Contents

List of Contributors xvi
Preface xxii

1 Overview of New Technologies for 5G Systems 1
Vincent W. S. Wong, Robert Schober, Derrick Wing Kwan Ng, and Li-Chun Wang
1.1 Introduction 1
1.2 Cloud Radio Access Networks 3
1.3 Cloud Computing and Fog Computing 4
1.4 Non-orthogonal Multiple Access 4
1.5 Flexible Physical Layer Design 6
1.6 Massive MIMO 7
1.7 Full-Duplex Communications 9
1.8 Millimeter Wave 12
1.9 Mobile Data Offloading, LTE-Unlicensed, and Smart Data Pricing 13
1.10 IoT, M2M, and D2D 14
1.11 Radio Resource Management, Interference Mitigation, and Caching 16
1.12 Energy Harvesting Communications 17
1.13 Visible Light Communication 19
Acknowledgments 20
References 20

Part I Communication Network Architectures for 5G Systems 25

2 Cloud Radio Access Networks for 5G Systems 27
Chih-Lin I, Jinri Huang, Xueyan Huang, Rongwei Ren, and Yami Chen
2.1 Rethinking the Fundamentals for 5G Systems 27
2.2 User-Centric Networks 29
2.3 C-RAN Basics 29
2.3.1 C-RAN Challenges Toward 5G 30
2.4 Next Generation Fronthaul Interface (NGFI): The FH Solution for 5G C-RAN 31
2.4.1 Proof-of-Concept Development of NGFI 33
Contents

2.5 Proof-of-Concept Verification of Virtualized C-RAN 35
 2.5.1 Data Packets 37
 2.5.2 Test Procedure 38
 2.5.3 Test Results 39
2.6 Rethinking the Protocol Stack for C-RAN 40
 2.6.1 Motivation 40
 2.6.2 Multilevel Centralized and Distributed Protocol Stack 40
2.7 Conclusion 45
Acknowledgments 46
References 46

3 Fronthaul-Aware Design for Cloud Radio Access Networks 48
 Liang Liu, Wei Yu, and Osvaldo Simeone
 3.1 Introduction 48
 3.2 Fronthaul-Aware Cooperative Transmission and Reception 49
 3.2.1 Uplink 51
 3.2.2 Downlink 57
 3.3 Fronthaul-Aware Data Link and Physical Layers 61
 3.3.1 Uplink 63
 3.3.2 Downlink 69
 3.4 Conclusion 73
Acknowledgments 74
References 74

4 Mobile Edge Computing 76
 Ben Liang
 4.1 Introduction 76
 4.2 Mobile Edge Computing 77
 4.3 Reference Architecture 79
 4.4 Benefits and Application Scenarios 80
 4.4.1 User-Oriented Use Cases 80
 4.4.2 Operator-Oriented Use Cases 81
 4.5 Research Challenges 82
 4.5.1 Computation Offloading 82
 4.5.2 Communication Access to Computational Resources 83
 4.5.3 Multi-resource Scheduling 84
 4.5.4 Mobility Management 85
 4.5.5 Resource Allocation and Pricing 85
 4.5.6 Network Functions Virtualization 86
 4.5.7 Security and Privacy 86
 4.5.8 Integration with Emerging Technologies 87
 4.6 Conclusion 88
References 88
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Decentralized Radio Resource Management for Dense Heterogeneous Wireless Networks</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>System Model</td>
<td>93</td>
</tr>
<tr>
<td>5.2.1</td>
<td>SINR Expression</td>
<td>95</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Load and Cost Function Expressions</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Joint BSCSA/UECSA ON/OFF Switching Scheme</td>
<td>96</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Strategy Selection and Beacon Transmission</td>
<td>96</td>
</tr>
<tr>
<td>5.3.2</td>
<td>UE Association</td>
<td>96</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Proposed Channel Segregation Algorithms</td>
<td>98</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Mixed-Strategy Update</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Computer Simulation</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>104</td>
</tr>
<tr>
<td>5.6</td>
<td>Acknowledgments</td>
<td>104</td>
</tr>
<tr>
<td>5.7</td>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>Non-Orthogonal Multiple Access (NOMA) for 5G Systems</td>
<td>109</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>110</td>
</tr>
<tr>
<td>6.2</td>
<td>NOMA in Single-Input Single-Output (SISO) Systems</td>
<td>112</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The Basics of NOMA</td>
<td>112</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Impact of User Pairing on NOMA</td>
<td>113</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Cognitive Radio Inspired NOMA</td>
<td>116</td>
</tr>
<tr>
<td>6.3</td>
<td>NOMA in MIMO Systems</td>
<td>120</td>
</tr>
<tr>
<td>6.3.1</td>
<td>System Model for MIMO-NOMA Schemes</td>
<td>121</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Design of Precoding and Detection Matrices with Limited CSIT</td>
<td>123</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Design of Precoding and Detection Matrices with Perfect CSIT</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary and Future Directions</td>
<td>128</td>
</tr>
<tr>
<td>6.5</td>
<td>References</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>Flexible Physical Layer Design</td>
<td>133</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>7.2</td>
<td>Generalized Frequency Division Multiplexing</td>
<td>135</td>
</tr>
<tr>
<td>7.3</td>
<td>Software-Defined Waveform</td>
<td>137</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Time Domain Processing</td>
<td>138</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Implementation Architecture</td>
<td>138</td>
</tr>
<tr>
<td>7.4</td>
<td>GFDM Receiver Design</td>
<td>141</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Synchronization Unit</td>
<td>142</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Channel Estimation Unit</td>
<td>144</td>
</tr>
<tr>
<td>7.4.3</td>
<td>MIMO-GFDM Detection Unit</td>
<td>145</td>
</tr>
</tbody>
</table>
Contents

7.5 Summary and Outlook 147
Acknowledgments 148
References 148

8 Distributed Massive MIMO in Cellular Networks 151
Michail Matthaiou and Shi Jin
8.1 Introduction 151
8.2 Massive MIMO: Basic Principles 152
 8.2.1 Uplink/Downlink Channel Models 153
 8.2.2 Favorable Propagation 154
8.3 Performance of Linear Receivers in a Massive MIMO Uplink 154
8.4 Performance of Linear Precoders in a Massive MIMO Downlink 157
8.5 Channel Estimation in Massive MIMO Systems 158
 8.5.1 Uplink Transmission 159
 8.5.2 Downlink Transmission 160
8.6 Applications of Massive MIMO Technology 161
 8.6.1 Full-Duplex Relaying with Massive Antenna Arrays 161
 8.6.2 Joint Wireless Information Transfer and Energy Transfer for
 Distributed Massive MIMO 163
8.7 Open Future Research Directions 167
8.8 Conclusion 168
References 169

9 Full-Duplex Protocol Design for 5G Networks 172
Taneli Riihonen and Risto Wichman
9.1 Introduction 172
9.2 Basics of Full-Duplex Systems 173
 9.2.1 In-Band Full-Duplex Operation Mode 173
 9.2.2 Self-Interference and Co-channel Interference 174
 9.2.3 Full-Duplex Transceivers in Communication Links 175
 9.2.4 Other Applications of Full-Duplex Transceivers 178
9.3 Design of Full-Duplex Protocols 179
 9.3.1 Challenges and Opportunities in Full-Duplex Operation 179
 9.3.2 Full-Duplex Communication Scenarios in 5G Networks 180
9.4 Analysis of Full-Duplex Protocols 182
 9.4.1 Operation Modes in Wideband Fading Channels 182
 9.4.2 Full-Duplex Versus Half-Duplex in Wideband Transmission 184
9.5 Conclusion 184
 9.5.1 Prospective Scientific Research Directions 184
 9.5.2 Full-Duplex in Commercial 5G Networks 185
References 186

10 Millimeter Wave Communications for 5G Networks 188
Jiho Song, Miguel R. Castellanos, and David J. Love
Chapter 10: Millimeter Wave Radio Propagation

10.1 Motivations and Opportunities
10.2 Millimeter Wave Radio Propagation
- 10.2.1 Radio Attenuation
- 10.2.2 Free-Space Path Loss
- 10.2.3 Severe Shadowing
- 10.2.4 Millimeter Wave Channel Model
- 10.2.5 Link Budget Analysis
10.3 Beamforming Architectures
- 10.3.1 Analog Beamforming Solutions
- 10.3.2 Hybrid Beamforming Solutions
- 10.3.3 Low-Resolution Receiver Architecture
10.4 Channel Acquisition Techniques
- 10.4.1 Subspace Sampling for Beam Alignment
- 10.4.2 Compressed Channel Estimation Techniques
10.5 Deployment Challenges and Applications
- 10.5.1 EM Exposure at Millimeter Wave Frequencies
- 10.5.2 Heterogeneous and Small-Cell Networks
Acknowledgments

Chapter 11: Interference Mitigation Techniques for Wireless Networks

11.1 Introduction
11.2 The Interference Management Challenge in the 5G Vision
- 11.2.1 The 5G Primary Goals and Their Impact on Interference
- 11.2.2 Enabling Technologies for Improving Network Efficiency and Mitigating Interference
11.3 Improving the Cell-Edge User Experience: Coordinated Multipoint
- 11.3.1 Deployment Scenarios and Network Architecture
- 11.3.2 CoMP Techniques for the Uplink
- 11.3.3 CoMP Techniques for the Downlink
11.4 Interference Alignment: Exploiting Signal Space Dimensions
- 11.4.1 The Concept of Linear Interference Alignment
- 11.4.2 The Example of the X-Channel
- 11.4.3 The K-User Interference Channel and Cellular Networks: Asymptotic Interference Alignment
- 11.4.4 Cooperative Interference Networks
- 11.4.5 Insight from IA into the Capacity Limits of Wireless Networks
11.5 Compute-and-Forward Protocol: Cooperation at the Receiver Side for the Uplink
- 11.5.1 Encoding and Decoding of the CoF Protocol
- 11.5.2 Achievable-Rate Region and Integer Equation Selection
- 11.5.3 Advantages and Challenges of the CoF Protocol
11.6 Conclusion
References
12 Physical Layer Caching with Limited Backhaul in 5G Systems
Vincent Lau, An Liu, and Wei Han
12.1 Introduction
12.2 What Is PHY Caching?
12.2.1 Typical Physical Layer Topologies
12.2.2 Basic Components of PHY Caching
12.2.3 Benefits of PHY Caching
12.2.4 Design Challenges and Solutions in PHY Caching
12.3 DoF Upper Bound for Cached Wireless Networks
12.3.1 Architecture of Cached Wireless Networks
12.3.2 Generic Cache Model
12.3.3 Cache-Assisted PHY Transmission Model
12.3.4 Upper Bound of Sum DoF for Cached Wireless Networks
12.4 MDS-Coded PHY Caching and the Achievable DoF
12.4.1 MDS-Coded PHY Caching with Asynchronous Access
12.4.2 Cache-Assisted MIMO Cooperation in the PHY
12.4.3 MIMO Cooperation Probability of MDS-Coded PHY Caching with Asynchronous Access
12.4.4 Achievable DoF for Cached Wireless Networks
12.5 Cache Content Placement Algorithm for DoF Maximization
12.6 Closed-Form DoF Analysis and Discussion
12.6.1 Content Popularity Model and Definition of DoF Gain
12.6.2 Asymptotic DoF Gain with Respect to the Number of Files
12.6.3 Asymptotic DoF Gain with Respect to the Number of Users
12.7 Conclusion and Future Work
References

13 Cost-Aware Cellular Networks Powered by Smart Grids and Energy Harvesting
Jie Xu, Lingjie Duan, and Rui Zhang
13.1 Introduction
13.2 Energy Supply and Demand of Cellular Systems
13.3 Energy Cooperation
13.3.1 Aggregator-Assisted Energy Trading
13.3.2 Aggregator-Assisted Energy Sharing
13.4 Communication Cooperation
13.4.1 Cost-Aware Traffic Offloading
13.4.2 Cost-Aware Spectrum Sharing
13.4.3 Cost-Aware Coordinated Multipoint
13.5 Joint Energy and Communication Cooperation
13.5.1 Joint Energy and Spectrum Sharing
13.5.2 Joint Energy Cooperation and CoMP
13.5.3 A Case Study
13.6 Extensions and Future Directions
13.7 Conclusion
References
Contents

14 Visible Light Communication in 5G

Harald Haas and Cheng Chen

14.1 Introduction 289
14.2 Differences between Light-Fidelity and Visible Light Communication 290
14.3 LiFi LED Technologies 292
14.4 LiFi Attocell Networks 293
 14.4.1 Optical OFDM Transmission 294
 14.4.2 Channel Model 296
 14.4.3 Light Source Output Power 302
 14.4.4 Signal Clipping 303
 14.4.5 Noise at Receiver 303
 14.4.6 Multiple Access and Spatial-Reuse Schemes 304
14.5 Design of Key Parameters for LiFi Attocell Networks 304
 14.5.1 Co-channel Interference Minimization 305
 14.5.2 Maximization of Strength of Desired Signal 306
 14.5.3 Parameter Configurations 307
14.6 Signal-to-Interference-Plus-Noise Ratio in LiFi Attocell Networks 308
 14.6.1 System Model Assumptions 309
 14.6.2 Hexagonal Cell Deployment 309
 14.6.3 PPP Cell Deployment 312
 14.6.4 SINR Statistics Results and Discussion 316
14.7 Cell Data Rate and Outage Probability 318
14.8 Performance of Finite Networks and Multipath Effects 322
14.9 Practical Cell Deployment Scenarios 324
 14.9.1 Square Network 324
 14.9.2 Hard-Core Point Process Network 324
 14.9.3 Performance Comparison 325
14.10 LiFi Attocell Networks Versus Other Small-Cell Networks 325
14.11 Summary 328
References 329

Part III Network Protocols, Algorithms, and Design

15 Massive MIMO Scheduling Protocols

Giuseppe Caire

15.1 Introduction 335
15.2 Network Model and Problem Formulation 337
 15.2.1 Timescales 337
 15.2.2 Request Queues and Network Utility Maximization 338
15.3 Dynamic Scheduling Policy 342
 15.3.1 The Drift-Plus-Penalty Expression 342
 15.3.2 Pull Congestion Control at the UEs 344
Contents

15.3.3 Greedy Maximization of the Individual Utilities at the UEs 344
15.3.4 PHY Rate Scheduling at the BSs 344
15.4 Policy Performance 345
15.5 Wireless System Model with Massive MU-MIMO Helpers 347
15.5.1 PHY Rates of Massive MIMO BSs 347
15.5.2 Transmission Scheduling with Massive MIMO BSs 350
15.6 Numerical Experiments 351
15.7 Conclusion 355
References 356

16 Mobile Data Offloading for Heterogeneous Wireless Networks 358
Man Hon Cheung, Haoran Yu, and Jianwei Huang
16.1 Introduction 358
16.2 Current Standardization Efforts 359
16.2.1 Access Network Discovery and Selection Function (ANDSF) 359
16.2.2 Hotspot 2.0 360
16.2.3 Next Generation Hotspot (NGH) 361
16.2.4 Radio Resource Management 361
16.2.5 Design Considerations in Data Offloading Algorithms 361
16.3 DAWN: Delay-Aware Wi-Fi Offloading and Network Selection 363
16.3.1 System Model 363
16.3.2 Problem Formulation 364
16.3.3 General DAWN Algorithm 366
16.3.4 Threshold Policy 367
16.3.5 Performance Evaluation 369
16.4 Data Offloading Considering Energy–Delay Trade-off 370
16.4.1 Background on Energy-Aware Data Offloading 371
16.4.2 System Model 372
16.4.3 Problem Formulation 374
16.4.4 Energy-Aware Network Selection and Resource Allocation (ENSRA) Algorithm 375
16.4.5 Performance Analysis of ENSRA 376
16.4.6 Performance Evaluation 376
16.5 Open Problems 377
16.6 Conclusion 378
Acknowledgment 378
References 378

17 Cellular 5G Access for Massive Internet of Things 380
Germán Corrales Madueño, Nuno Pratas, Ćedomir Stefanović, and Petar Popovski
17.1 Introduction to the Internet of Things (IoT) 380
17.2 IoT Traffic Patterns in Network Access 381
17.3 The Features of Cellular Access That Are Suitable for the IoT 386
17.4 Overview of Cellular Access Protocols 387
Table of Contents

17 Improving the Performance of One-Stage Access for 5G Systems

17.1 One-Stage Access
17.2 Two-Stage Access
17.3 Periodic Reporting
17.4 Case Study: LTE Connection Establishment

18 Medium Access Control, Resource Management, and Congestion Control for M2M Systems

18.1 Introduction

19 Energy-Harvesting Based D2D Communication in Heterogeneous Networks

19.1 Introduction

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.1 One-Stage Access</td>
<td>388</td>
</tr>
<tr>
<td>17.4.2 Two-Stage Access</td>
<td>389</td>
</tr>
<tr>
<td>17.4.3 Periodic Reporting</td>
<td>390</td>
</tr>
<tr>
<td>17.4.4 Case Study: LTE Connection Establishment</td>
<td>390</td>
</tr>
<tr>
<td>17.5 Improving the Performance of One-Stage Access for 5G Systems</td>
<td>392</td>
</tr>
<tr>
<td>17.6 Reliable Two-Stage Access for 5G Systems</td>
<td>393</td>
</tr>
<tr>
<td>17.7 Reliable Periodic Reporting Access for 5G Systems</td>
<td>395</td>
</tr>
<tr>
<td>17.8 Emerging Technologies for the IoT</td>
<td>396</td>
</tr>
<tr>
<td>17.8.1 LTE-M: LTE for Machines</td>
<td>397</td>
</tr>
<tr>
<td>17.8.2 Narrowband IoT (NB-IoT): A 3GPP Approach to Low-Cost IoT</td>
<td>397</td>
</tr>
<tr>
<td>17.8.3 Extended Coverage GSM (EC-GSM): Evolution of GSM for the IoT</td>
<td>398</td>
</tr>
<tr>
<td>17.9 Conclusion</td>
<td>398</td>
</tr>
<tr>
<td>References</td>
<td>399</td>
</tr>
</tbody>
</table>

18 Medium Access Control, Resource Management, and Congestion Control for M2M Systems

Shao-Yu Lien and Hsiang Hsu

18.1 Introduction
18.2 Architectures for M2M Communications
18.2.1 WLAN Architecture for M2M Communications
18.2.2 Cellular Radio Access Network for M2M Communications
18.2.3 Heterogeneous Cloud Radio Access Network for M2M Communications
18.2.4 FogNet Architecture for M2M Communications
18.3 MAC Design for M2M Communications
18.3.1 Grouping-Based M2M MAC in H-CRAN
18.3.2 Access Class Barring Based M2M MAC in FogNet/WLAN
18.3.3 Random-Backoff-Based M2M MAC
18.3.4 Harmonized M2M MAC for Low-Power/Low-Complexity Machines
18.4 Congestion Control and Low-Complexity/Low-Throughput Massive M2M Communications
18.4.1 Congestion Control in ACB-Based M2M MAC
18.4.2 Massive MTC and Low-Complexity/Low-Throughput IoT Communications
18.5 Conclusion
References

19 Energy-Harvesting Based D2D Communication in Heterogeneous Networks

Howard H. Yang, Jemin Lee, and Tony Q. S. Quek

19.1 Introduction
19.2 Energy Harvesting Heterogeneous Network
19.2.1 Energy Harvesting Region

References
Contents

19.2.2 Energy Harvesting Process and UE Relay Distribution 427
19.2.3 Transmission Mode Selection and Outage Probability 429
19.3 Numerical Analysis and Discussion 432
19.4 Conclusion 435
References 435

20 LTE-Unlicensed: Overview and Distributed Coexistence Design 438
Yunan Gu, Lin X. Cai, Lingyang Song, and Zhu Han
20.1 Motivations 438
20.1.1 Better Network Performance 441
20.1.2 Enhanced User Experience 441
20.1.3 Unified LTE Network Architecture 441
20.1.4 Fair Coexistence with Wi-Fi 441
20.2 Coexistence Issues in LTE-Unlicensed 441
20.3 Distributed Resource Allocation Applications of LTE-Unlicensed 444
20.3.1 Matching Theory Framework 444
20.3.2 Static Resource Allocation: Student–Project Allocation Matching 446
20.3.3 Dynamic Resource Allocation: Random Path to Matching Stability 451
20.4 Conclusion 457
References 458

21 Scheduling for Millimeter Wave Networks 460
Lin X. Cai, Lin Cai, Xuemin Shen, and Jon W. Mark
21.1 Introduction 460
21.2 Background 461
21.2.1 Multiplexing Technologies for mmWave Networks 461
21.2.2 Directional Antennas 461
21.2.3 Network Architecture 462
21.3 Exclusive Regions 462
21.3.1 Case 1: Omni-antenna to Omni-antenna 464
21.3.2 Case 2: Directional Antenna to Omni-antenna 465
21.3.3 Case 3: Omni-antenna to Directional Antenna 465
21.3.4 Case 4: Directional Antenna to Directional Antenna 465
21.4 REX: Randomized Exclusive Region Based Scheduler 466
21.5 Estimating the Average Number of Concurrent Transmissions Using REX 467
21.5.1 Case 1: Omni-antenna to Omni-antenna 468
21.5.2 Case 2: Directional Antenna to Omni-antenna 468
21.5.3 Case 3: Omni-antenna to Directional Antenna 469
21.5.4 Case 4: Directional Antenna to Directional Antenna 469
21.5.5 Edge Effect 469
21.6 Performance Evaluation 470
21.6.1 Spatial Multiplexing Gain 470
21.6.2 Fairness 472
Contents

21.7 Further Discussion
- 21.7.1 Fast Fading 473
- 21.7.2 Shadowing Effect 473
- 21.7.3 Three-Dimensional Networks 473
- 21.7.4 Distributed Medium Access 474
- 21.7.5 Hybrid Medium Access 474
- 21.7.6 Optimal Scheduling 475

21.8 Conclusion 475

References 475

22 Smart Data Pricing in 5G Systems 478
Carlee Joe-Wong, Liang Zheng, Sangtae Ha, Soumya Sen, Chee Wei Tan, and Mung Chiang

22.1 Introduction 478

22.2 Smart Data Pricing 482
- 22.2.1 How Should ISPs Charge for Data? 482
- 22.2.2 Whom Should ISPs Charge for Data? 483
- 22.2.3 What Should ISPs Charge For? 484

22.3 Trading Mobile Data 485
- 22.3.1 Related Work on Data Auctions 485
- 22.3.2 Modeling User and ISP Behavior 486
- 22.3.3 User and ISP Benefits 487

22.4 Sponsoring Mobile Data 489
- 22.4.1 Modeling Content Provider Behavior 489
- 22.4.2 Implications of Sponsored Data 490

22.5 Offloading Mobile Data 491
- 22.5.1 User Adoption and Example Scenarios 491
- 22.5.2 Optimal ISP Behavior 494

22.6 Future Directions 494
- 22.6.1 Capacity Expansion and New Supplementary Networks 495
- 22.6.2 Two-Year Contracts Versus Usage-Based Pricing 495
- 22.6.3 Incentivizing Fog Computing 496

22.7 Conclusion 496

References 497

Index 501