4	(a) The sphere of exclusion has a radius $2r$; (b) Concentric spherical shell	
	volume with inner radius r and outer radius just less than $3r$ is excluded for	
	any other molecule.	53
2.5	Outline of the apparatus used by Andrews	54
2.6	(a) CO ₂ isotherms at different temperatures; (b) PV verses P curves for CO ₂	55
2.7	Isotherms as per Van der Waals equation of state	55
2.8	(a) Compressibility factor Z (at fixed temperature) as a function of pressure	
	for different gases; (b) Compressibility factor Z for nitrogen gas as a function	
	of pressure at different temperatures	58
2.9	Compressibility factor Z as a function of reduced pressure Pr , and reduced	
	temperature <i>Tr</i>	59
2.10	The criteria for collision does not change if the centre to centre distance	60
	between the molecules is same	60
2.11	Cylinderical volume $V = pd^2 v_r$ swept by the incident molecule in unit time	61
2.12	Vector diagram of relative speed or velocity	62
2.13	Assumed point like molecule moving towards a layer of gas of dimension	
	A.B.dX	63
2.14	Graphical representation of survival equation	64
2.15	Relative magnitudes of collision parameters	65
2.16	Molecular flux in direction θ approaching the imaginary plane	66
2.17	Flow of heat energy in a gas	68
2.18	Successive layers of the gas moving parallel to each other with	
	increasing velocity	70
2.19	Flow of current through a piece of conductor when an electric field is applied	
	across it	76
3.1	State of a system may be represented by a point in a N-dimensional space,	
	where N is the number of state variables.	96
3.2	A primary cell	99
	Constant volume gas thermometer	101
	(a) Variation of the ratio $(P/P_{tri})_{const.Vol}$ with the pressure P_{tri} at the triple	
	point of water	103
3.4	(b) Variation of the ratio $(P/P_{IPW})_{const.Vol}$ with the pressure P_{IPW} at the ice	
	point of water	104
3.5	Quasistatic change of temperature of a system from T_0 to T_1	110
	Reversible and irreversible processes	111
3.7	(a) Work done on the system by the pressure of the surrounding	113
37	(b) Work done by a system in expansion	114

	Figure	s xv
3.8	(a) Work done by the system in going from A to B	115
	(b) Work done by the surroundings in taking system from B to C to A	115
	(c) Net work done by the surrounding in taking system from A to B to C and	
	back to A	116
3.9	Free expansion of a gas	117
	Charging and discharging of a reversible cell	118
	Extension in the length of a wire by stretching force	120
	P– v – T surface for an Ideal gas	122
3.13	<i>P-v-T</i> surface for Van der Waals gas	122
3.14	Projection of Isotherms of Van der Waals gas on P-v plane	123
S-3.5	(a) and (b) Figures corresponding to solved example-5 of chapter-3	127
S-3.6	Figure corresponding to solved example-6 of chapter-3	129
S-3.7	Figure corresponding to solved example-7 of chapter-3	129
S-3.8	A soap film	130
S-3.9	Figure corresponding to solved example-9 of chapter-3	131
S-3.11	(a) Triple point cell of water (b) Triple point of water	133
MC-3.8	Figure corresponding to multiple choice question-8 of chapter-3	137
MC-3.10	Figure corresponding to multiple choice question-10 of chapter-3	138
4.1	A system in initial state A may reach a final state B via many different paths	144
	Solid and dotted lines respectively show the adiabatic and non-adiabatic paths	
	connecting the initial and final states. Work done in all adiabatic paths are	
	equal and are equal to the change in the internal energy of the system	146
4.3	CO ₂ isotherms at different temperatures	149
4.4	Experimental setup of Gay-Lussac	158
4.5	Specific internal energy surface for an ideal gas as a function of volume	
	and temperature	159
4.6	Schematic diagram of porous plug experiment	160
4.7	Graphs showing temperature inversion and constant enthalpy curves in	
	porous plug experiment	162
4.8	Projections of reversible isothermal and adiabatic processes on <i>P–V</i> plane	164
4.9	(a) Carnot cycle operations are shown by the shaded area; (b) Carnot cycle	
	in $T-V$ plane	166
4.10	Flow chart of Carnot's cycle	166
4.11	Schematic diagram of heat engine and refrigerator	169
4.12	Carnot cycle in <i>T–V</i> plane	171
S-4.1	Figure corresponding to solved example-1 of chapter-4	174
S-4.2	Steady state flow of a fluid	175
S-4.3	(a) Figure corresponding to solved example-3 of chapter-4	178
S-4.3	Isothermal, isobaric and adiabatic processes in (b) <i>T</i> – <i>V</i> and (c) <i>P</i> – <i>T</i>	179
S-4.5	Figure corresponding to solved example-5 of chapter-4	180
S-4.7	Figure corresponding to solved example-7 of chapter-4	183
S-4.9	Figure corresponding to solved example-9 of chapter-4	185

xvi Figures

	<u> </u>	
	(a) Initial and the final states of a system reached via an irreversible process	197
5.1	(b) System may go from the initial state to the final state. What stops the	
<i>7</i> 1	system in going from the final to the initial state?	198
5.1	(c) System can go from the initial state to final state but cannot revert back	100
<i>5</i> 1	to initial state spontaneously	198
5.1	(d) An isolated system is made up of three parts A, B and C. Each part of	
	the system is not an isolated system and the second law of thermodynamics	200
5.2	is not applicable to them. (a) Carnot cycle in <i>P</i> – <i>v</i> plane; (b) Carnot cycle in <i>T</i> – <i>v</i> plane	200 201
	(a) Any closed cyclic process may be represented by succession of Carnot	201
5.5	cycles; (b) The horizontal parts of successive Carnot cycles cancel out and	
	only the zigzag boundary is left which smoothes out to the boundary of	
	the reversible cyclic process if the number of Carnot cycles are large.	202
54	Successive steps of the reversible process by which the temperature	202
Э.Т	of a system may be raised from T_1 to T_2	204
5.5	Pictorial representation of impossible processes referred in (a) Clausius and	20
3.3	(b) Kelvin-Planck statements	207
5.6	Schematic proof of the equivalence of Kelvin-Planck and Clausius statements	208
	(a) Schematic representation of Carnot engine of efficiency η and	
0.,	any other engine of efficiency $\eta' > \eta$	210
5.7	(b) A Carnot refrigerator coupled to the engine of higher efficiency would	-10
	violate the Clausius statement of the second law	210
5.8	Schematic illustration of Clausius inequality	211
	The value of function (In $x + 1/x$) is positive and	
	greater than 1 for all positive values of x	218
5.10	Carnot cycle in different planes	220
S-5.5	Figure corresponding to solved example-5 of chapter-5	223
S-5.6	Figure corresponding to solved example-6 of chapter-5	226
S-5.10	(a) Figure corresponding to solved example-10 of chapter-5	230
S-5.10	(b) Figure corresponding to solved example-10 of chapter-5	231
P-5.10	Figure corresponding to Problem-10 of chapter-5	233
6.1	Three different integration paths	246
6.2	Entropy of an ideal gas as a function of temperature and pressure	249
6.3	Isentropic planes of constant entropy S_1 , S_2 , and S_3 in the three dimensional	
	space made up of variants x_1, x_2 and T	253
7.1	(a) Schematic representation of Equation 7.3	272
7.1	(b) Schematic representation of Equation 7.8	273
7.1	(c) Schematic representation of Equation 7.16	275
7.1	(d) Remembering Thermodynamic relations	277
7.2	(a) Systems follow Einstein statement; (b) Systems do not follow Einstein	
	statement	283
	(a) Perpetual motion of the Zeroth kind	284
7.3	(b) Perpetual motion of the First kind; (c) Perpetual motion of the Second kind	284

	Figu	ures	xvii	
7.3	(d) Perpetual motion of the Third kind		284	
7.4	Chemical potential vs temperature for water at 1 atm pressure		289	
7.5	Phase diagram of water		291	
S-7.9.1	Figure corresponding to solved example-9 of chapter-7		298	
S-7.11	Figure corresponding to solved example-11 of chapter-7		301	
8.1	Paramagnetic sample in uniform magnetic field H		323	
8.2	Production of low temperature by adiabatic demagnetization			
	of a paramagnetic sample		329	
8.3	Free surface of a material		330	
8.3	(a) Curved interface and the two orthogonal radii		333	
8.4	Increase in the area of the interface by tilting the test tube		334	
8.5	An elastic rod under tension		336	
	A typical P-s-h graph for water		339	
8.7	(a) Schematic diagram of engine cylinder; (b) P-V diagram for Otto cycle		340	
8.8	P-V diagram for a diesel engine		341	
8.9	Schematic diagram of a Rankine cycle		343	
8.10	(a) <i>P</i> – <i>v</i> diagram for Rankine cycle		344	
8.10	(b) Rankine cycle in s-T plane		344	
8.10	(c) Rankine cycle in h-s plane		344	
	(d) Steam jet and buckets of a turbine		346	
S-8.3	(a) Ideal gases before mixing (b) Reversible mixing through the motion of			
	semi-permeable membranes		348	
	Carnot cycle in P – ν plane for blackbody radiation as working substance		351	
	Carnot cycle for paramagnetic substance in M-H plane		353	
	Figure corresponding to solved example-8 of chapter-8		354	
	Figure corresponding to solved example-9 of chapter-8		356	
	Figure corresponding to solved example-10 of chapter-8		357	
	Figure corresponding to Problem-1 of chapter-8		358	
Mc-8.7	Figure corresponding to Multiple choice question-7 of chapter-8		362	
9.1	Increase in the internal energy of a system when heat is supplied and work			
	is done on it		369	
	Temperature dependence of heat of reaction		377	
	Making current flow: a reversible process		387	
9.4	Half cell representation of a Daniel cell		389	
	Positive non-zero values of n_x , n_y , n_z lie in 1/8 quadrant of the sphere		400	
10.2	Schematic representation of energy levels, states, degeneracy and occupation	1	401	
10.2	number		401	
	(a) Four different macrostates of the assembly		402	
	(b) Twelve microstates of the macrostate $(N_4 = 3, N_3 = 0, N_2 = 1, N_1 = 1)$		403	
10.4	Schematic representation of the movement of a system from one to the		40.4	
10.5	other macrostate		404	
10.5	j^{th} level has g_i states in which N particles are distributed		406	

xviii Figures

10.6	Ten different ways of distributing three undistinguishable particles (p) in three distinguishable states	407
P-10.6	Distribution of particles in a macrostate	445
11.1	Structure of energy levels in case of a system with (a) small quantum numbers	
	(b) large quantum numbers and (c) grouping into macro levels	454
11.2	Each point in the figure gives one possible state of the system	456
11.3	Speed distribution of ideal gas molecules	461
11.4	Speed distribution at three temperatures	462
11.5	In velocity space, $dN_i^{v_j}$ gas molecules with velocities between v and (v + dv)	
	lie in a spherical shell of thickness dv around a sphere of radius v.	465
11.6	Maxwell-Boltzmann velocity distribution function at two temperatures	465
11.6	(a) Ideal gas under gravity	466
11.7	Thermal capacity of quantum linear oscillator	473
11.8	Temperature dependence of specific molar heat capacity of hydrogen	477
11.9	Frequency distribution of stationary elastic waves	481
11.10	Energy levels of electrons in a metal at (a) absolute zero (b) higher temperature	486
11.11	Electron distribution graph for a metal	487
11.12	Energy density distribution of blackbody radiation	493
11.13	Simplest paramagnetic ion in external magnetic field B	494
11.14	Energy levels of a spin 1/2 system	495
11.15	(a) Temperature dependence of the potential energy U; (b) Temperature	
	dependence of heat capacity at constant volume C_v	498
11.16	Temperature dependence of the entropy of a spin half system	499
S-11.1	Degeneracy of the macro-level	502
S-11.5.1	Figure corresponding to solved example-5 of chapter-11	509
S-11.17	Figure corresponding to solved example-17 of chapter-11	522
12.1	Initial and final states of system that undergoes irreversible process	537
	Distribution of free electrons in a conductor one end of which is at higher	
	temperature	544
12.3	Representation of system interactions through ports in network thermodynamics	548
	Notation for '0'-junction	551
12.5	Notation for '1'-junction	551
12.6	(a) Diffusion of fluid through a membrane	552
12.6	(b) Network equivalent of the diffusion process	553
12.6	(c) Bond graph representation of diffusion through the membrane	553

Tables

1.1	(a) Experimental values of your some monatonic gases	23
1.1	(b) Experimental values of the ratio γ for diatomic gases	26
2.1	Critical point parameters and boiling point for some substances	55
2.2	A typical set of a and b values for some gases	56
2.3	Collision parameters of some substances at 20°C and 1 atm pressure	65
	Magnitudes of thermometric properties thermo-emf (η_1) for copper–constantan thermocouple and resistance (η_2) for platinum resistance thermometer and their ratios with the value at triple point, at some fixed temperatures	100
3.2	Pressure P and the ratio $\left(\frac{P}{P_{tri}}\right)_{const.Vol.}$ at three different fixed temperatures	
	for hydrogen thermometer at $P_{tri} = 1.0$ atm and $P_{tri} = 6.8$ atm	102
3.3	Some standard temperatures in different units	106
4.1	Specific heats of fusion and vaporization and the temperatures of fusion and	
	boiling point of some substances	150
S-4.1	Change in internal energy for different processes	172
8.1	Thermodynamic functions for blackbody radiation	320
8.2	State functions for paramagnetic system	326
10.1	Different sets of n_x , n_y and n_z that give the same energy	399
S-10.1	Particle distribution in different energy levels of each macrostate	429
S-10.2	Particle distribution in different levels of macrostates	430
S-10.3	Distribution of particles in different levels of macrostates	432
S-10.4	(a) Distribution of particles in different levels of macrostates	433
S-10.4	(b) Details of macrostates for part (b)	434
S-10.9	(a) Distribution of particles in different levels of macrostates	439
S-10.9	(b) Number of microstates in different macrostates	440
S-10.9	(c) Details of the new system formed by removing one particle from level $j = 3$	441
S-10.9	(d) Details of microstates and average occupation numbers for new system	442
S-10.10.1	Distribution of particles in different levels of macrostates A, B and C	442

xx Tables

S-10.10.2	Particle distribution in different levels of macrostates	443
P-10.4.1	Particle distribution in different macrostates	444
Mc-10.11	Particle distribution in different levels of macrostates	448
11.1	Molar specific heat capacity of some monatomic, diatomic and polyatomic gases at 300 K	476

Preface

The book is designed to serve as a textbook on thermal physics / thermodynamic that may be prescribed to graduate students of physics, chemistry and engineering branches. The book covers all three components of thermal physics: namely the kinetic theory, classical thermodynamics and quantum thermodynamics (quantum statistical mechanics plus thermodynamics), with their applications. Some topics in the book may also be of interest to post graduate students. Since the focus of the book is on 85–90% average and below average students of the class, it is written in simple English with detailed and stepwise derivations starting from first principles. I hope that teachers of the subject and also readers other than the targeted audience, will also like the presentation.

Kinetic theory and transport properties of gases are covered in first two chapters of the book. Maxwell–Boltzmann velocity distribution for an ideal gas, which is mostly derived using the tools of quantum thermodynamics, is obtained in chapter-1 by the method originally used by Maxwell. The four laws of classical thermodynamics and their applications are discussed in chapters 3–8.

A special feature of the book is a separate chapter on the application of classical thermodynamics to chemical reactions (chapter-9), which is generally not covered in books on the subject. Though there are books on the application of thermodynamics to chemical reactions, unfortunately these books do not explain the underlying principles of physics associated with thermodynamics and are, therefore, incomplete. Since chemists use different notations and signs for thermodynamic parameters than those used by physicists and engineers, a separate chapter is included where these differences are clearly mentioned along with their reasons. Each application is explained through an example of an appropriate chemical reaction where technical terms are explained and mathematical derivations are worked out starting from the first principle.

Similarly, engineering applications of classical thermodynamics are discussed in a separate section. These applications are explained with the help of P–V and P–*s*–*h* diagrams wherever necessary and are followed by large number of solved and unsolved problems with answers.

Classical thermodynamics is an empirical science based on the behavior of macroscopic systems. On the other hand, quantum thermodynamics is a microscopic theory that uses laws of quantum statistic and the tools of thermodynamics to describe the behavior of systems made up of a large number of identical particles. Essentials of quantum thermodynamics are developed in chapter-10 and their applications to various physical systems are detailed in chapter-11. How quantum thermodynamic treatment of systems overcome the shortcomings found in their classical treatment, has also been elaborated in this chapter.

xxii

Preface

Formulations of both classical and quantum thermodynamics are applicable only to systems in equilibrium and to processes that are reversible and/or quasi-static. However, real systems are neither in equilibrium nor are processes taking place in the universe reversible. Hence, it is necessary to develop concepts that may be applied to non-equilibrium systems and to irreversible processes, i.e. thermodynamics applicable to real systems. Efforts in this direction have been made and thermodynamics of irreversible processes based on network theorems has been developed recently. Elements of thermodynamics of linear irreversible processes and of more general network thermodynamics are introduced in chapter-12 of the book.

Another distinctive feature of the book is the inclusion of a large number of worked out examples in each chapter. Further, there are sufficient number of unsolved problems with answers, questions with short and long answers and objective questions with multiple choices. Chapter contents are also followed with a summary for revision by students. It is hoped that these features will help students in preparing for examinations, viva and interviews.

Though considerable efforts have been made to remove all errors, I know it is not possible to achieve it, particularly for a project of this size. I, therefore, request readers to kindly point out the errors they find, so that the same may be corrected. I appreciate receipt of healthy and positive criticism that may further improve the presentation.

Acknowledgments

I owe this book to my students and colleagues who encouraged me to write. Few years after my superannuation I came to know that the class notes of my lectures are still being used by students. I am fortunate to have excellent students who not only appreciated my teaching but also persuaded me to write. In this context I would like to mention one Abbas Raza Alvi, who was in my class some thirty years back, and met me just by chance in Sydney, a couple of years back. Abbas, a multi-dimensional personality: engineer, poet, music composer, story writer etc., who had settled in Australia two decades back, surprised me by showing old class notes of my lectures when I visited him in Sydney. Dedicated students like him provided the necessary impetus required to complete such a huge task. I, therefore, thank all my wonderful colleagues and students including Abbas for their significant but not so visible contributions to this project.

I wish to put on record my sincere thanks to all members of my research group who helped in one way or the other in completing this work. As a matter of fact my strength lies in them. I will specially mention the name of Professor B. P. Singh who helped me at each step and in reading the manuscript, pointing out omissions and suggesting alterations. Thank you very much Professor Singh.

I spent the best part of my life at the Aligarh Muslim University: as a student, lecturer, reader, professor, the Chairman of the Department of Physics, and the Dean, Faculty of Science. It is here that I acquired whatever knowledge I have. I sincerely thank the Aligarh Muslim University for providing me with all the support during my stay.

This book was written in three parts at three different places; first four chapters were completed at Sydney, Australia; next six chapters at Boston, USA; and the remaining part was completed at Aligarh, India. I thank my wife Sushma and my daughters-in-law, Pooja and Chaitra, for being excellent hosts and providing congenial atmosphere and nice food, both of which I feel are essential for any creative work.

Acknowledgements will remain incomplete without a mention of Gauravjeet Singh Reen from Cambridge University Press. This highly sophisticated, polite and prompt young man helped me a lot. A big thank you! Gaurav.

I dedicate this book to my parents—my mother, Late Smt. Mithlesh Mathur and my father, Late Shri Ishwari Prasad Mathur. They encouraged me to undertake higher learning and acquire competence.