

Genome Editing and Engineering From TALENs, ZFNs and CRISPRs to Molecular Surgery

Recent advances in genome editing techniques using endonucleases, such as TALENs and CRISPRs, combined with genomic engineering technologies have opened up a wide range of opportunities from applications in basic disease biology research to potential new diagnostic tools and clinical applications.

This complete guide to endonuclease-based genomic engineering gives readers a thorough understanding of this rapidly expanding field. Chapters cover the discovery, basic science, and application of these techniques, focusing particularly on their potential application to the treatment of cancer, and cardiovascular and immunological disease. The final section discusses the legal and ethical issues that accompany the technology. Providing authoritative coverage of the potential that genome editing and engineering carry, this is an ideal reference for researchers and graduate students and those working in the biotechnology and pharmaceutical industries, as well as in a clinical setting.

Krishnarao Appasani is the Founder and Chief Executive Officer of GeneExpression Systems. He is an award-winning scientist, and has edited several books, including: Optogenetics: From Neuronal Function to Mapping and Disease Biology (2017), Genome-Wide Association Studies: From Polymorphism to Personalized Medicine (2016), Epigenomics: From Chromatin Biology to Therapeutics (2012), MicroRNAs: From Basic Science to Disease Biology (2007) and RNA Interference: From Basic Science to Drug Development (2005).

Genome Editing and Engineering

From TALENs, ZFNs and CRISPRs to Molecular Surgery

Edited by

Krishnarao Appasani

GeneExpression Systems, Inc., Waltham, Massachusetts, USA

With a foreword by

George M. Church

Harvard University Medical School, Boston, Massachusetts, USA

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107170377

DOI: 10.1017/9781316756300

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by TJ International Ltd. Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Appasani, Krishnarao, 1959- editor.

Title: Genome editing and engineering: from TALENs, ZFNs and CRISPRs to

molecular surgery / edited by Krishnarao Appasani.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University

Press, 2018. | Includes bibliographical references.

Identifiers: LCCN 2017051165 | ISBN 9781107170377 (hardback)

Subjects: | MESH: Gene Editing | Transcription Activator-Like Effector

Nucleases | Zinc Fingers | Clustered Regularly Interspaced Short

Palindromic Repeats

Classification: LCC QH440 | NLM QU 550.5.G47 | DDC 576.5072-dc23

LC record available at https://lccn.loc.gov/2017051165

ISBN 978-1-107-17037-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to

Phillip A. Sharp (1944–) 1993 Nobel Laureate Medicine or Physiology and Institute Professor at the Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Phil is an American-born legendary molecular biologist, co-discoverer of split genes and RNA splicing, an entrepreneur and futurist, who foresaw the new field of RNA interference and genome editing.

Contents

List of Contributors		page x
Foreword		xxiii
Prefac	ce	xxv
Part l	I: Biology of Endonucleases (Zinc-Finger Nuclease, TALENs and CRISPRs) and Regulatory Networks	1
1	Targeted Genome Editing Techniques in <i>C. elegans</i> and Other Nematode Species Behnom Farboud and Te-Wen Lo	3
2. U	Unbiased Detection of Off-target Cleavage by CRISPR/Cas9 and TALENs Using Integration-defective Lentiviral Vectors	
3. 1	Youjun Wu and Jiing-Kuan Yee In Vivo Studies of miRNA Target Interactions Using Site-specific Genome Engineering	22
4. l	Andrew R. Bassett, Qianxin Wu, Quentin R.V. Ferry and Tudor Fulga Don't Kill the Messenger: Employing Genome Editing to Study Regulatory RNA Interactions	37
J	Jia Jia Chan, Zhi Hao Kwok and Yvonne Tay	52
Part II: Genome Editing in Model Organisms 69		
á	Genome Editing in the Crustacean <i>Daphnia magna</i> using CRISPR/Cas and TALEN Systems Yasuhiko Kato, Takashi Nakanishi and Hajime Watanabe	71
(Leapfrogging: A Method for Targeting Genome Editing to the Germline Ira L. Blitz	84
i	Genome Editing with Desired Mutations (Knockin) with CRISPR in Model Organisms Chunxin Wang and Yingjie Wu	97

vii

viii Contents

8.	TALENs and CRISPR/Cas9 Martin F. Berthelsen, Martin K. Thomsen and Yonglun Luo	110
9.	Gene Editing to Create Agricultural and Biomedical Swine Models Bethany K. Redel, Chad O'Gorman, Randall S. Prather and Kristin	110
	M. Whitworth	132
10.	Generation of New Model Cell Lines using ssODN Knockin Donors and FACS-based Genome Editing	150
D 1	Francesco Niola and Morten Frödin	150
	III: Technology Development and Screening	163
11.	CRISPR Genome Editing in Mice Ella Paulina Thomson, Ruby Emily Dawson, James Nicholas Hughes and Paul Quinton Thomas	165
12.	Detection of Insertion/Deletion (Indel) Events after Genome Targeting: Pros and Cons of the Available Methods Eric P. Bennett, Ashley M. Jacobi, Garrett R. Rettig and Mark A. Behlke	181
13.	Application of TAL Proteins and the CRISPR System to Purification of Specific Genomic Regions for Locus-specific Identification of Chromatin-associated Molecules	
	Toshitsugu Fujita and Hodaka Fujii	195
14.	Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell Lines Trinna L. Cuellar, Marinella Callow, Ted Lau, Colin Watanabe, Russell Bainer, Mike Costa and Benjamin Haley	209
15.	Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells	20)
	Megan L. Ludwig, Nicole M. Michmerhuizen, Rebecca C. Hoesli, Jaqueline E. Mann, Samantha N. Devenport, Aditi S. Kulkarni, Andrew C. Birkeland and J. Chad Brenner	223
Part	IV: Genome Editing in Stem Cells and Regenerative Biology	235
16.	Targeted Genome Editing Using Nuclease-assisted Vector Integration Michael Gapinske, Laurent Grant, Alexander Brown and Pablo Perez-Pinera	237
17.	Genome Engineering Using Sleeping Beauty Transposition in Vertebrates	
	Shreevathsa S. Chilkunda, Vaishnavi Raghunathan, Suneel A. Narayanavari, Zoltán Ivics and Zsuzsanna Izsvák	249
18.	Genome Editing of Pluripotent Stem Cells Zhili Rong and Yang Xu	270
19.	Principles for Targeting Adult Tissue Stem Cells to Achieve Durable Gene and Gene Editing Therapies	205
20.	James L. Sherley Therapeutic Genome Editing in Human Hematopoietic Stem and Progenitor Cells	285
	Rasmus O. Bak, Daniel P. Dever and Matthew H. Porteus	301

Contents ix

Part V: Genome Editing in Disease Biology		
21.	CRISPR/Cas9-based In Vivo Models of Cancer	
	Pranav V. Lalgudi, Monte M. Winslow and Ian P. Winters	315
22.	Inducible CRISPR-based Genome Editing for the Characterization of Cancer Genes Nalani Sachan, Madison Miller, Nitin H. Shirole, Serif Senturk, Vincenzo Corbo, Justin B. Kinney and Raffaella Sordella	337
23.	Genome Editing for Retinal Diseases	337
23.	Vinod Jaskula-Ranga	358
24.	Manipulation of Long Non-coding RNAs in Cardiovascular Disease Using Genome Editing Technology Stefan Haemmig and Mark W. Feinberg	371
25.	Gene Silencing, Disruption and Latency Reactivation with RNA-based and Gene Editing CRISPR/Cas, ZFN and TALEN Technologies for HIV-1/AIDS Therapies Paige Charlins and Ramesh Akkina	389
26.	Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and Cancer Therapies Amanda Freire Assis, Cesar Speck Hernandez, Larissa Cotrim-Sousa, Rafaela Martins Felicio, Ernna Hérida Oliveira, Lorena Alves Teixeira, Valéria Valente, Wilson Araújo Silva Jr. and Geraldo A. Passos	401
27.	Harnessing the Therapeutic Potential of Long Non-coding RNAs in Immunity Wendy J.M. Huang	414
Part \	VI: Legal (Intellectual Property) and Bioethical Issues of Genome Editing	421
28.	Patenting of CRISPR-based Inventions Philip Webber	423
29.	Patent, Ownership and Licensing Issues of CRISPR-based Genome Editing: Impact on Universities and their Licensees Rodney L. Sparks	431
30.	The Ethics of Human Genome Editing Tetsuya Ishii	443
31.	Regulating Human Genome Editing: Negotiating Ethical Concerns Through Science and Policy	
	Sarah Chan	454
Index		464

The color plates are found between pages 194 and 195.

Contributors

Ramesh Akkina

Department of Microbiology, Immunology and Pathology Colorado State University Fort Collins, CO, USA

Krishnarao Appasani

GeneExpression Systems, Inc. Waltham, MA, USA

Raghu Kiran Appasani

The MINDS Foundation, Boston, MA, USA

Amanda Freire Assis

Department of Genetics Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Russell Bainer

Departments of Bioinformatics Genentech Inc., South San Francisco, CA, USA

Rasmus Otkjaer Bak

Aarhus Institute of Advance Studies and Department of Biomedicine Aarhus University Aarhus, Denmark

Х

List of Contributors xi

Andrew R. Bassett

Cellular Operations Wellcome Trust Sanger Institute Hinxton, UK

Mark A. Behlke

Integrated DNA Technologies, Inc. Coralville, IA, USA

Eric P. Bennett

Department of Odontology Copenhagen Center for Glycomics Copenhagen, Denmark

Martin F. Berthelsen

Department of Clinical Medicine Faculty of Health Aarhus University Aarhus, Denmark

Andrew C. Birkeland

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

Ira L. Blitz

Department of Developmental and Cell Biology University of California Irvine, CA, USA

J. Chad Brenner

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

Alexander Brown

Department of Bioengineering University of Illinois at Urbana-Champaign Urbana, IL, USA

Marinella Callow

Departments of Discovery Oncology Genentech Inc., South San Francisco, CA, USA

xii List of Contributors

Jia Jia Chan

Cancer Science Institute of Singapore National University of Singapore Singapore

Sarah Chan

Usher Institute for Population Health Sciences and Informatics University of Edinburgh Edinburgh, UK

Paige Charlins

Department of Microbiology, Immunology and Pathology Colorado State University Fort Collins, CO, USA

Shreevathsa S. Chilkunda

Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany

Vincenzo Corbo

Department of Diagnostic and Public Health University of Verona Verona, Italy

Mike Costa

Departments of Discovery Oncology Genentech Inc. South San Francisco, CA, USA

Larissa Cotrim-Sousa

Department of Genetics Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Trinna L. Cuellar

Department of Molecular Biology Genentech Inc. South San Francisco, CA, USA

Ruby Emily Dawson

Department of Molecular and Cellular Biology School of Biological Sciences University of Adelaide Adelaide, Australia

List of Contributors xiii

Samantha N. Devenport

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

Daniel Patrick Dever

Department of Pediatrics Stanford University Stanford, CA, USA

Behnom Farboud

Department of Molecular and Cell Biology University of California Berkeley, CA, USA

Mark W. Feinberg

Cardiology Division Brigham and Women's Hospital Harvard Medical School Boston, MA, USA

Rafaela Martins Felicio

Department of Genetics and Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Quentin R.V. Ferry

Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford, UK

Morten Frödin

Biotech Research & Innovation Center University of Copenhagen Copenhagen, Denmark

Hodaka Fujii

Department of Biochemistry and Genome Biology Graduate School of Medicine Hirosaki University Hirosaki, Japan

xiv List of Contributors

Toshitsugu Fujita

Department of Biochemistry and Genome Biology Graduate School of Medicine Hirosaki University Hirosaki, Japan

Tudor Fulga

Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford, UK

Michael Gapinske

Department of Bioengineering University of Illinois at Urbana-Champaign Urbana, IL, USA

Laurent Grant

Department of Bioengineering University of Illinois at Urbana-Champaign Urbana, IL, USA

Stefan Haemmig

Cardiology Division Brigham and Women's Hospital Harvard Medical School Boston, MA, USA

Benjamin Haley

Department of Molecular Biology Genentech Inc. South San Francisco, CA, USA

Cesar Speck Hernandez

Department of Genetics and Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Rebecca C. Hoesli

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

List of Contributors xv

Wendy J.M. Huang

Department of Celluar and Molecular Medicine University of California, San Diego La Jolla, CA, USA

James Nicholas Hughes

Department of Molecular and Cellular Biology School of Biological Sciences University of Adelaide Adelaide, SA, Australia

Tetsuya Ishii

Life Science Section Office of Health and Safety Hokkaido University Sapporo, Japan

Zoltán Ivics

Division of Medical Biotechnology Paul Ehrlich Institute Langen, Germany

Zsuzsanna Izsvák

Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany

Ashley M. Jacobi

Integrated DNA Technologies, Inc. Coralville, IA, USA

Vinod Jaskula-Ranga

Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore, MD, USA

Yasuhiko Kato

Department of Biotechnology, Graduate School of Engineering Osaka University, Suita, Osaka, Japan and Frontier Research Base for Global Young Researchers Graduate School of Engineering, Osaka University Suita, Japan

Justin B. Kinney

Cold Spring Harbor Laboratory Cold Spring Harbor, NY, USA

xvi List of Contributors

Aditi S. Kulkarni

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

ZhiHao Kwok

Cancer Science Institute of Singapore Centre for Translational Medicine National University of Singapore Singapore

Pranav V. Lalgudi

Department of Genetics Stanford University School of Medicine Stanford, CA, USA

Ted Lau

Departments of Discovery Oncology Genentech Inc. South San Francisco, CA, USA

Te-Wen Lo

Department of Biology Ithaca College Ithaca, NY, USA

Megan L. Ludwig

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

Yonglun Luo

Faculty of Health Department of Biomedicine Aarhus University Aarhus, Denmark

Jaqueline E. Mann

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

Nicole M. Michmerhuizen

Department of Otolaryngology University of Michigan School of Medicine Ann Arbor, MI, USA

List of Contributors xviii

Madison Miller

Cold Spring Harbor Laboratory Cold Spring Harbor, NY, USA

Takashi Nakanishi

Department of Biotechnology Graduate School of Engineering Osaka University Suita, Osaka, Japan

Suneel A. Narayanavari

Mobile DNA Group Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany

Francesco Niola

Biotech Research & Innovation Center University of Copenhagen Copenhagen, Denmark

Chad O'Gorman

Animal Science Research Center Division of Animal Sciences University of Missouri Columbia, MO, USA

Ernna Hérida Oliveira

Department of Genetics Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Geraldo A. Passos

Department of Genetics Ribeirão Preto Medical School and Department of Morphology, Physiology and Basic Pathology School of Dentistry of Ribeirão Preto University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Pablo Perez-Pinera

Department of Bioengineering University of Illinois at Urbana-Champaign Urbana, IL, USA

xviii List of Contributors

Matthew H. Porteus

Stanford University, School of Medicine Department of Pediatrics Stanford, CA, USA

Randall S. Prather

Animal Science Research Center Division of Animal Sciences University of Missouri Columbia, MO, USA

Vaishnavi Raghunathan

Mobile DNA Group Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany

Bethany K. Redel

Animal Science Research Center Division of Animal Sciences University of Missouri Columbia, MO, USA

Garrett R. Rettig

Integrated DNA Technologies, Inc. Coralville, IA, USA

Zhili Rong

Cancer Research Institute Southern Medical University Guangzhou, Guangdong, P.R.China

Nalani Sachan

Cold Spring Harbor Laboratory Cold Spring Harbor, NY, USA

Serif Senturk

Dokuz Eylul University Izmir International Biomedicine and Genome Institute Izmir Province, Turkey

James L. Sherley

Director Asymmetrex, LLC Boston, MA, USA

List of Contributors xix

Nitin H. Shirole

Cold Spring Harbor Laboratory Cold Spring Harbor, NY, USA and Graduate Program in Genetics Stony Brook University Stony Brook, NY, USA

Wilson Araújo Silva Jr.

Department of Genetics Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, São Paulo, Brazil

Raffaella Sordella

Cold Spring Harbor Laboratory Cold Spring Harbor, NY, USA and Graduate Program in Genetics Stony Brook University Stony Brook, NY, USA

Rodney L. Sparks

University of Virginia Licensing and Ventures Group Charlottesville, VA, USA

Paul Quinton Thomas

Laboratory of Developmental Genetics Department of Molecular and Cellular Biology University of Adelaide Adelaide, Australia

Martin K. Thomsen

Faculty of Health
Department of Clinical Medicine
Aarhus University
Aarhus, Denmark

Ella Paulina Thomson

Department of Molecular and Cellular Biology School of Biological Sciences University of Adelaide Adelaide, Australia

xx List of Contributors

Yvonne Tay

Department of Biochemistry Yong Lo Lin School of Medicine National University of Singapore Cancer Science Institute of Singapore Singapore

Lorena Alves Teixeira

Department of Genetics Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto, Brazil

Valéria Valente

Department of Clinical Analysis School of Pharmaceutical Sciences UNESP State University Araraquara, SP, Brazil

Chunxin Wang

Surgical Neurology Branch National Institute of Neurological Disorders and Stroke Bethesda, MD, USA

Colin Watanabe

Departments of Bioinformatics Genentech Inc. South San Francisco, CA, USA

Hajime Watanabe

Department of Biotechnology Graduate School of Engineering Osaka University Suita, Japan

Philip Webber

Dehns Patent and Trademark Attorneys Oxford, UK

Monte M. Winslow

Department of Genetics Stanford University School of Medicine Stanford, CA, USA

List of Contributors xxi

Ian P. Winters

Department of Genetics Stanford University School of Medicine Stanford, CA, USA

Kristin M. Whitworth

Animal Science Research Center Division of Animal Sciences University of Missouri Columbia, MO, USA

Qianxin Wu

Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford, UK

Yingjie Wu

Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian Liaoning, P.R. China

Youjun Wu

Department of Diabetes and Metabolic Diseases Research Beckman Research Institute City of Hope National Medical Center Duarte, CA, USA

Yang Xu

Division of Biological Sciences University of California San Diego, CA, USA and Cancer Research Institute Southern Medical University Guangzhou, Guangdong, P.R. China

Jiing-Kuan Yee

Department of Diabetes and Metabolic Diseases Research Beckman Research Institute City of Hope National Medical Center Duarte, CA, USA

Foreword

I am thankful to Krishnarao Appasani for making the extraordinary effort to prepare this timely volume on the rapidly expanding field of genome editing and engineering, and for inviting me to offer a few of my own initial statements.

We live in exponentially exciting times. Times in which we can design and build new versions of industrial microbes, agricultural plants, animals and even ourselves. Our ability to sequence and synthesize DNA has improved over four-millionfold in just a few years, such that trillions of base pairs are now read and written by automated chip-based systems. The cost of editing a single base pair has improved about tenfold in that same time frame. It is important to keep in mind that the revolution is just as much about sequencing and synthesis as it is about editing. Without facile reading of whole genomes, we would lack key tools that permit avoidance of off-target editing. Without the synthesis of DNA on chips of large libraries of barcodes, guide-RNAs or sequence-specific DNA-binding protein domains, we would not be well positioned to conduct large screens for function.

When we speak of genome engineering, this is not just about one type of endonuclease, so it is refreshing to see representation in this book of meganucleases, zinc-finger nucleases, TALENs and CRISPRs. Moreover, genome engineering is not simply about nucleases, but other editing methods, especially those which intrinsically avoid the curse of non-homologous end-joining (NHEJ). These include phage-derived integrases/recombinases (such as lamba-int, cre, Bxb1), MAGE recombineering and adeno-associated virus (AAV) homologous recombination. In addition to increasing the on-target precision, these non-nuclease methods can reduce the toxicity of double-strand DNA breaks and hence increase the multiplicity. To put this in perspective, the record for multiplex edits per genome is 62 for mammalian cells, 25 for a whole living mammal (pig), and 321 for a bacterium (recoded E. coli). New efforts have begun, collectively called "Genome Project Write" (GPW), which involve 62 000 edits (E. coli) and 400 000 edits (human genome) to make cells resistant to all viruses. This indicates how crucial technology development will be in the near future for editing, screening, testing and debugging of complex functional interactions. So, it is noteworthy

xxiii

xxiv Foreword

that this text contains over a half dozen chapters on these technology development topics.

This volume covers the full spectrum from model organisms to clinical applications. Organisms include representatives of crustaceans, nematodes, fish, frogs, mice, pigs and humans. Naturally, within experiments on human cells we have additional topics well resourced in this book, including pluripotent stem cells, organoids, transplantation, cancer and regenerative biology, modeling and treating disease biology. Thankfully, in this context the final four chapters cover the very pressing and timely issues of patents, safety and ethical concerns of genome editing.

This comprehensive book is welcome at this point of rapid growth in new technologies and discoveries, such that keeping up with applications of genome engineering is challenging. Here we have both a general introduction to the field and to deep mechanisms and glimpses of future applications and ethical considerations – with gems for newcomers and experts alike. It is a great pleasure to participate in this grand experiment of sharing protocols, reagents and viewpoints on how to proceed responsibly.

March 21, 2018

George M. Church, PhD
Professor of Genetics
Harvard University Medical School and
Massachusetts Institute of Technology
Boston, Massachusetts, USA

Preface

Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world; and in the fields of observation chance favors only the prepared mind.

 Louis Pasteur, a French microbiologist (1822–1895) who discovered the principles of microbial fermentation and pasteurization

The famous Austrian British philosopher of science Karl R. Popper (1902–1994) believed that "before we can find the answers, we need the power to ask new questions, in other words, we need new technology." A key example of such a technological advance is the recent development of the new field of genome editing and/or genome engineering developed by several pioneers. Genome editing can be defined as "a powerful new tool for making precise additions, deletions, and alterations to the genome – an organism's complete set of genetic material." The development of efficient and reliable ways to make precise, targeted changes to the genome of living cells has been a long-standing goal for biomedical scientists. To reach this goal, researchers have utilized three different approaches in recent years: (1) zinc-finger nucleases (ZFNs), (2) transcription-activator like effector nucleases (TALENs) and (3) clustered regularly interspaced short palindromic repeats (CRISPRs).

Both ZFN and TALEN technology platforms have enabled researchers to generate permanent mutations by introducing double-stranded breaks to activate repair pathways. These approaches are relatively costly and time-consuming to engineer, limiting their widespread use for large-scale high-throughput studies. Recently, a new tool based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from *Streptococus pyogenes* has generated considerable excitement. This follows several attempts over the years to manipulate gene function, including homologous recombination and RNA interference, but they were hampered by providing only temporary inhibition of gene function and unpredictable off-target effects. The first section of this book details the biology of these endonucleases and their regulatory networks.

Genome Editing and Engineering: From Talens, ZFNs and CRISPRs to Molecular Surgery is intended for those in the genetic engineering, molecular agriculture,

XXV

xxvi Preface

stem cell biology, biotechnology, genetics, genomics, pharmaco-genomics and molecular medicine fields. There are a few books already available covering genome editing and various endonucleases. ^{1–7} Most of these books primarily focus on methods and lab protocols, except the recent book by Doudna and Sternberg, which discusses details of the field of genome editing and its bioethical issues and evolutionary perspectives. This present book differs, in that it is the first text completely devoted to combining endonuclease biology and genome editing use in model organisms, technology platforms and applications in studying the pathology of many diseases, as well as stem cell biology. Special emphasis is given to highlight the studies of model organisms, novel screening platforms that have been applied to regenerative and disease biology. This authoritative volume brings together the views of global experts on the use of genome editing in disease research, including cancer, cardiovascular disease, infectious disease and immunity, as well as RNA biology, HIV, retinal diseases and the development of therapeutics. Importantly, this authoritative guide also covers the legal and bioethical issues related to this emerging field of modern biology.

Repeated sequences in *E. coli* were initially discovered by a Japanese group, ⁸ followed by Francisco Mojica from the University of Alicante, Spain in 1995. ⁹ In parallel, two French groups have also identified such sequences, ^{10,11} however its "adaptive immunity function" was demonstrated by Phillippe Horvath and his colleagues. ¹² There are many more heroes who have played key roles in the identification of various nucleases, but their potential was realized in 2012 by Jennifer Doudna of the University of California, Berkeley, CA, USA ¹³ and Emmanuelle Charpentier of the Helmholtz Center for Infection Research, presently at the Max-Planck Institute of Infection Biology, Germany. ¹⁴ Later, Feng Zhang's group at MIT, USA also adopted this technique for precise engineering of genomes and developed several reagents, making them public to the research community worldwide. ¹⁵ Since then, targeted genome editing has brought about a new revolution in biological research.

Although genome editing arose from microbiology, it addresses a much broader unmet need in the study of biological systems beyond microbiology, in everything from agriculture to embryonic biology. The editing phenomenon has been observed in many model organisms, including bacteria, round worms, flies, fish, mice and humans. The second section of this volume covers genome editing processes in model organisms and the third section focuses on technology development and screening methodologies.

CRISPR/Cas-9 system-related genes are essential in "adaptive immunity" in selected bacteria, the archaea, enabling an organism to respond to and eliminate invading genetic material. The CRISPR/Cas-9 system originates from type II endonucleases, which provide bacteria with adaptive immunity to viruses and plasmids. This is a remarkable technology that can be used to precisely and efficiently target, edit, modify, regulate and mark genomic loci of a wide array of cells and organisms. Genome editing was hailed as the 2011 "Method of the Year" by *Nature Methods*, and in 2015 the CRISPR/Cas9 system was named the

Preface xxvii

"Breakthrough of the Year" by *Science* magazine. Additionally, a special issue of *Nature* was launched in 2016 with a cover headline reading "CRISPR Everywhere."

Genome engineering with the RNA-guided CRISPR/Cas-9 system in animals and plants is changing the face of biology. It is easier to use and more efficient than other genetic engineering tools, so it is already being applied in several thousand labs all over the world, just a few years after its discovery. The number of scientific publications on this technique also has been skyrocketing. The "CRISPR craze" has spread worldwide and researchers are adopting it for analysis of functional genomics, large-scale screening for drug targets and helping to engineer animal models that will benefit pharmacological studies. These endonucleases (especially CRISPR-Cas9) act like molecular scissors, cutting and replacing DNA letters in an organism's genome with exquisite precision and ease. The technique is revolutionizing the study of species from mice to potatoes, and is likely to open up powerful new avenues in gene therapy for the treatment of human diseases – "genome surgery" is becoming a reality.

Recently genome editing techniques have been used to alter embryos in monkeys and reduce unwanted mutations in the mitochondria in the eggs or embryos of mice. Such applications of genomic editing tools in stem cells and regenerative biology are covered in section four of this volume. Genome editing potentially offers a powerful approach to treat many human diseases, including HIV/AIDS, hemophilia, sickle-cell anemia and several forms of cancer, as we move closer to the clinic. The applications of genome editing and genome engineering techniques have been widely adopted to study disease biology, as detailed in the fifth section of this book. Nearly half a century ago, Bernard Davis, a Harvard microbiologist, envisioned the promise, the risks and the roadmaps for genetic research, including research on making heritable changes in the germline. 16 A note of caution is that genome editing in human embryos using current technologies could have unpredictable effects on future generations, and there are clearly important questions to be answered. The final section of this volume is devoted to cover such bioethical and legal (intellectual property) perspectives. Last year, the "Human Gene-Editing Initiative" was formed in collaboration with the US National Academy of Sciences and the US National Academy of Medicine, by inviting an international panel of scientists to set up a framework and guidelines for the use of genome editing tools in humans, especially relating to assisted reproductive technologies, stem cell therapies, gene transfer and mitochondrial replacement techniques (www.nap.edu/10766). As mentioned by Eric Lander of MIT and Harvard in his seminal review, 17 "the genome-editing discoveries are examples for both 'hypothesis-free' and 'hypothesis-driven' science and the partnership between these two approaches will be seen quite often in this 21st century."

The goal of this book is to serve as a reference for graduate students, post-doctoral researchers and primary investigators, as well as an explanatory analysis for executives and scientists in molecular medicine, molecular engineering, biotechnology and pharmaceutical companies. Our hope is that this volume will serve both as a prologue to the field for newcomers and as a reference for those

xxviii Preface

already active in the field. Most importantly, this book serves as a bridge between the basic science of CRISPR and its diverse applications in areas such as agriculture and biomedicine.

We have carefully selected the chapters, written by experts in the field from both academia and industry, and have divided the chapters into appropriate sections to support the theme expressed in the subtitle of this book: From TALENS, ZFNS and CRISPRS to Molecular Surgery. Developing novel genome editing tools is likely to become a prerequisite for genome engineering studies used to alter the genetic makeup. The elegant and revolutionary genome editing approaches that are covered in this book will undoubtedly have great future commercial promise for the development of innovative molecular surgical procedures and for the study of biomedicine and human disease biology.

Many people have contributed to making our involvement in this project possible. We thank our teachers for their excellent teaching, guidance and mentorship, which have helped us to bring about this educational enterprise. We are extremely grateful to all of the contributors, without whose commitment this book would not have been possible. Many people have had a hand in the preparation of this book. Each chapter has been passed back and forth between the authors for criticism and revision; hence each chapter represents a joint contribution. We thank our reviewers, who have made the hours spent putting together this volume worthwhile. We are indebted to the staff of Cambridge University Press, and in particular to Katrina Halliday for her generosity and efficiency throughout the editing of this book; she truly understands the urgency and need of this volume. We also extend our appreciations to Noah Tate for their excellent cooperation during the development of this volume. We want to thank Professor George Church, an Americanborn geneticist from the Harvard University Medical School, USA and one of the pioneers in the field of modern genetics and genome engineering, for his kindness in writing a Foreword to this book. Last, but not least, we thank Shyamala Appasani for her understanding and support during the development of this volume.

This book is the ninth in the series *Gene Expression and Regulation* that we have worked on and the fourth joint project between father and son. A portion of the royalties will be contributed to the Dr. Appasani Foundation (a non-profit organization devoted to bringing social change through the education of youth in developing nations) and The MINDS Foundation (Mental Illness and Neurological Diseases), which is committed to taking a grassroots approach to providing high-quality mental healthcare in rural India.

Boston, Massachusetts, USA February 2018

Krishnarao Appasani, PhD. Raghu Kiran Appasani, MD.

REFERENCES

1. Witzany G. 2009. *Natural Genetic Engineering and Natural Genome Editing*. Hoboken: Wiley-Blackwell for the Annals of the New York Academy of Sciences.

Preface xxix

2. Barrangou R, van der Oost J. 2013. CRISPR-Cas9 System: RNA-mediated Adaptive Immunity in Bacteria and Archae. New York: Springer Press.

- 3. Doudna JA, Sontheimer E. 2014. *The Use of CRISPR/Cas9, ZFNs, TALENs in Generating Site-specific Genome Alterations*. Amsterdam: Elsevier Publications.
- 4. Lundgren M, Charpentier E, Fineran P. 2015. CRISPR. New York: Springer Humana Press.
- Yamamoto T. 2015. Targeted Genome Editing Using Site-specific Nucleases. Tokyo: Springer Verlag Tokyo Press.
- 6. Kozubek J. 2016. *Modern Prometheus: Editing the Human Genome with CRISPR-Cas9*. Cambridge University Press.
- 7. Doudna, JA, Sternberg, SH. 2017. *A Crack in Creation: Gene* Editing *and the Unthinkable Power to Control Evolution*. Boston: Houghton Mifflin Harcourt Press.
- 8. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in *Escherichia coli*, and identification of the gene product. *J Bacteriol*. **169**: 5429–5433.
- 9. Mojica FJM, Díez-Villaseñor C, Soria E, Juez G. 1995. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. *Mol Microbiol* **9**: 613–621.
- 10. Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in *Yersinia pestis* acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. *Microbiology* **151**: 653–663.
- 11. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. *Microbiology* **151**: 2551–2561.
- 12. Barrangou R, Fremaux C, Deveau H. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. *Science* **315**: 1709–1712.
- 13. Jinek M, Chylinski K, Fonfara I, *et al.* 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* **337**: 816–821.
- 14. Deltcheva E, Chylinski K, Sharma CM, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. *Nature* **471**: 602–607.
- 15. Cong L, Ran FA, Cox D, *et al.* 2013. Multiplex genome engineering using CRISPR/Cas systems. *Science* **339**: 819–823.
- 16. Davis BD .1970. Prospects for genetic intervention in man. Science 170: 1279–1283.
- 17. Lander ES .2016. The heroes of CRISPR. Cell 18: 18–28.

