Schooling matters. The authors’ professional pursuits for over 25 years have been focused on measuring one key aspect of schooling: the curriculum – what students are expected to study and what they spend their time studying. This documents their conviction that schools and schooling play a vital and defining role in what students know and are able to do with respect to mathematics and science.

This research examines 17 international studies of mathematics and science to provide a nuanced comparative education study. Whilst including multiple measures of students’ family and home backgrounds, these studies measure the substance of the curriculum students study which has been shown to have a strong relationship with student performance. Such studies have demonstrated the interrelatedness of student background and curriculum. Student background influences their opportunities to learn and their achievements, yet their schooling can have even greater significance.

WILLIAM H. SCHMIDT is a University Distinguished Professor at Michigan State University. He previously served as National Research Coordinator and Executive Director of the US TIMSS National Center.

RICHARD T. HOUANG is a Senior Researcher and the Director of Research for the Center of the Study of Curriculum Policy at Michigan State University.

LELAND S. COGAN is a Senior Researcher with the Center for the Study of Curriculum Policy at Michigan State University and was the U.S. Assistant Director for the Teacher Education Study in Mathematics (US TEDS-M).

MICHELLE L. SOLORIO is a PhD education policy student at Michigan State University.
The Educational and Psychological Testing in a Global Context series features advanced theory, research, and practice in the areas of international testing and assessment in psychology, education, counseling, organizational behavior, human resource management and all related disciplines. It aims to explore, in great depth, the national and cultural idiosyncrasies of test use and how they affect the psychometric quality of assessments and the decisions made on the basis of measures. Our hope is to contribute to the quality of measurement and to facilitate the work of professionals who must use practices or measures with which they may be unfamiliar or adapt familiar measures to a local context.
SCHOOLING ACROSS THE GLOBE

What We Have Learned from 60 Years of Mathematics and Science International Assessments

WILLIAM H. SCHMIDT
College of Education, Michigan State University

RICHARD T. HOUANG
College of Education, Michigan State University

LELAND S. COGAN
College of Education, Michigan State University

MICHELLE L. SOLORIO
College of Education, Michigan State University
We dedicate this book to my mentor at the University of Chicago who taught me what it means to thoughtfully and cleverly analyze data as opposed to just doing statistical analyses. He brought that mind-set to work on the Third International Mathematics and Science Study where my colleagues, Richard Houang and Leland Cogan, also came to appreciate his deep understanding of schooling and his clever approach to data analysis.

– Bill Schmidt

We also write this book to clarify the possibility for all children to experience both excellence and equality in their schooling. This includes those closest to us.

Keara Ava
Frederick Joella
Zoe Norah
Shane Grace
Arnold Wesley
Carolyn Audrey
Jaclynne Ashley
Dylyn Elayna
Reegyn Jackson
Maegan
Contents

List of Figures page ix
List of Tables xi
Series Editor’s Foreword xiii
Preface xv
Acknowledgments xvii
List of Abbreviations xviii

PART I THE HISTORICAL DEVELOPMENT OF MODERN INTERNATIONAL COMPARATIVE ASSESSMENTS 1
1 Beginning the Modern Investigation of the Role of Schooling across the Globe 3
2 The Arrival of TIMSS and PISA 20

PART II CONDUCTING INTERNATIONAL ASSESSMENTS IN MATHEMATICS AND SCIENCE 43
3 Who Participates in International Assessments? 45
4 What Students Know: From Items to Total Scaled Scores 65
5 Relating Assessment to OTL: Domain-Sensitive Testing 86
6 The Evolution of the Concept of Opportunity to Learn 100
7 The 1995 TIMSS Curriculum Analysis and Beyond 121
8 Characterizing Student Home and Family Background 156
Contents

PART III THE LESSONS LEARNED FROM INTERNATIONAL ASSESSMENTS OF MATHEMATICS AND SCIENCE

9 Pitfalls and Challenges 183

10 What Has Been Learned about the Role of Schooling: The Interplay of SES, OTL, and Performance 210

11 Where Do We Go from Here? 239

Appendix A Third International Mathematics and Science Study 1995: Mathematics and Science Content Frameworks – Measuring Curricular Elements 255

Appendix B Third International Mathematics and Science Study 1995: Teacher (Implemented Curriculum) OTL Questionnaire for Grade 8 262

Appendix C Programme for International Student Assessment 2012: Student (Implemented Curriculum) OTL Questionnaire 278

Appendix D Trends in International Mathematics and Science Study 2015: Teacher (Implemented Curriculum) OTL Questionnaire for Grade 8 and Country Expert (Intended Curriculum) OTL Questionnaire 281

References 295

Index 310
Figures

1.1 The field of “comparative education”: a brief history from approximately eighth century BC to 1969
1.2 Five historical phases of the IEA focusing on mathematics, revealing international assessment organizational shifts over time
2.1 IEA Tripartite Curriculum Model
2.2 Textbooks relation to curricular dimensions
2.3 Conceptual Model of Educational Opportunity
4.1 A Model of Mathematical Literacy in practice
5.1 Distribution of country ranks across mathematics subtopics
6.1 Carroll’s Model of School Learning
6.2 The quadratic relationship of Applied Mathematics to performance illustrated for four countries
7.1 The three aspects and major categories of the mathematics and science frameworks
7.2 Number of mathematics topics intended
7.3 Mathematics topics intended at each grade by top-achieving countries
7.4 Science topics intended at each grade by a majority of top-achieving countries
7.5 A hypothesized structure for curriculum
7.6 Estimated structural model of curriculum and achievement for Japan, the United States, and Slovenia (eighth-grade mathematics)
8.1 Direct and indirect SES inequalities
9.1 Sources of variance for the eighth grade International Mathematics score
10.1 Variation in PISA-2012 OTL both across and within countries
10.2 Most of the variation in PISA-2012 OTL was within school

ix
List of Figures

10.3 Model of SES inequality .. 221
10.4 Direct and indirect SES inequalities 224
10.5 Relationship across countries of size of OTL gap and
 performance gap at the between-school level 225
10.6 PISA-2012 predicted by TIMSS-2011 at the school level in
 Russia ... 231
10.7 Model for Russia relating OTL and eighth-grade
 performance to ninth-grade performance 234
11.1 Predicting PISA-2015 from TRENDS-2015 242
11.2 TIMSS and PISA schedule timeline for potential cohort
 longitudinal studies ... 245
Tables

3.1 Population definitions of IEA and OECD international mathematics and science studies ... page 48
3.2 Percentage of sampled 15-year-old students at each grade level in the PISA-2012 study: OECD countries 52
3.3 Percentage of sampled 15-year-old students at each grade level in the PISA-2012 study: non-OECD participants 53
3.4 Participation in the PISA and IEA mathematics and science studies .. 58
4.1 Number of items addressing each mathematical content area for different student levels (populations) in FIMS 75
4.2 Subtest comparisons: SIMS population A (z-scores) .. 83
5.1 Average percent correct on country-defined sets of appropriate eighth-grade items ... 94
6.1 OTL measurement in IEA studies prior to the 1995 TIMSS .. 110
6.2 Average significant estimates and percentage of PISA countries with statistically significant relationships of OTL to PISA performance for each of the three measures of OTL ... 117
7.1 The share of textbook emphasis for each topic at grade 4 .. 133
7.2 Percentage of mathematics textbooks that require a specific number of topics to cover 80 percent of the textbook 134
7.3 Percentage of science textbooks that require a specific number of topics to cover 80 percent of the textbook 135
7.4 Two representative topic trace maps for a selected set of countries ... 137
7.5 International Grade Placement (IGP) values for selected topics .. 138
7.6 Regression analyses relating coherence and focus to achievement .. 143
List of Tables

7.7 Examples of OTL measurement in IEA studies from 1999 TIMSS-R and TRENDS 149
8.1 TIMSS-95 student background items 170
8.2 SES related items from TIMSS-95/TRENDS and PISA student background questionnaires 171
8.3 Student wealth items included in the PISA-2012 SES index (ESCS) 172
8.4 Component loadings, loading ranks, and reliability for the ESCS composite from PISA-2012 173
9.1 Countries ranked in the top five in at least one international mathematics assessment 186
9.2 Countries ranked in the top five in at least one international science assessment 187
9.3 Means, standard deviations, and sample sizes for schools and classes by type of school and class track 200
9.4 Variation in OTL in non-tracked schools 201
9.5 Variation in OTL in tracked schools 202
9.6 Classroom means for four patterns of mathematics tracks, including their appropriate seventh-grade feeder class, and eighth-grade gain 203
9.7 Variation in mathematics performance in schools having no tracks 205
9.8 Variation in mathematics performance score in schools having tracks 205
9.9 The relationship of tracking and other student, classroom, and school variables to eighth-grade mathematics achievement in tracked schools 207
10.1 Sampling of journal articles using TIMSS/TRENDS and PISA data since 1995 212
10.2 Student-level correlations of composite SES measures with performance within each country for TIMSS-95, TRENDS-2011, and PISA-2012 222
10.3 Eleven countries with higher PISA mathematics scores and lower inequality 227
10.4 Estimated student achievement, PISA-2012, including TRENDS-2011 mathematics score 232
In the last several decades, globalization has influenced the lives of all people. Business and education, as well as scientific disciplines, have all experienced the need to understand and work with people whose political, social, cultural, and linguistic origins are often very different. This has been true of psychology, education, and other social science disciplines. These developments also have important implications for the development and use of measures of human individual differences. Business and educational institutions using tests and institutions interested in certifying or accrediting test users have all experienced the challenges and opportunities generated by increased globalization.

Recognizing the need for the education of psychometricians and users of tests, Jean Cardinet spearheaded the formation of the International Test Commission (ITC) in the late 1960s and early 1970s. It was formally established in 1978. Current members include scholars and institutions from most of the European and North American countries as well as some countries in the Middle and Far East, Africa, and South America.

The major goals of the ITC are the exchange of information among members and furthering cooperation on problems related to the construction, distribution, and use of psychological measures and diagnostic tools. To accomplish these goals, the ITC has initiated a number of educational activities. The ITC has also developed and published guidelines on quality control in scoring; test analysis and reporting of test scores; adapting tests for use in various linguistic and cultural contexts; test use in general; and computer-based and internet-delivered testing; as well as a test taker’s guide to technology-based testing. The ITC publishes a journal, International Journal of Testing. This peer-reviewed journal seeks to publish papers of interest to a cross-disciplinary international audience in the area of testing and measurement. In 2016, the ITC led the effort to produce the International Handbook of Testing and Assessment.
In 2013, the ITC proposed to Cambridge University Press a series of books on issues related to the development and use of tests. The goal of the series is to advance theory, research, and practice in the areas of international testing and assessment in psychology, education, counseling, organizational behavior, human resource management, and related disciplines. This series seeks to explore topics in more depth than was possible in the Handbook or in any single volume. The series will explore the national and cultural idiosyncrasies of test use and how they affect the psychometric quality of assessments and the decisions made on the basis of those measures. As such, we hope the series will contribute to the quality of measurement, but that it will also facilitate the work of professionals who must use practices or measures with which they may be unfamiliar or adapt familiar measures to a local context. We have asked both ITC members and other scholars familiar with a topic and who are also familiar with the global situation related to various topics to be the editors and contributors to individual volumes.

We are especially pleased to see this series develop and are confident that the books in this series will contribute to the effectiveness of testing and assessment throughout the world. Certainly, this volume on the international measurement of student achievement and the opportunity to learn contains a wealth of information on how to conduct educational assessments born of the authors’ experience conducting seventeen international studies of mathematics and science achievement as well as student background and opportunity. The volume is a detailed examination of the role of schooling in these areas that spans twenty-five years. It includes chapters that address issues of student participation and how students’ achievement, background, and learning opportunities have been measured in these studies. Seeing a compilation of this work by the outstanding scholars who have led these efforts in a single volume is truly exciting. We are hopeful that it will contribute to similar efforts in the future and that it will serve to enable educators to develop and use assessments to improve the education of their students.

We hope to publish a book at least biennially and encourage scholars who might be interested in developing a book proposal that addresses assessment in an international context to talk with the series editor, the ITC President, or other ITC leaders.

Neal Schmitt
Preface

Schooling matters. Our professional pursuits for more than twenty-five years have been focused on measuring one key aspect of schooling: the curriculum – what students are expected to study and what they spend their time studying. This we have done in an effort to document our conviction that schools and schooling play a vital and defining role in what students know and are able to do with respect to mathematics and science.

And yet, this assertion has been questioned, even today. Results from the extensive study of education conducted by Coleman and his colleagues in the early 1960s seemed to suggest that students’ home and family background were far more important in determining what they knew as measured by academic assessments than their school experiences. If true, then policies aimed at ensuring equitable distribution of economic and other resources would be the important operative policy levers for improving overall student achievement.

However, another line of research, represented by the seventeen international studies of mathematics and science that are the focus of this book, provides a more nuanced perspective. While including multiple measures of student family and home background, these studies have also measured in multiple ways the substance of the learning opportunities students have had, and these have demonstrated a strong relationship with student performance. Furthermore, these studies have been able to document the interrelatedness of student background and learning opportunities. Student background matters to their learning opportunities and their achievement, yet their learning opportunities (schooling) matter even more.

This volume is both an extension and a continuation of our research examination of the role of schooling through international assessments of mathematics and science spanning the past twenty-five years. The chapters are organized in three major parts. Part I, “The Historical Development of Modern International Comparative Assessments,” provides the historical, theoretical, and methodological context. Part II, “Conducting
xvi

Preface

International Assessments in Mathematics and Science,” has chapters that delve into issues of participation and how students’ achievement, background, and learning opportunities have been measured in these studies. Part III, “The Lessons Learned from International Assessments of Mathematics and Science,” is our perspective on what has been learned from these studies together with a few concluding thoughts around the future for them.
Acknowledgments

We gratefully acknowledge the International Association for the Evaluation of Educational Achievement (IEA) and the Organisation for Economic Co-operation and Development (OECD) under whose auspices the seventeen studies that serve as the basis for this book were conducted. Their tireless attention to detail has provided the field with high quality data by which to examine the role of schooling worldwide.

It is also with deep appreciation that we acknowledge Richard Wolfe, who read the entire manuscript and provided a carefully thought-out set of comments. Jack Schwille was also kind enough to provide comments on the book.

Finally, it is with the utmost admiration and appreciation that we acknowledge our editor, Jennifer Cady. She worked tirelessly and meticulously over the last year to produce the drafts of the book. But, more than that, she reads with understanding, so she is able to catch not only errors of syntax and grammar but those of substance as well; for example, catching inconsistencies between tables and references in the text. Thank you, Jenn.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACER</td>
<td>Australian Council for Educational Research</td>
</tr>
<tr>
<td>CASMIN</td>
<td>Comparative Analysis of Social Mobility in Industrial Nations</td>
</tr>
<tr>
<td>CCSSM</td>
<td>Common Core State Standards for Mathematics</td>
</tr>
<tr>
<td>CERI</td>
<td>Center for Educational Research and Innovation</td>
</tr>
<tr>
<td>ESCS</td>
<td>Economic, social, and cultural status</td>
</tr>
<tr>
<td>ETS</td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td>FIMS</td>
<td>First International Mathematics Study</td>
</tr>
<tr>
<td>FISS</td>
<td>First International Science Study</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>IBE</td>
<td>International Bureau of Education</td>
</tr>
<tr>
<td>ICCS</td>
<td>International Civic and Citizenship Study</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IEA</td>
<td>International Association for the Evaluation of Educational Achievement</td>
</tr>
<tr>
<td>IGP</td>
<td>International Grade Placement</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labor Organization</td>
</tr>
<tr>
<td>INES</td>
<td>Education Indicators Program</td>
</tr>
<tr>
<td>IRT</td>
<td>Item Response Theory</td>
</tr>
<tr>
<td>ISCED</td>
<td>International Standard Classification of Education</td>
</tr>
<tr>
<td>ISCO</td>
<td>International Standard Classification of Occupations</td>
</tr>
<tr>
<td>ISEI</td>
<td>International Socioeconomic Index</td>
</tr>
<tr>
<td>KMK</td>
<td>Ständige Konferenz der Kultusminister der Länder</td>
</tr>
<tr>
<td>NAEP</td>
<td>National Assessment of Educational Progress</td>
</tr>
<tr>
<td>NCES</td>
<td>National Center for Educational Statistics</td>
</tr>
<tr>
<td>NCTM</td>
<td>National Council of Teachers of Mathematics</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OTL</td>
<td>Opportunity to learn</td>
</tr>
<tr>
<td>PE</td>
<td>performance expectations</td>
</tr>
</tbody>
</table>
List of Abbreviations

Pilot – Pilot Twelve-Country Study
PIRLS – Progress in International Reading Literacy Study
PISA – Programme for International Student Assessment
SES – Socioeconomic status
SIMS – Second International Mathematics Study
SISS – Second International Science Study
SMSO – Survey of Mathematics and Science Opportunity
TALIS – Teaching and Learning International Survey
TCMA – Test Curriculum Match Analysis
TEDS-M – Teacher Education and Development Study in Mathematics
TIMSS – Third International Mathematics and Science Study
TIMSS-95 – Third International Mathematics and Science Study
TIMSS-R – Third International Mathematics and Science Study Repeat
TRENDS – Trends in International Mathematics and Science Study
UIE – UNESCO Institute of Education
UNESCO – The United Nations Educational, Scientific and Cultural Organization
US – United States
USOE – US Office of Education