
Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

Our modern understanding of computation stems in large part from Alan

Turing’s formalization of the mathematical activity of following an effective

method for computing a function. Thus the roots of computer science (at least

as traditionally construed) are in this sense those of an essentially mathematical

science. The science of Physics, on the other hand, ultimately aims to describe

the characteristics of concrete systems as they exist in the natural world. It

is thus a nontrivial question to ask whether, and how, physics can illuminate

computer science and vice versa.

Indeed, the possible questions one may ask regarding the connections

between computation and physics are many, varied, and multi-faceted. For the

purposes of a philosophical investigation into these connections they can be

usefully characterized as falling into two main categories. On the one hand,

there are those questions related to the connections between computational and

physical systems, and on the other hand there are those questions related to the

connections between computational and physical theory in general. These two

main categories can further be subdivided into two sub-categories each, which

together comprise the four major parts of this volume:

• Interrelations between computational and physical systems

I. The computability of physical systems and physical systems as

computers

II. The implementation of computation in physical systems

• Interrelations between computational and physical theory

III. Physical perspectives on computer science

IV. Computational perspectives on physical theory

In the remainder of this introductory chapter, we will summarize each of

these parts and the particular contributions of this volume that fall under them.

Before we do so, however, it will be useful to review some of the basic concepts

which will generally be taken for granted in the rest of the book.

1

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Michael E. Cuffaro and Samuel C. Fletcher

1 Computability Theory and the Church-Turing Thesis

Intuitively, computability theory concerns which tasks can be completed in

principle by following a completely explicit set of instructions. These instruc-

tions must be definite, in the sense that they allow no procedural interpretation

or flexibility, and self-contained, in the sense that they require no input other

than what is provided in the description of the task itself. Such a set of instruc-

tions, called an effective procedure, hence demands no creativity of whoever

(or whatever) executes it.

Effective procedures have found their greatest application in the mathemat-

ical domain, many of whose problems can be reduced to the computation of a

function of natural numbers. A function f : Nk → N is said to be effectively

computable when there is an effective procedure for calculating its value for

any argument. For example, the familiar elementary arithmetic functions of

addition and multiplication are clearly effectively computable, as are functions

composed from them. Further, the effective computability of a mathematical

decision problem, such as “Is n prime?”, can be encoded into a function whose

range is {0, 1}, corresponding with the “no” and “yes” answers.

To make this informal concept of effective computation formally tractable,

myriad models for computation have been proposed, inspired variously from

logic, arithmetic, and mechanics.1 One might naturally expect that these differ-

ent proposals, various as they are in their starting points, lead to formalizations

of differing computational strength. So it is remarkable that they in fact

determine extensionally the same class of functions as being computable.

The most important and influential of these proposals, on which we focus

in this introduction, is that of the Turing machine (TM). A TM is a type of

abstract state machine, consisting of the following components (an example of

which is illustrated in Figure 0.1):

• An arbitrarily long tape, divided into sequential squares that can be blank or

contain a mark.
• A read/write head, which sits atop a particular square, can read whether it

contains a mark, and can perform the following actions: print a mark on the

Figure 0.1 A representation of a Turing machine with read/write head in

state n and tape entries “0” and “1” representing blank and marked squares,

respectively

1 Examples include representability in a formal system, the λ-calculus, recursive function the-
ory, Markov algorithms, register machines, and Turing machines (what we focus on below).
See Epstein and Carnielli (2008, ch. 8E) for brief descriptions and references to these various
approaches.

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

square if it doesn’t have one, erase the mark on the square if it has one, move

one square to the right, and move one square to the left.
• A program, or finite set of instructions, for the read/write head, each of which

has the following form:

TM Instruction Form In state n, if the current square is [blank/marked],

perform [action] and transition to state m. In abbreviated form:

(n, [0/1], [action], m).

The tape is the medium for the input and output to a proposed calculation

by the machine, as well as for all the intermediate work required to transition

between them. It typically encodes these in binary notation, for example with

blank and marked squares representing the numerals “0” and “1,” respectively.

The read/write head performs the steps leading to the computation through its

fixed set of actions. The program encodes an effective procedure for the TM to

follow:

1. A TM begins in some pre-specified state at some pre-specified location on

the tape.

2. The read/write head reads its current square, then performs the action (if

any) specified by the program according to what’s read and the current state.

3. It then transitions to another state, according to the program, whereupon

step two is repeated.

A program need not have an action and state transition specified for every state

and input from the current square. If it does not, then the read/write head halts,

indicating the end of the computation, at which point the contents of the tape

represent the computation’s output.2

Suppose now that an encoding of inputs and outputs of natural numbers on

the tape and a starting location for the printing head on the tape have been

fixed. One then says that a function f : Nk → N is Turing-computable if and

only if there is a TM that for all (n1, . . . , nk) ∈ N
k eventually halts with output

encoding f (n1, . . . , nk) when begun with input encoding (n1, . . . , nk).

Because the TM’s tape represents the inputs and outputs of the function

it computes and the functionality of the read/write head is fixed, the real

source of variability amongst TMs comes from the program. TMs may thus

be enumerated by their programs, which can be represented by sets of ordered

quadruples of the above specified TM Instruction Form. For example, the set

{(1, 0, 1, 1), (1, 1, →, 1)} defines a program (i.e., a TM) with only one state, in

2 Despite the physically evocative story involving “components” and so on, a concrete mecha-
nism for implementing or constructing an actual TM is neither provided nor necessary. This
is the sense in which the TM is an abstract machine providing a mathematical definition of
computation, rather than a schematic for a physical machine providing an empirical account of
computation; cf. Section 4 of this Introduction.

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Michael E. Cuffaro and Samuel C. Fletcher

which it writes a mark if the current square is empty and otherwise moves to the

right. Since every Turing-computable function must be computable by some

TM, it follows immediately that the Turing-computable functions are enumer-

able. But because there are uncountably many functions of natural numbers,

there must be functions that are not Turing-computable – infinitely more, in

fact, than those that are.

Two further remarkable facts build upon such an enumeration.3 First is the

existence of universal TMs, ones that can simulate the computation of any

other TM. In other words, there exist TMs such that, when given input encod-

ing (m, n1, . . . , nk), they eventually halt with output fm(n1, . . . , nk), where fm is

the Turing-computable function computed by the mth TM. Second is the spec-

ification of concrete non-Turing-computable functions. Most famous of these

is the halting function h : N2 → N, which is equal to 1 if TM m halts on input

n, and is equal to 2 otherwise.

The theory of computability can be developed much further,4 but to close

this section we circle back to the original motivation for TMs: does Turing-

computability adequately formalize the concept of effective computability?

Clearly every Turing-computable function is effectively computable, for the

action of a TM that computes such a function is given by an effective proce-

dure. The statement that the converse is also true is known as either Turing’s

Thesis or the Church-Turing Thesis.

Church-Turing Thesis (CTT) Every effectively computable function of nat-

ural numbers is Turing computable.

The truth of the CTT would imply that one can identify or replace the exten-

sion of the informal concept of effective computability with that of the formal

concept of Turing-computability, thereby establishing a completely adequate

explication (cf. Carnap 1947, sec. 2; Carnap 1950b, ch. 1) of the former. There

is a large literature on the status and interpretation of the CTT,5 but it is

fair to say that it is widely accepted among computer scientists and beyond.

That said, the theory of computability and the CTT only make claims about

what is possible in principle to compute, given the idealizations of arbitrar-

ily large temporal, spatial, and material resources – computing steps, tape

squares, and the incorruptible functioning of Turing machinery – that abstract

away from their actual abundance. When an accounting of these resources is

brought to bear, as in the next section of this Introduction, one can distinguish

not just between computable and non-computable functions, but, among the

computable ones, those of various degrees of difficulty.

3 For more on TMs, see Barker-Plummer (2016) and references cited therein.
4 See, for instance, Immerman (2016) and references cited therein.
5 See, for instance, Copeland (2015) and references cited therein.

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 5

2 Computational Complexity Theory

In computational complexity theory, computational problems are classified

based on their resource costs, i.e., those in time and space. We will focus on

time, which is the more important measure. Arguably the most basic distinc-

tion within the theory is that between those decision problems (i.e., yes-or-no

questions) that are “easy” (a.k.a. “feasible,” “efficiently solvable,” “tractable,”

etc.) and those that are not (i.e., “hard”). According to the Cobham-Edmonds

thesis (Dean 2016b), a decision problem is easy if it is solvable in “polynomial

time,” i.e., if it can be solved in a number of steps bounded by a polynomial

function of its input size, n. Problems so solvable on a deterministic Turing

machine (DTM) comprise the complexity class P.

Formally, one can conceive of a decision problem as one of determining

whether a given string x of length n is in the “language” L. For example,

determining whether x is prime amounts to determining whether it is in the

language {10, 11, 101, 111, 1011, 1101, 10001, 10011, . . .} (the set of binary

representations of prime numbers). Now, call a language L a member of the

class DTIME(T(n)) if and only if there is a DTM for deciding membership

in L whose running time, t(n), is “on the order of T(n),” or in symbols:

O(T(n)). Here, T(n) represents an upper bound for the growth rate of t(n)

in the sense that, by definition, t(n) is O(T(n)) if for every sufficiently large

n, t(n) ≤ k · T(n) for some constant k.6 We can now formally characterize P

(Arora and Barak 2009, p. 25) as:

P =
⋃

k≥1

DTIME(nk). (0.1)

A nondeterministic Turing machine (NTM) is such that it may “choose,”

when in a given state, which one of a set of possible successor states to transi-

tion to; see Figure 0.2. It is said to accept a string x if and only if there exists a

path through its state space that, given x, leads to an accepting state. It rejects x

otherwise. NTIME(T(n)) is now defined, analogously to DTIME(T(n)), as the

set of languages for which an NTM exists to decide, in O(T(n)) steps, whether

a given string x of length n is in L. The class “NP” is defined as:7

NP =df

⋃

k≥1

NTIME(nk). (0.2)

6 By “for every sufficiently large n” it is meant that there exists some n0 ≥ 1 such that t(n) ≤
k · T(n) whenever n ≥ n0.

7 Equivalently (Arora and Barak 2009, p. 42), NP is the set of languages for which one can
construct a polynomial-time deterministic TM to verify, for any x, that x ∈ L, given a
polynomial-length string u (called a “certificate” for x).

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Michael E. Cuffaro and Samuel C. Fletcher

Figure 0.2 This NTM accepts binary strings ending in “00,” since for a given

such x, there exists a series of transitions which end in “Accept.” But this is

not guaranteed. The machine is guaranteed, on the other hand, to reject any

string not ending in “00.” An edge from s1 to s2 labeled α, β, P is read as: In

state s1, read α from the tape, overwrite α with β, move the read/write head

to P (L = to the left, R = to the right, S = same), and finally transition to

state s2

Exactly how an NTM “chooses” to follow one path rather than another is

not defined. In a probabilistic Turing machine (PTM), in contrast, we associate

a particular probability with each possible transition. We can then define the

class BPP (bounded-error probabilistic polynomial time) as the class of lan-

guages such that there exists a polynomial-time PTM which, on any given run,

will correctly determine whether a string x is in the language L with probability

≥ 2/3.8

It has been conjectured that any language L decidable under a given “reason-

able” (i.e., physically realizable) machine model M is “efficiently simulable”

by a PTM in the sense that a PTM to decide L exists which requires at

most a polynomial number of extra time steps compared to a machine of

type M. This is known as the “strong” or “extended” Church-Turing thesis

(ECT).9,10 Over the last three decades, however, evidence has been mounting

against the ECT, primarily as a result of the advent of quantum computing

(Aaronson 2013, chs. 10, 15), which we will discuss in more detail in the

next section.

8 The particular threshold probability 2/3 is inessential. Any probability pmin ≥ 1/2 + n−k , with
k a constant, will yield the same class (Arora and Barak 2009, p. 132).

9 For further discussion of the ECT and related issues, see Dean (2016a,b,c).
10 ECT is sometimes defined with respect to the TM rather than the PTM model, for there has

been mounting evidence that P = BPP (Arora and Barak 2009). For our purposes the choice of
TM or PTM is inessential; a TM is a special case of a PTM for which transition probabilities
are always either 0 or 1. Moreover, defining ECT with respect to the PTM model is conve-
nient when comparing classical computation in general with quantum computation, which is
probabilistic.

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 7

3 Quantum Computing

The best-known classical algorithm for factoring arbitrary integers, the number

field sieve (Lenstra et al. 1990), requires O(2(log N)1/3
) steps to factor a given

integer N. Shor’s quantum factoring algorithm requires only a number of steps

that is polynomial in log N – an exponential speedup over the number field

sieve. This and other quantum algorithms provide evidence that the ECT is

false, for they seem to show that BQP, the class of languages probabilistically

decidable by a quantum computer in polynomial time, is strictly larger than

BPP. Note, however, that although the evidence furnished by Shor’s algorithm

is strong, it is still an open question whether factoring is in BPP.11

The state of a classical digital computer, whether deterministic or proba-

bilistic, is describable as a sequence of bits. A bit can be directly instantiated

by any two-level classical physical system, such as a circuit that can be open

or closed. In a quantum computer, the basic unit of representation is not the

bit but the qubit. To directly instantiate it, one uses a two-level quantum sys-

tem such as an electron (specifically: its spin). Like a bit, a qubit can be “on”:

|0〉, or “off”: |1〉. In general, however, a qubit’s state can be expressed as a

normalized linear superposition:

|ψ〉 = α|0〉 + β|1〉, (0.3)

where the complex “amplitudes” α and β satisfy the normalization condition:

|α|2 + |β|2 = αᾱ + ββ̄ = 1, with c̄ the complex conjugate of c. We refer to

|ψ〉 as the “state vector” for the qubit.

Unlike a bit, not all states of a qubit can be observed directly. In particular,

one never observes a qubit in a linear superposition with respect to a particular

measurement basis. For example, a “computational basis” measurement – “|0〉
or |1〉?” – will never reveal a qubit state of the form of Eq. (0.3), aside from

the trivial case where one of α or β is 0. In general, given the initial state

in Eq. (0.3), such a measurement on a qubit will find it in the state |0〉 with

probability |α|2 and in state |1〉 with probability |β|2.

Quantum computers can efficiently simulate classical probabilistic comput-

ers, since it is “easy” in a complexity-theoretic sense to simulate a fair classical

coin toss. For example, one can instantiate the transition Q, defined as:

Q|0〉 →
i

√
2
|0〉 +

1
√

2
|1〉, Q|1〉 →

1
√

2
|0〉 +

i
√

2
|1〉,

and then measure in the computational basis.

11 For further discussion, see Cuffaro (in press).

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Michael E. Cuffaro and Samuel C. Fletcher

Unlike classical bits, qubits can sometimes exhibit “interference effects.”

For example, upon applying the “Q-gate” twice to a qubit in the initial state |0〉,
“destructive” and “constructive” interference is exhibited between the com-

plex amplitudes associated with the |0〉 and |1〉 components of the state vector,

respectively:

|0〉 Q−→
(i

√
2
|0〉 +

1
√

2
|1〉

)

Q−→
(

−
1

2
|0〉 +

i

2
|1〉 +

1

2
|0〉 +

i

2
|1〉

)

= i|1〉.

A computational basis measurement on the qubit will now yield |1〉 with cer-

tainty. This ability to exhibit interference effects is held by some to be the

key to understanding the source of the power of quantum computers (Fortnow

2003; Aaronson 2013).

The combined state of two or more qubits is said to be separable if it can be

expressed as a product state:

|α〉 ⊗ |β〉 ⊗ |γ 〉

The state

|ψ〉 = |0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + |1〉 ⊗ |1〉
= (|0〉 + |1〉) ⊗ (|0〉 + |1〉)

is an example. Not all states of more than one qubit are separable states. The

following is an entangled state; it cannot be expressed as a product state:

|�+〉 =
|00〉 + |11〉

√
2

.

The ability of qubits to form entangled states when combined is another

oft-cited source of the power of quantum computers (Steane 2003). Entangle-

ment has been shown to be necessary for achieving quantum speedup when

using pure states (Jozsa and Linden 2003). However in the same paper, Jozsa

and Linden argue that it may not be a sufficient resource. For an in-depth

discussion, see Cuffaro (2017).

Other purported sources of quantum speedup include: massive quantum par-

allelism achievable through the ability of qubits to realize superposition states

(Pitowsky 2002; Duwell, this volume); the same but with an additional onto-

logical posit of many computational worlds (Hewitt-Horsman 2009; Cuffaro

2012); quantum contextuality (Howard et al. 2014); and the structure of quan-

tum logic (Bub 2010). For an overview and further discussion, see Hagar and

Cuffaro (2017).

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 9

4 Computational Implementation and the Physical

Church-Turing Theses

The previous sections of this Introduction concerned what could be computed

and how efficiently, largely abstracting from most of the physical, mechan-

ical, and engineering details that would be necessary to describe adequately

a concrete computer executing a concrete computation (but noting the possi-

ble differences between classical and quantum for complexity theory). This

abstraction of computability and computational complexity theory is perfectly

unproblematic when the latter are considered as branches of mathematics. But

their application to putative concrete computers and computations demands an

account of how their abstract objects adequately represent physical objects and

processes, or how their descriptions of computation are adequate abstractions

from concrete ones. What, in other words, would it take for a physical system

to implement a computation?

There is no consensus about the correct account of computational imple-

mentation, but it will be helpful for the remainder to keep several different

proposals in mind.12 The simple mapping account states, roughly, that a phys-

ical system performs a computation when there is a mapping from the sequen-

tial states of the system to the computational states of a computational model

(say, the state and tape contents of a TM) such that physical state transitions get

mapped to computational state transitions. This account is very liberal, in that

it designates multitudinous physical processes as implementing multitudinous

computations. It is thus often associated with the thesis of (unlimited) pan-

computationalism, that (nearly) all physical processes implement all (or many

non-equivalent) computations, in some sense.13 Because many take (unlimited)

pancomputationalism to be implausible, many other accounts of computa-

tional implementation add extra conditions to the mappings of the simple

mapping account to make computation less abundant. Causal, counterfactual,

and dispositional accounts require that the state transitions support various

modal conditions. Semantic and syntactic accounts take seriously the idea of

computation as manipulation of meaningful symbols, requiring respectively

that the mappings be representational, according to some account of proper

representation, or syntactical, according to an account of what it means for

states and changes thereof to be syntactically structured. Mechanistic accounts

demand that the physical system or process implementing a computation does

so in terms of a functional mechanism, an organization of the components of

the system suited to the task of manipulating computational vehicles, those

components whose states are mapped to computational states.

12 See Piccinini (2017, sec. 2) for a more thorough review of proposals for computational
implementation.

13 See Piccinini (2017, sec. 3) for more on the different types of pancomputationalism.

www.cambridge.org/9781107171190
www.cambridge.org

Cambridge University Press
978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics
Edited by Michael E. Cuffaro , Samuel C. Fletcher
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Michael E. Cuffaro and Samuel C. Fletcher

Regardless of how the issue of computational implementation is settled, it

raises the further question of an analog of the CTT for physical computations.

Recall from section 1 that the CTT subsumed the extension of an informal

concept – effective computability – under a formal one – Turing computability.

Effective computability, though vague, concerns in some idealized sense what

can be in principle computed by a human agent aided only with simple memory

aids such as paper and pencil. Physical computability, by contrast, concerns

what can be computed by any physical process made eligible by one of the

above accounts. So a physical version of the CTT would subsume a presumably

wider set of physical processes under Turing computation, and the converse of

a physical version should easily follow from an argument similar to that for the

converse of the CTT.

Several versions of a physical CTT have been proposed. Following Piccinini

(2011, 2015), it is helpful to distinguish between two classes of physical CTT:

Modest Physical CTT Any function of natural numbers that is physically

computable is Turing computable.

Bold Physical CTT Any physical process is Turing computable.

The modest version, like the CTT itself, focuses on the computation of the val-

ues of numerical functions. Sometimes Gandy (1980) is interpreted as having

advanced such a thesis:

Gandy’s Thesis M Any function of natural numbers computable by a discrete

deterministic mechanical assembly (DDMA) is Turing computable.

A DDMA is any physical device of which an adequate theoretical descrip-

tion uses discrete dynamics for finitely many parts of bounded complexity that

affect each other only locally and deterministically. Gandy (1980) then proves

that under a certain formalization of DDMAs, Thesis M follows. This thesis

is physical in the sense that DDMAs are intended to be models for arbitrary

machines that humans might construct to aid them in computations. However,

unless one has an essentially anthropocentric account of computational imple-

mentation, it is less plausible that physical computations are exhausted by such

machines. Accordingly, Thesis M sits conceptually between the CTT and the

modest physical CTT.

The bold version of the physical CTT requires a bit of interpretation: what

does it mean for a process to be computable? Typically, this means that an

adequate theoretical description of the physical process can be simulated by a

TM, in the sense that there is an injective map from the physical states of the

system undergoing dynamical evolution to the computational states of a TM.

A version of this thesis has been advocated by Deutsch (1985):

Deutsch’s Principle Every finitely realizable physical system can be perfectly

simulated by a universal model computing machine operating by finite means.

www.cambridge.org/9781107171190
www.cambridge.org

